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Corrosion polarization behavior and microstructural
analysis of AA1070 aluminium silicon carbide
matrix composites in acid chloride concentrations

Roland Tolulope Loto'* and Philip Babalola®

Abstract: The effect of SiC content and NaCl concentration on the corrosion re-
sistance of AA1070 aluminium in 2 M H,50, was evaluated with potentiodynamic
polarization technique, open circuit potential measurement (OCP) and optical
microscopy. Results showed SiC increased the corrosion susceptibility of the al-

loy at lower NaCl concentrations compared to results obtained at 0% NaCl which
showed significant decrease in corrosion rates, with maximum inhibition efficiency
of 90.84% at 20% SiC content. The corrosion rates decreased at higher NaCl concen-
tration, with maximum inhibition efficiency of 94.12 and 77.27% at 20% SiC. Alloy
samples in 2 M H,50,/0% NaCl at 0 and 20% SiC visibly decreased in OCP value over
wide variation compared to samples with varying NaCl concentration due to loss of
passivity. OCP values for alloys at varying NaCl concentration decreased over a very
short variation due to repassivation. Statistical data showed silicon carbide to be the
only relevant variable responsible for the corrosion rate values with F-values of 8.85
corresponding to a percentage significance of 54.8%. Optical images showed the
presence of corrosion pits of smaller dimension, yet deeper on the morphology of
the alloy without silicon carbide compared the alloy containing it, whose corrosion

pits, seems wider but very shallow.
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1. Introduction

1070 aluminium alloy is widely used for general industrial components, in building and construction,
communication cables, heat exchangers, corrosion resistant vessels and tanks, chemical industry
and for joining pieces of aluminium. The electrochemical properties of this aluminium grade can be
greatly enhanced with the addition of reinforcements in the form of ceramic such as SiC precipitates
(Birol, 2007; Zou, Miyahara, Yamamoto, & Ogi, 2003). Aluminium alloys are known to be widely used
due to their low density to weight ratio, high strength and corrosion resistance property in chemical
processing industries, aerospace, automotive, thermal control applications etc. Their extensive prop-
erty exposes them to degradation in the presence of corrosive anions (Alaneme, Olubambi, Afolabi,
& Bodurin, 2014; Asif, Chandra, & Misra, 2011; Prasad, Shoba, & Ramanaiah, 2014). Corrosion studies
of aluminium and aluminium alloys have received considerable attention by researchers in recent
years. Reports have shown that intermetallic precipitates influence the corrosion behavior of alu-
minum alloys. These precipitates may interact with the aluminium matrix leading to reduced or in-
creased corrosion resistance of the alloy (Abbas, 2010; Ambat, Davenport, Scamans, & Afseth, 2006;
Bodunrin, Alaneme, & Chown, 2015; Christian, 2004; Guillaumin & Mankowski, 2000; Paciej &
Agarwala, 1986). Most often the presence of reinforcements hinders the continuity of the aluminum
alloy and the surface oxide film due to the occurrence of galvanic couples at the boundary/interface
between the aluminium substrate and the precipitates of the reinforcing material. This increases the
number of sites where redox electrochemical reactions are more likely occur (Aziz, Qi, & Min, 2009;
Deuis, Green, Subramanian & Yellup, 1997; Trowsdale et al., 1996). The effect of corrosion in matrix
composite is also subject to the prevailing environmental conditions and processing methods which
alters the microstructure. The processing methods and composite size affects void size and content,
dislocation density and precipitation of active phases in aluminium matrices due to reinforcement/
matrix reactions forming new inter metallic phase (Gopinath, Balasubramaniam, & Murthy, 2001;
Trzaskoma, 1990). Previous research has been done on aluminium matrix composites based on the
2xxx, 6xxx and 7xxx series, but research on aluminium matrix composites based on 1xxx series is
scarce (Alaneme & Bodunrin, 2011; Dobrzanski, Wtodarczyk, & Adamiak, 2005; Ehsani & Reihani,
2004; Gharavi, Matori, Yunus, Othman, & Fadaeifard, 2015; Reena Kumari, Nayak, & Nityananda
Shetty, 2016). In contribution to research on aluminium matrix composites, this research aims to
study the corrosion resistance of 1070 aluminium matrix composite sand casted from an oil fired
tilting furnace in dilute sulphuric acid at specific concentrations of NaCl.

