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Abstract--  Aluminium matrix composites (AMCs) are range 

of advanced engineering materials used for a wide range of 

applications. AMCs consist of a non-metallic reinforcement 

incorporated into Aluminium matrix providing advantageous 

properties over base metal alloys.  

 

In this paper, artificial neural network (ANN) is used to predict 

the micro-hardness, yield strength, tensile extension, modulus, 

ultimate tensile strength and stress, time to fracture, load at 

maximum extension, tenacity, electrical resistivity and 

conductivity. Information obtained from ANN model 

predictions can be used as guidelines during the conceptual 

design and optimisation of manufacturing processes; thus, 

reducing time and costs.  

Index Term-- Artificial Neural Network Aluminium Matrix 

Composites Modelling Mechanical Properties 

 
INTRODUCTION 

Artificial Neural Network (ANN) is a class of parametric 

models that can accommodate a wider variety of nonlinear 

relationships between a set of predictors and a target 

variable. A neural network architecture is a promising 

implicit modeling scheme based on learning a set of 

parameters (weights), aimed at replacing the traditional 

explicit constitutive equations used to describe material 

behavior (Bezerra et al., 2010). ANN models can be solved 

using several software such as SAS Enterprise Miner (SAS 

v9.4) and MATLAB and even Microsoft Excel. SAS 

Enterprise Miner has two nodes that fit neural network 

models: the Neural Network node and the AutoNeural node 

(SAS Inc, 2014). The Neural Network node trains a specific 

neural network configuration; this node is best used when 

you know a lot about the structure of the model that you 

want to define. The AutoNeural node searches over several 

network configurations to find one that best describes the 

relationship in a data set and then trains that network. We 

shall be using MATLAB ANN Toolbox to solve our model. 

(Tiryaki, et al, 2014), in their study, an artificial neural 

network (ANN) model was developed for predicting an 

optimum bonding strength of heat treated woods using the 

MATLAB Neural Network Toolbox for the training and 

optimization of the ANN model.  

 

ANN models have been applied to predict properties of 

AMCs produced by the Stir methods. Stir casting is a liquid 

metallurgy route involving melting of a metal, agitate the 

liquid metal and simultaneously introduce particles (for 

example, ceramics) before solidification is allowed 

(Inegbenebor et al, 2016). (Altinkok and Koker, 2004), in 

their study, Al2O3/SiC particulate reinforced (aluminium 

matrix composites) AMCs, which was produced by using 

stir casting process, bending strength and hardening 

behaviour were obtained using a back-propagation neural 

network that uses gradient descent learning algorithm. They 

found that neural network was successful in the prediction of 

bending strength, hardness behaviour and also porous 

properties for any given SiC (μm) particles size range in the 

produced AMCs. An interesting study by (Boldsaikhan et al, 

2011), introduces a novel real-time approach to detecting 

wormhole defects in friction stir welding in a nondestructive 

manner by evaluating feedback forces provided by the 

welding process using the discrete Fourier transform and a 

multilayer neural network. A one-hidden-layer neural 

network trained with the backpropagation algorithm is used 

for classifying the frequency patterns of the feedback forces. 

They achieved, about 95% classification accuracy with no 

bad welds classified as good and hence demonstrates an 

approach for providing important feedback information 

about weld quality in real-time to a control system for 

friction stir welding. 

 
With regards to wear properties of MMCs, several ANN 

models have been applied. (Hayajneh et al, 2009), in their 

work,  predicted wear loss quantities of some aluminum–

copper–silicon carbide composite materials, the results were 

firstly coded prior to training in a feed forward back 

propagation artificial neural network (ANN) and the results 

when compared with experimental results revealed the 

potential of ANN. (Rashed et al, 2009), showed that, 

artificial neural network (ANN) approach was used to 

predict the wear behaviour of A356/SiC metal matrix 

composites (MMCs) prepared using rheocasting route. The 

ANN model was obtained to aid in prediction and 

optimization of the wear rates of the composites. Their 

results have shown that ANN is an effective tool in the 

prediction of the properties of MMCs, and quite useful 
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instead of time-consuming experimental processes.  (Jiang et 

al, 2008), applied artificial neural network technique to 

predict the mechanical and wear properties of short fiber 

reinforced polyamide (PA) composites using two 

experimental databases to train the neural network. The 

predicted property profiles as a function of short fiber 

content or testing conditions proved a remarkable capability 

of well-optimised neural networks for modeling concern. 

 

ANN models have been applied in the prediction of 

mechanical properties of MMCs. Varol et al (2013), in their 

study, used artificial neural network (ANN) approach for the 

prediction of effect of physical and mechanical properties of 

Al2024–B4C composites produced by powder metallurgy. 

