COMPUTATIONAL PHYSICS WITH JAVA

SEGUN EMMANUEL (ABODE)
FRIDAY 6TH, OCTOBER 2016
• OVERVIEW OF COMPUTATIONAL PHYSICS

• TOOLS OF COMPUTATIONAL PHYSICS

• INTRODUCTION TO JAVA

• COMPONENTS OF JAVA

• HANDS-ON
WHAT IS COMPUTATIONAL PHYSICS?

• Computational Physics may be broadly defined as 'the science of using computers to assist in the solution of physical problems, and to further physics research'.

• Computational physics is a tool for solving complex numerical problems in physics.
WHAT IS COMPUTATIONAL PHYSICS?

• Both experimental and theoretical physics are incomplete without the option to compute whenever it is necessary.

• The goal of computational physics is not to replace theory or experiment, but to enhance our understanding of physical processes.
WHAT IS COMPUTATIONAL PHYSICS?

- Computational physics bridges both theory and experiment physics.
MULTIDISCIPLINARY NATURE OF COMPUTATIONAL PHYSICS

- Physics Application
- Computational Physics
- Computer Science (Hardware/Software)
- Math Techniques
APPLICATION IN PHYSICS

• Large scale quantum mechanical calculations in nuclear, atomic, molecular and condensed matter physics
• Large scale calculations in such fields as hydrodynamics, astrophysics, plasma physics, meteorology and geophysics
• Simulation and modelling of complex physical systems such as those that occur in condensed matter physics, medical physics and industrial applications
• Computer algebra; development and applications etc
WHY DO WE NEED COMPUTATIONAL PHYSICS?

• We need computational physics when:
 we cannot solve problems analytically
 we have too much data to process

• Many, if not the most, problems in contemporary physics could never be solved without computers
OUTLINE

• OVERVIEW OF COMPUTATIONAL PHYSICS

• TOOLS OF COMPUTATIONAL PHYSICS

• INTRODUCTION TO JAVA

• COMPONENTS OF JAVA

• HANDS-ON
TOOLS OF COMPUTATIONAL PHYSICS

• Mathematical software packages such as MATHEMATICA, MAPLE or MATLAB etc

• Programming Languages such as JAVA, C#, PYTHON, FORTRAN, C, C++ etc
ADVANTAGES OF MATHEMATICAL SOFTWARE PACKAGES

• They facilitate the very rapid coding up of numerical problems

• Good for small and medium projects
DISADVANTAGES OF MATHEMATICAL SOFTWARE PACKAGES

• They produce executable code which is interpreted, rather than compiled.

• They are not suitable for full-blown research projects, since the code which they produce generally runs far too slowly.
PROGRAMMING LANGUAGES

• **Interpreted Languages** e.g. BASIC, Perl, PHP, VBScript, Power Shell etc

• **Compiled Languages** e.g. Fortran, Java, C#, C++, Python etc.
Programming with compiled languages gives more control, power, flexibility for numerically and logically intensive tasks.

Compiled code is translated directly from a high-level language into machine code instructions, which, by definition, are platform dependent.

Interpreted code is translated from a high-level language into a set of meta-code instructions which are platform independent.

Interpreted code is nowhere near as efficient, in terms of computer resource utilization, as compiled code.
APPROACHING PHYSICS PROBLEMS
• OVERVIEW OF COMPUTATIONAL PHYSICS
• TOOLS OF COMPUTATIONAL PHYSICS
• INTRODUCTION TO JAVA
• COMPONENTS OF JAVA
• HANDS-ON
Java was originally developed by James Gosling at Sun Microsystems in 1995.

Acquired by Oracle Corporation in 2010.
INTRODUCTION TO JAVA

• The Java programming language is an excellent choice for learning, teaching, or doing computational physics.

• It is a well-designed, modern programming language that is simultaneously easy to learn and very powerful.

• It includes a range of features tailored for scientific computing, including features for handling vectors, inverting and diagonalizing matrices, performing Fourier transforms, making graphs, and creating 3D graphics.
FEATURES OF JAVA

• Java SE (Java Standard Edition)
• Java EE (Java Enterprise Edition)
• Java ME (Java Micro Edition)
PRIMARY GOALS OF JAVA

- Provides an easy-to-use language by:
 - Avoiding many pitfalls of other languages
 - Being object-oriented
 - Enabling users to create streamlined and clear code
- Enables users to run more than one thread of activity
- Loads classes dynamically; that is, at the time they are actually needed
- Supports changing programs dynamically during runtime by loading classes from disparate sources
- Furnishes better security
PLACES WHERE JAVA IS USED

• Java is implemented over a number of places in modern world.
• It is implemented as:
 ➢ Standalone Application
 ➢ Web Application
 ➢ Enterprise Application
 ➢ Mobile Application
 ➢ Games
 ➢ Smart Card
 ➢ Embedded System
 ➢ Robotics
 ➢ Desktop etc
REQUIREMENTS