2. Experimental methods

2.1 Materials and preparation

AA1070 aluminium ingot (1070AL) obtained from Aluminium Rolling Mills, Ota, Ogun State, Nigeria
has a nominal (wt. %) composition presented in Table 1. Silicon carbide (SiC) of 320 grit size obtained
from Logitech, UK, with nominal (wt. %) composition shown in Table 2 was used to reinforce 1070AL
at weight percentages of 10, 15 and 20%. 1070AL was melted in a tilting furnace of 20 kg capacity
for 45 min at a temperature of 650°C. SiC was added to the liquid 1070AL, stirred mechanically and
cast into sand moulds. The process was repeated for each specified percentage of SiC. The cast sam-
ples (1070AL/SiC) were allowed to cool for 24 h, then grinded with silicon carbide papers (80, 320,

Table 1. Nominal (wt. %) composition of 1070AL

Element Fe Si Mn Cu Zn Ti Mg Pb Sn Al
symbol

% Composition | 0.232 | 0.078 | 0.000 | 0.0006 | 0.0016 | 0.006 | 0.0027 |0.0012 |0.007 | 99.66
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Table 2. Nominal (wt. %) composition of SiC

Element symbol C Al Fe Si Sio, Magnetic Fe SiC
% Composition 0.50 0.30 0.20 0.80 0.0016 0.04 97.6

Table 3. Brinell hardness test results

Material Brinell hardness
100% Al 133.37
10% SiC +90% Al 138.08
15% SiC + 85% Al 150.15
20% SiC + 80% Al 216.3

600, 800 and 1,000 grit) after machining, cleansed with deionized water and propanone, and kept in
a desiccator for electrochemical test and corrosion potential measurement according to ASTM G1-
03 (2011). Recrystallized NaCl obtained from Titan Biotech, India was prepared in volumetric con-
centrations of 0, 0.25, 0.5, 0.75 and 1% in 200 mL of 2 M H,SO, solution, prepared from analar grade
of H,SO, acid (98%) with deionized water. 1070AL/SiC was indented with a 10 mm diameter hard-
ened steel/carbide ball subjected to a load of 3000 kg for 30 s. The diameter of the indentation left
in the test material was measured with a low powered microscope. The Brinell hardness number was
calculated by dividing the load applied by the surface area of the indentation to give the hardness
test results in Table 3.

2.2 Potentiodynamic polarization technique

Polarization measurements were carried out at ambient temperature of 37°C using a three electrode
system and aerated glass cell containing 200 mL of the corrosive test solution with Digi-Ivy 2311
electrochemical workstation. 1070AL/SiC electrodes mounted in acrylic resin with an exposed sur-
face area of 1 cm? were prepared according to ASTM G59-97 (2014). Polarization plots were obtained
at a scan rate of 0.0015 V/s between potentials of —-0.75 and +1.5 V according to ASTM G102-89
(2015). A platinum rod was used as the counter electrode and a Fisher Scientific standard silver
chloride electrode (Ag/AgCl) as the reference electrode. Corrosion current density (j ) and corrosion
potential (E_) values were obtained using the Tafel extrapolation method. The corrosion rate, C,
(mm/y) and the inhibition efficiency, 7 (%) were calculated from the mathematical relationship;

c 0.00327 x J_, x Eqv
R~ D

where j_ is the current density (A/cm?), D is the density (g/cm?®), E | is the sample equivalent weight

(g). 0.00327 is a constant for corrosion rate calculation (Basics of Corrosion Measurements, xxxx).

1)

2.3 Open circuit potential measurement

OCP measurements were obtained at a step potential of 0.05 V/s with two-electrode electrochemi-
cal cell consisting of silver chloride reference electrode and resin mounted 1070AL/SiC (exposed
surface of 1 cm?) as the working electrode, connected to Digi-Ivy 2311 potentiostat. The electrodes
were fully immersed in 200 ml of the test media at specific concentrations of 2 M H,SO,/NaCl con-
centrations for 2,400 s.

2.4 Optical microscopy characterization

Optical images of the corroded and inhibited 1070AL/SiC surface morphologies were obtained and
analysed after the electrochemical test with Omax trinocular with the aid of ToupCam analytical
software.
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3. Results and discussion