By comparing the predicted values with the experimental 

data, they demonstrated that the well-trained feed forward 

back propagation ANN model is a powerful tool for 

prediction of effect of physical and mechanical properties of 

composites.  Mukhopadhyay (2011), in his article elaborates 

the use of artificial neural networks (ANNS) in the 

prediction of static and dynamic mechanical properties, 

time-dependent properties like creep and stress relaxation, 

fatigue prediction, wear simulation, crack and damage 

detection of composites. Various recent developments and 

applications of ANNs, in the field of fibre reinforced 

composites have been discussed. Jalham (2003), showed the 

capability of the artificial neural network (ANN) to predict 

the effect of the hot deformation parameters on the strength 

of Al-base Metal Matrix Composites by comparing the 

results of the ANN predictions to the results of predictions 

by the Radial Basis Function (RBF) approach.  

 
The use of ANN methods have been demonstrated by many 

researchers in estimating rather than measured with 

satisfactory results and hence reduce testing time and cost. 

(Hassan,et al, 2009),  showed the  potential of using feed 

forward back propagation neural network in prediction of 

some physical properties and hardness of aluminium–

copper/silicon carbide composites synthesized by 

compocasting method using two input vectors. Density, 

porosity and hardness were the three outputs developed from 

the proposed network. Koker et al( 2007) in their study, 

investigated the effect of four training algorithms, using a 

back-propagation neural network , on learning performance 

of the neural networks on the prediction of bending strength 

and hardness behaviour of particulate reinforced Al–Si–Mg 

metal matrix composites (MMCs). Al2O3/SiC particulates 

reinforced MMC was produced by using stir casting process. 

The work concluded that, Levenberg–Marquardt (LM) 

learning algorithm gave the best prediction for bending and 

harness behaviours of aluminium metal matrix composites. 

 

Sha and Edwards (2007), noted the extensive use of artificial 

neural networks computer modeling techniques materials 

science and engineering research. They however, 

highlighted the growing tendency for the misapplication of 

neural network methodologies, limiting their potential 

benefit. Central to the problem is the use of over 

complicated networks that are frequently mathematically 

indeterminate, and by using limited data for training and 

testing. 

 
METHODOLOGY 

For prediction analysis of micro-hardness, yield strength, 

tensile extension, modulus, ultimate tensile strength, tensile 

stress, time at fracture (break), load at maximum extension, 

tenacity, electrical resistivity and conductivity, it was 

assumed that they are all functions of three parameters: 

percentage weight of aluminium (Wm), percentage weight 

of SiC (Wp) and size of SiC particle (Sp). Particle size has 

significant influence on composite properties (Inegbenebor 

et al, 2015). Furthermore, all samples have similar geometric 

features and precautions were taken to make sure that the 

manufacturing and testing conditions were similar in all 

cases. The ANN model proposed for predicting the 

aforementioned mechanical and electrical properties of 

AlSiC composite is illustrated in Figure 1. Electrical 

properties are the critical factor in some electrical and 

electronic applications (Babalola et al, 2015). Figure 1 

consists of a number of simple neuron-like processing 

elements, also called units or nodes, organized in layers that 

are classified as input layer, hidden layer(s), and output 

layer. These connections are not all equal; each connection 

has neurons with different weight and associated bias. These 

classifiers adjust internal parameters W performing vector 

mappings from the input to the output space Y(p) = 

AW(X(p)). In this way, the data were processed at the input 

layer and followed by network structure constituted by 

hidden layers until it arrives at the output layer. The input is 

a 3x17 matrix, representing 17 samples of 3 elements (see 

Table 2) and the output (target) is a 11x17 matrix, 

representing 17 samples of 11 elements (see Table 3). 

 

About 70% of the data has been used in the training, and 

simulation steps and the rest of the data were used for 

validation and testing of the network model. The structure of 

the network can be represented as (3, HL1, HL2, 11), where 

HL1 and HL2 are the number of nodes in the first and 

second hidden layers, respectively. Each of the hidden layers 

has ten (10) nodes, hence the network topology (3,10,10,11), 

used the training data to learn the weights, and records the 

value of Mean Square Error (MSE).  The Model equations 

are shown in Table I. 
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Table I 

 Model Equations 

# AMC 

Designation 

Constant 

Paramete

r 

Variable 

Parameter 

Modulus Hardness Electrical 

Conductivity 

1 Al/SiC/2.5p/0-

45mm 

%wt. at 

2.5 

Particle size  =-

1.6602m2+70.061

m+736.63 

H = 0.0843m 

+ 20.64,  R2 

=0.7143 

e=0.0013862m2 -

0.093356m+69.456 

2 Al/SiC/5.0p/0-

45mm 

%wt. at 

5.0 

Particle size  =-

0.70001m2+34.179

m+642.45  

H = 0.239m + 

21.19,  R2 

=0.8249 

e=0.00058141m2 -

0.15024m+68.133 

3 Al/SiC/7.5p/0-

45mm 

%wt. at 

7.5 

Particle size  =-

1.1501m2+53.806

m+809.33 

H = 0.2914m 

+ 22.528, 

 R2 

=0.849 

e=0.0073248m2 -

0.37581m+66.722 

4 Al/SiC/10p/0-

45mm 

%wt. at 

10 

Particle size  =-

0.84115m2+39.97

m+545.32 

H = 0.3135m 

+ 22.838, 

 R2 

=0.8596 

e=0.010671m2 -

0.63267m+59.546 

5 Al/SiCp/0-

10/3mm 

Particle 

sizes, 

3mm 

%wt.  =-

26.348w2+310.57w

+459.39 

H = 0.692w + 

19.32,  R2 

=0.9396 

e = -1.908w + 

73.473,  R2 =0.7366 

 