- JAVA VIRTUAL MACHINE (JVM)
- JAVA RUNTIME ENVIRONMENT (JRE)
 - contains JVM
- JAVA DEVELOPMENT KIT (JDK)
 - contains JVM and Compiler
THE JAVA VIRTUAL MACHINE (JVM)

• JVM provides definitions for the:
 • Instruction set (central processing unit [CPU])
 • Register set
 • Class file format
 • Stack
 • Garbage-collected heap
 • Memory area
 • Fatal error reporting
 • High-precision timing support
The JVM performs three main tasks:

- Loads code
- Verifies code
- Executes code
GARBAGE COLLECTION

- Allocated memory that is no longer needed should be deallocated.
- In other languages, deallocation is the programmer’s responsibility.
- The Java programming language provides a system-level thread to track memory allocation.
- Garbage collection has the following characteristics:
 - Checks for and frees memory no longer needed
 - Is done automatically
 - Can vary dramatically across JVM implementations
JRE vs JDK

• **JRE** provides the libraries, the Java Virtual Machine (JVM), and other components to run applets and applications written in the Java programming language.

• **JDK** is a superset of **JRE**, and contains everything that is in **JRE**, plus tools such as the compilers and debuggers necessary for developing applets and applications.
SETTING UP THE ENVIRONMENT

• Install the Java Development Kit
• Set path of the jdk directory

• Create the java program
• Compile and run the java program
THE JAVA APPLICATION ENVIRONMENT PERFORMS AS FOLLOWS:
• OVERVIEW OF COMPUTATIONAL PHYSICS
• TOOLS OF COMPUTATIONAL PHYSICS
• INTRODUCTION TO JAVA
• COMPONENTS OF JAVA
• HANDS-ON
COMPONENTS OF JAVA

• Class : Blueprint for an Object

• Object : Instance of a class

• Constructor: Object Creator

• Method : Behavior or actions

• Variable: Attribute or properties
COMPONENTS OF JAVA

- CLASS: Blueprint of an Object
- e.g.
  ```java
  public class Animal {
  }
  ```
COMPONENTS OF JAVA

• METHOD: Behavior or action of an Object
• e.g.

 public void eat(){
 // eating goes here
 }

 public void move(){
 // moving goes here
 }
COMPONENTS OF JAVA

• VARIABLE: Attribute or property of an Object
• e.g.

 int no_of_leg = 4;
 String color = Blue;
public class Greeting{
 public static void main(String args[]){
 System.out.println("Hello Java");
 }
}

• TO SAVE: Greeting.java
• TO COMPILE: javac Greeting.java
• TO RUN: java Greeting
JAVA IDE TOOLS

• Java Integrated Development Environment (IDE) Tools:
 • Eclipse
 • Netbeans
 • IntelliJ
• OVERVIEW OF COMPUTATIONAL PHYSICS
• TOOLS OF COMPUTATIONAL PHYSICS
• INTRODUCTION TO JAVA
• COMPONENTS OF JAVA
• HANDS-ON
HANDS-ON

- **Case study:** Equation of Uniformly Accelerated Motion

\[v = u + at \quad s = ut + \frac{1}{2}at^2 \]
\[s = \frac{1}{2}(u + v)t \quad v^2 = u^2 + 2as \]

- \(a \) = acceleration
- \(v \) = final velocity
- \(u \) = initial velocity
- \(t \) = time taken
- \(s \) = displacement
MISSING PARAMETERS

\[v = u + at \]

\[s = \frac{1}{2} (u + v)t \]

\[s = ut + \frac{1}{2} at^2 \]

\[v^2 = u^2 + 2as \]
input v, u, a, t, s;

input result;

IF s = ? THEN result = s
ELSE IF v = ? THEN result = v
ELSE IF u = ? THEN result = u
ELSE IF a = ? THEN result = a
ELSE IF t = ? THEN result = t
ALGORITHM FOR EQUATION 1

• IF s = null THEN

 CASE result OF
 v: v = u + at
 print v
 break
 u: u = v − at
 print u
 break
 a: a = (v − u)/t
 print a
 break
 END CASE

END IF
• Deployed Oracle Anti-Money Laundry solution (MANTAS) in CENTIF Guinee Conakry and Bissau respectively.

• Deployed WebSphere, DB2 Purescale and Tivoli Workload Scheduler on Central Security Clearing System (CSCS) AIX Servers (Nigeria Stock Exchange).

• **E-Commerce:** alabanigeria.com gorgeouszone.com

• **Website:** uglybeat.com 9jalearn.com jetlinkghana.com chipbitssystems.com mazinwosu.com (In view)

• **Enterprise:** Conoil Supply Chain Management Solution, Jetlink Stock Inventory Solution, River State Gov’t Procurement Solution (SEEFOR Project)

• **Mobile:** Mazi Nwosu (In view)
CONCLUSION