3.1 Potentiodynamic polarization test

The effect of silicon carbide content and NaCl concentration on the electrochemical characteristics
of 1070AL/SiCin 2 M H,SO, from potentiodynamic polarization technique is shown in Figure 1(a)-(e).
Table 4 shows the results of the polarization scans. At 0% NaCl concentration on Table 4, a signifi-
cant decrease in corrosion rate is observed with increase in SiC concentration from 0.87 mm/y (0%
SiC) to 0.08 mm/y (20% SiC). The presence of SiC improved the corrosion resistance of 1070AL/SiC in
the absence of Cl” ions. SiC inhibits the electrochemical action of SO,?~ ions on 1070AL/SiC surface in
the acid solution through the formation of SiO, in 1070AL/SiC matrix. This strengthens the passiva-
tion resistance of the alloy, resulting in a maximum inhibition efficiency of 90.84% at 20% SiC con-
tent. There is the possibility that the aluminium oxide film grows homogeneously on the metal
surface through simultaneous migration of O anions and oxidized aluminium atoms resulting from
the electric field generated by the applied potential across the film. The corrosion potential shifts to
cathodic values due to the dominant cathodic inhibiting action of SiC in 1070AL/SiC whereby the
hydrogen evolution and oxygen reduction reactions are effectively suppressed. The presence of SiC
precipitates increased the surface impedance of the 1070AL/SiC. Addition of SiC to 1070AL/SiC had
no significant effect on the cathodic Tafel slopes. The anodic Tafel slopes are slightly greater than
the cathodic Tafel slopes due to the anodic exchange current density values being lesser than the
cathodic values.

Addition of Cl~ ion concentration to the acid solution caused a remarkable change in the electro-
chemical behaviour of 1070AL/SiC. At 0.25 and 0.5% NaCl concentrations, the corrosion rate of
1070AL/SiC increases with increase in SiC concentration due to breakdown of oxide film on the sur-
face, resulting in nil inhibition efficiency. The SiC composite tends to be cathodic to the aluminium
matrix in the presence of low Cl™ ion concentration, possibly due to the difference in coefficients of
thermal expansion between the aluminium matrix and SiC composite which generates higher dislo-
cation density responsible for the increase in corrosion rate (Bodunrin et al., 2015; Singh & Chauhan,
2016). These sites on the alloy surface are most likely to be the area where the oxide film discontin-
ues, directly exposing the aluminium substrate metal to the corrosive anions. The corrosion rates of
1070AL/SiC at 0.5% NaCl are relatively higher than the values at 0.25% NaCl however active-passive
polarization can be observed on their polarization plots (Figure 1(b) and 1(c)) due to changes in the
redox electrochemical behaviour of the alloy. This coincides with visible changes in the cathodic and
anodic Tafel slopes, and corrosion potential values with respect to variation in SiC content due to
localized breakdown of the passivating oxide film by Cl~ions as earlier explained. The shifts in corro-
sion potential indicate the loss of passivity of 1070AL/SiC due to thinning of primary oxide layer as a
result of the chemical dissolution action of SO,>” and Cl~ ions. The oxide layer consists of amorphous
y alumina which initially thickens on exposure to neutral aqueous solution with the formation of a
layer of crystalline hydrated alumina. The small size of Cl~ ions enables penetration through the pas-
sive oxide film under the effect of an electric field. They induce localized dissolution of the passivat-
ing oxide film at some discontinuity such as a grain boundary, dislocation or inclusion in the metal.
Further increase in NaCl concentration beyond 0.5% NaCl results in a decrease in corrosion rate
values at 0.75 and 1% NaCl concentration with increase in SiC content, however the inhibition effi-
ciency values at 0.75% NaCl is quite higher than the values in 1% NaCl. The negative shift in the
corrosion potential with increase in SiC concentration indicates that the cathodic process dominates
relative to the anodic process. It shows the dependence of 1070AL/SiC corrosion resistance to
changes in Cl™ ion concentration.

Comparison of the corrosion rate results of 1070AL/SiC at 0% SiC content for 0-1% NaCl concen-
tration shows that increase in Cl- concentration (0.25-0.5% NaCl) decreases the corrosion rate of
1070AL/SiC after which there is a sudden increase in corrosion rate value at 0.75-1% NaCl. The pres-
ence of SiC in 1070AL in the presence of Cl™ ions tends to have opposite effect on 1070AL/SiC. SiC
with 1070AL matrix causes an increase in corrosion rate values at 0.25% and 0.5% NaCl despite a
relative decrease in corrosion rate for 1070AL sample at 0% SiC content. But at higher NaCl
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Figure 2. Variation of corrosion
potential with time for 1179AL/
SiC specimens immersed in

0.2 M H,S0, at 0, 0.25, 0.5, 0.75,
1% NaCl concentrations.

concentration (0.75 and 1% NaCl) the corrosion rate of 1070AL/SiC decreases despite significant in-
crease in corrosion rate for 1070AL at 0% SiC. These observations is due to the simultaneous reac-
tion of aluminum in the acid solution at varying NaCl concentrations resulting in the formation of
hydroxide film on its surface through incorporation and diffusion of ions into the film, while at the
same time anodic dissolution at the film/solution interface occurs. With respect to CI"/SO,* ion ratio
and SiC content, the dominant reaction tends to determine the overall corrosion resistance of
1070AL/SiC. There is possibility that galvanic corrosion between 1070AL matrix and SiC reinforce-
ment occurs which may form micro-galvanic cells and induce localized corrosion

