Upstream Oil and Gas The Role of Facilities Engineers

Presentation Outline

Introduction

- Simple Business Flow / simplified schematics
- Why treating Oil, Gas and Water
- What do engineers do ?
- **Oil & Gas Processing Facilities -** Flowstations, Gas Plants, Terminals, SPMs, etc
 - Simplified schematics to explain processing required and typical installed facilities
- Typical Costs and Schedules
- Regulations and Standards
- Safety

Me

Rotimi Ajayi

- B.Sc. (Hons) Chemical Engineering, Unilag, 1982.
- Worked in Upstream Oil & Gas, etc 1984 2014.
- Fellow, NSChE.
- MNSE.
- Married with Children.

Industry Structure

Upstream

Exploration, Develop oil & gas, oil & gas production, etc

Midstream

Refining, Petrochemicals, Gas & Power, LNG

Downstream

Distribution, Marketing, Retailing, Storage

Upstream Simple Business Flow

- Other models exist, e.g. PSC

PETROLEUM RESOURCE LIFE CYCLE RELATIVE ACTIVITY

•THE HISTORY OF OIL PRODUCTION

•DELIVERY and TRUNK PIPELINES

•Take the oil and water from the flowstation to the terminal. They are always buried.

Ĥ

•FLAREPIT ·

•The flare is enclosed by an earth bundwall which contains any accidental spills caused by oil getting into the gas flare pipeline

•FLOWLINE

•Small diameter pipelines that carry oil from a well to the nearest flowstation. There is aflowline for every producing oil. SPDC has more than 1,000 producing wells. Land flowlines are on the surface. Swamp flowloines are buried

•FLOWSTATION

•Collects oil from all the wells in one or more fields, separates the gas and sends the oil and water along pipelines to a coastal oil terminal The gas is mostly flared but some is used to power facilities. SPDC operates 86 flowstations.

•OIL TERMINAL

•Oil is collected in tanks and water separated before export to tankers waiting offshore. The distance between wellhead and terminal may be more than 150 kilometers.

•TANKER

•LOADING

•Takes place some five kilometers offshore. A buried undersea pipeline takes the oil to a single Buoy Mooring which loads the tanker through a flexible, floating hose.

Oil & Gas Processing

We need to treat oil, gas and water to meet required specifications before they are used or disposed off.

Why Process the Wellstream ?

- Oil and Gas need separate transport
- Oil and Gas have different Customers
- Different Customers have different specifications
- Handling requirements:
 - » HSE
 - » Transport and Logistical

Oil Specification

• For Transport :

- Allowed gas content (Vapour Pressure)
 - » Different for Pipeline, Terminal, Tanker
- Allowed water content

• For Customer :

- Allowed water content
- Allowed 'Blend' / API grade
- Allowed 'Contaminants'

Gas Specification

• For Transport in pipeline :

- Pressure
- Temperature
- Hydrocarbon Dewpoint
- Water Dewpoint
- Customer :
 - All above +
 - Compositional Specification
 - Energy content (Heating Value)
 - Quantities at specific times (Swing factor)

Typical Gas Specification

Customer's Gas Specification						
H2O Dewpoint Spec		15 Degrees C at pressures from 45 to 60 Barg				
HC Dewpoint		15 Degrees C at pressures from 45 to 60 Barg				
Delivery Pressure		45 - 60	barg			
Delivery Temperatu	ure	20 - 50	Deg C			
Gross Heating Valu	е	37.6 MJ/sm3 (1010 BTU/scf)				
Composition		Min %	Max %			
C1		86	97			
C2		1	4			
C3		0.5	2			
C4		0.1	1.5			
C5		0.1	0.6			
C6+		0.2	1			
Total Ine	rt		4			
CO2			2			
H2S			6 ppm			
Total Sulphur			9 ppm			
Particles			10 Micron			

So to meet the specs, we need to do the following:

•ROLE OF FACILITIES ENGINEER

• Facilities Engineers' role is to plan, design, construct and maintain the **surface facilities** required directly or indirectly for hydrocarbon prospecting, production and evacuation. It covers both Oil & Gas and Non Oil and Gas facilities eg

•Oil and Gas Infrastructures:

- \checkmark Flowstations
- ✓ Gasplants
- \checkmark Flowlines /pipelines with manifolds.
- ✓ Terminals, including tanks, CLPs, SPMs, etc

✓ Non oil & Gas infrastructures:

•Roads and hardstands, Drilling Locations for land rigs, Dredging slots for swamp rigs, Jetties and quaywalls, Helipads and runways, Office and residential buildings, etc.

PROJECT ACTIVITY LIFECYCLE

Subsurface Integration

PROJECT DEVELOPMENT PHASES

•**ROLE OF FACILITIES ENGINEER** FE roles span the entire phases

PROJECT PHASES

Concept Selection, Basis for Design & Project Specifications

Project Specification in relation to the Basis for Design

Development of the Project Specification

Typical Construction Sites

A Team work, various disciplines

Process Flow Schemes

Typical Standard Flowstation

Associated Gas Plant Design

Associated Gas Plant

Typical NAG Plant

WATER INJECTION SCHEMES

TYPICAL ONSHORE WATER TREATMENT SCHEME

Typical Land Flowstation

Typical Land Flowstation

Typical Swamp Flowstation

Typical Swamp Flowstation

Typical Swamp Flowstation

Typical Offshore Wellhead Jacket

Typical Land Pipeline

Typical Swamp Pipeline

Typical Pipeline Manifold

Typical Gas Plant

Typical Offshore Platform

Typical Costs and Schedule

Rules of Thumb for Major Projects :

Costs :

- A 60,000 bbl/d Flowstation costs 30 Mln US\$
- A 100 mmscfd AG plant costs 100 mln US\$

Manpower for a 100 MIn \$ Project :

- During FDP you need One Multidiscipline Facilities Engineer
- During Conceptual Design (FEED) you need 5 Facilities Engineers
- For Detailed Design of a 100 mln \$ plant a Contractor needs 100 Designers
- For Construction of a 100 mln US\$ plant I need 1000 Construction staff (on land)
- A 30 MW Power Generator consumes 10 MMscfd Fuelgas

Regulations & Standards

STANDARDS:

- NATIONAL
- COMPANY STANDARDS
- INDUSTRY STANDARDS
- Summary of bad experiences & good practices.
- Important to understand and use them
- Establish a Technical Change Control system to manage deviations.

SOME KEY EXTERNAL APPROVALS REQUIRED

Contract AwardsNAPIMSAnnual JV Budget and ExpenditureNAPIMS
Annual JV Budget and Expenditure NAPIMS
Asset Development Plan / Field DPR
Development Plan
Environment Impact AssessmentDepartment of Petroleum Resources
(DPR), Federal Ministry of the
Environmental (FMENV)
Permit to survey DPR
Co-ordinates of Marine structures DPR obtains clearances from other
agencies
Road crossings (Federal) Ministry of Transport
River Crossings (Federal) Ministry of Transport and In
Land Waterways
Permit to Dredge (Federal) Ministry of Transport and In
Land Waterways
Oil Pipeline License DPR
Conceptual Design DPR
Detailed Design / Start of Fabrication an DPR
Construction
Fabrication of Construction stages DPR, (DPR Procedure Guide needs
clarification)
Start of Commissioning DPR
Start Up DPR
Hydrocarbon Custody Transfer Meterin DPR
Facilities
Tank Calibration DPR
Permit to generate own power (Federal) Ministry of Mines and
Power/NEPA PLC

Why must we follow standards ?

Because we want to prevent major incidents like these

THANK YOU FOR LISTENING

DISCUSSIONS