3.2 OCP measurement

The OCP values for 1070AL/SiC samples in the acid chloride solution are shown in Figure 2. 1070AL/
SiC samples in 0% NaCl at 0 and 20% SiC content visibly decreased in OCP value over a wide variation
compared to other samples with varying NaCl concentration at the first 800s of exposure. The de-
crease in OCP value indicates the loss of passivity of the specimen due to thinning of primary oxide
layer by the chemical dissolution action of SO,2". The OCP variation for 1070AL/SiC at 20% SiC is much
smaller and its value tends to increase after 500s of exposure till 2400s due to repassivation of the
protective oxide layer and the presence of SiO, on the alloy surface. The passive film of 1070AL/SiC
at 0% SiC/0% NaCl continued to thin out exposing the substrate 1070AL metal as shown in its OCP
value whose rate of decrease in value slowed down but continued till 2400s. The difference in elec-
trochemical behaviour for the alloy specimens at 0% NaCl is due to the presence is clearly due to the
presence of SiC in the alloy sample thus 1070AL/SiC at 20% SiC content has a lower thermodynamic
tendency to corrode.

It is observed that the OCP values for 1070AL/SiC at varying NaCl concentration decreased over a
very short variation from Os to between 116s and 196s before increasing to OCP values between
—0.515 V and -0.520 V at 480s-620s due to the relatively instantaneous repassivation of the protec-
tive film. The OCP values afterwards remained relative constant over short potential ranges but
thermodynamically unstable till the end of the exposure hours at 2400s due to continuous fluctua-
tions. The fluctuation of OCP values in the manner observed is typical of materials systems undergo-
ing repeated passive film formation and breakdown due to exposure to a corrosive environment,
however 1070AL/SiC at 20% SiC content in 0.25% NaCl concentration solution showed the highest
corrosion resistance due to its relatively higher OCP values resulting from a wider shift in the positive
direction, followed by 1070AL/SiC at 20% SiC content in 0.5% NaCl, 0.75% NaCl and 1% NaCl. This
observation shows that without applied potential Cl” ion concentration influences the corrosion re-
sistance and thermodynamic stability of 1070AL/SiC alloy on chloride containing environments.

0% SiC- 0% NaCl
——20% SiC- 0% NaCl

-0.285 0% SiC- 0.25% NaCl
0335 ———20% SiC- 0.25% NaCl
0% SiC- 0.5% NaCl
= 038 ———20% SiC- 0.5% NaCl
[}
.§ 0435 0% SiC-0.75% NaCl
20% SiC- 0.75% NaCl
-0.485 0% SiC- 1% NaCl
0535 20% SiC- 1% NaCl
-0.585
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E(V) vs Ag/AgCl
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3.3 Optical microscopy analysis

The optical microscopic images of 1070AL/SiC samples before and after the electrochemical tests
are shown from Figures 3(a)-7(c). Figure 3(a)-(d) shows the optical images of 1070AL/SiC samples at
0, 10, 15 and 20% SiC content before the corrosion test. The morphology of 1070AL/SiC at 0% SiC
content shows the presence of visible impurities in the microstructure of the aluminium metal sub-
strate before heat treatment. The impurities gradually disappeared with increase in SiC content
(Figure 3(b) and (c)) after heat treatment. Figure 4(a)-(c) shows the morphology of 1070AL/SiC at 0%
SiC content from 2 M H,S0O,/0, 0.5 and 1% NaCl solution. The morphology of 1070AL/SiC sample from
2 M H,S0,/0% NaCl (Figure 4(a)) corroded slightly in comparison to its morphology before corrosion
(Figure 3(a)). The visible impurities seem to have drastically reduced in number with the fewer re-
maining ones enlarged in size. 1070AL/SiC from 2 M H,50,/0.5% NaCl (Figure 4(b)) solution showed
the presence of macro-pits due to the action of Cl~ions resulting in localized corrosion of 1070AL/SiC
surface. In 2 M H,SO,/1% NaCl solution the alloy morphology the showed the presence of much
smaller macro-pits probably due to competitive action of Cl™ ions resulting from excessive Cl” ions.

1070AL/SiC morphologies at 10% SiC content from 2 M H,SO,/0, 0.5 and 1% NaCl solution (Figure
5(a) and (b)) contrast its morphology before corrosion (Figure 3(b)). Figure 5(a) showed a marginally
corroded image while Figure 5(b) showed a worn out morphology with a shallow macro-pit com-
pared to Figure 5(c) whose macro-pit appears smaller but deeper and the surrounding alloy surface
seems less corroded. Similar observations were confirmed for 1070AL/SiC samples at 15 and 20% SiC
content from 2 M H,S0O,/0, 0.5 and 1% NaCl solution (Figures 6 and 7). The most significant contrast
in the optical images results from comparison of 1070AL/SiC at 0% SiC content and 1070AL/SiC at
10, 15 and 20% SiC content from 2 M H,S0O,/0.5% NaCl solution probably due to the presence of SiC
at varying concentration. The presence of SiO, on the alloy surface, resulting from the oxidation of
SiC is a major contributing factor to the observed surface morphologies. 1070AL/SiC at 0% SiC con-
tent had relatively smaller but deeper micro-pits compared to the earlier mentioned samples where
the corrosion pits a quite larger but shallow.

3.4 Statistical analysis

Statistical analysis through analysis of variance (ANOVA) at a confidence level of 95% (significance
level of a = 0.05) was used to calculate the statistical relevance of SiC content and NaCl concentra-
tion on the obtained corrosion rate values of 1070AL 2 M H,SO, solutions according to Equations
(2)-(4).

The Sum of squares among columns (NaCl concentration)

T T
= < _ (2)
e nr N

Sum of Squares among rows (SiC content)

X1 12
35, = ncr N (3)

Total Sum of Squares

2
- (4)

SSTotal = N

The statistical data in Table 5 showed that SiC is the only relevant statistical variable responsible for
1070AL corrosion rate values with F-values of 8.85. This value is significantly greater than the theo-
retical significance factor (significance F) value of 3.49, corresponding to a percentage significance
of 54.8%.The statistical value of NaCl concentration at 2.47 is quite below the theoretical signifi-
cance factor of 3.26, which equates to a percentage significance of 20.4%. The results show that SiC
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Figure 3. Optical images of
1070AL/SiC samples (mag. x
40) at 0, 10, 15 and 20% SiC
content before the corrosion
test.
(a) (b) (© (d)

Figure 4. Morphology of 1070AL
with 0% SiC content from 2 M
H,SO, at (a) 0% NaCl, (b) 0.5%
NaCl and (c) 1% NacCl solution.

(@ (b)

Figure 5. Morphology of 1070AL
with 10% SiC content from 2 M
H,SO, at (a) 0% NaCl, (b) 0.5%
NaCl and (c) 1% NacCl solution.

(a)
Figure 6. Morphology of 1070AL
with 15% SiC content from 2 M
H,SO, at (a) 0% NaCl, (b) 0.5%
NaCl and (c) 1% NaCl solution.
(a)
(a)

(b) ©

Figure 7. Morphology of 1070AL
with 20% SiC content from 2 M
H,SO, at (a) 0% NaCl, (b) 0.5%
NaCl and (c) 1% NaCl solution.
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Table 5. Analysis of variance for 1070AL/SiC in 2 M H,SO,/(0-1% NaCl) at 95% confidence level

Source of Sum of Degree of Mean Mean Significance | F (%)
variation squares freedom square square ratio F

(F)
NaCl 4,00 4 1.00 2.47 3.26 20.4
concentration
SiC content 10.77 3 3.59 8.85 3.49 54.8
Residual 4.86 12 0.41
Total 19.64 19

content has strong influence on the electrochemical characteristics and the resulting microstruc-
tural properties of 1070AL in contrast to NaCl concentration whose relevance is below the significant
threshold, hence SiC content is the major determinant in the corrosion resistance of 1070AL in 2 M
H,SO,/(0, 0.25, 0.5, 0.75 and 1% NaCl) solution

4. Conclusion

SiC significantly improved the corrosion resistance of AA1070 aluminium alloy in dilute H,SO, solu-
tion without the presence of NaCl and at higher NaCl concentration studied due to the formation of
SiO, within the aluminium matrix which strengthened the oxide protective film on its surface. The
cathodic shift in corrosion potential is due to the dominant cathodic inhibiting action of SiC as its
precipitates increased the surface impedance of the aluminium alloy. Alloy samples in the presence
chloride visibly decreased in OCP value over very short variation compared to samples without chlo-
ride due to repassivation. The OCP values remained relative constant over short potential ranges but
thermodynamically unstable till the end of the exposure hours to continuous fluctuations. Statistical
results showed that SiC is the only relevant statistical variable responsible for corrosion rate values
of the aluminium alloy whose value is above the theoretical significance. Optical images show the

presence of SiC improves the pitting corrosion resistance of the aluminium alloy.
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