6 Al/SiCp/0-

10/9mm 

Particle 

sizes, 

9mm 

%wt.  =-

20.971w2+230.46w

+521.04 

H = 0.652w + 

20.63,  R2 

=0.8896 

e = -2.0238w + 

72.088,  R2 =0.9213 

 

7 Al/SiC/0-

10/29mm 

Particle 

sizes, 

29mm 

%wt.  =-

19.58w2+246.53w+

486.04 

H = 1.576w + 

19.37,  R2 

=0.933 

e = -1.2244w + 

71.671,  R2 =0.8278 

 

8 Al/SiC/0-

10/45mm 

Particle 

sizes, 

45mm 

%wt.  =-

11.504w2+148.65w

+359.56 

H = 1.64w + 

20.95,  R2 

=0.8637 

e = -1.7725w + 

71.535,  R2 =0.8204 
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Fig. 1. The ANN Architecture 

 

Table II 

 ANN Input Data 

S/N Al %wt. 
SiC 

%wt. 
SiC Size (µm) 

1 100 0 0 

2 97.5 2.5 3.00E-06 

3 95 5 3.00E-06 

4 92.5 7.5 3.00E-06 

5 90 10 3.00E-06 

6 97.5 2.5 9.00E-06 

7 95 5 9.00E-06 

8 92.5 7.5 9.00E-06 

9 90 10 9.00E-06 

10 97.5 2.5 2.90E-05 

11 95 5 2.90E-05 

12 92.5 7.5 2.90E-05 

13 90 10 2.90E-05 

14 97.5 2.5 4.50E-05 

15 95 5 4.50E-05 

16 92.5 7.5 4.50E-05 

17 90 10 4.50E-05 
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Table III 

 ANN Output (Target) Data 
N
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1 20.783118 720.0062 402.413324 40.8 61.3 845.6629 40.8032 19.6 70.25378 0.014234 15.175522 

2 10.685998 353.2760581 1293.428876 29.6 37.2 381.4674 21.3124 20.05 68.82136 0.01453 8.160014 

3 10.84656 419.33323 1028.563265 35 53 438.4278 21.65 23.6 67.70123 0.014771 9.35811 

4 7.945935 314.2605334 1517.59211 24.25 31.625 320.9439 15.883 24.75 64.14723 0.015589 6.76695 

5 8.6769125 420.8433258 878.9286575 22.25 28.25 434.3051 17.3 25.9 48.74027 0.020517 5.649625 

6 8.14303 688.626658 1290.11912 30.4 40 711.551 16.22 22.95 67.83901 0.014741 13.039944 

7 7.156814 374.4512296 888.772108 16.8 24 383.5274 14.3 24.65 62.96254 0.015882 6.403696 

8 7.01875 498.46985 1092.8752 21.625 26.5 519.2085 13.975 26.05 59.82686 0.016715 10.044365 

9 6.4023433 291.1302844 760.3567167 11.667 13.867 301.7488 12.73333 26.2 48.96254 0.020424 4.4393267 

10 11.061328 698.093155 1233.86522 30.75 41.625 721.5803 22.075 23.55 68.63504 0.01457 13.083903 

11 9.46796 688.299396 969.405182 36 47.6 746.2332 18.7772 25.2 66.96015 0.014934 14.489662 

12 6.3033333 62.09007 1326.21316 31.667 39.667 63.55679 12.57733 33.65 65.26178 0.015323 1.14747 

13 13.491654 615.047286 990.415216 28 42.1 756.6384 46.5948 34.25 56.63504 0.017657 12.173872 

14 12.404812 503.244 580.916218 22.8 33.46 610.1167 14.2568 23.85 67.80000 0.014749 8.624638 

15 12.6141 453.2824975 793.2229175 34.5 44.75 497.3207 15.1 33.45 61.58468 0.016238 9.3490325 

16 6.746216 762.192954 935.028496 19.8 27.62 780.5672 40.42 33.65 63.45271 0.01576 13.021274 

17 10.785468 382.0129175 645.46291 29.125 39.625 398.2237 21.52 35.2 50.27102 0.019892 6.3503725 

 
A data set of measured results will usually be divided into 

three data sets: training, testing, and validation of the neural 

network. The training data set is used to adjust the weights 

of all the connecting nodes until the desired error level is 

reached. The ANN performance can be evaluated using the 

coefficient of determination B (also called R2 coefficient), 

which is defined by: 

 

  

 

 

 

where O(p(i)) is the ith predicted property characteristic, O(i) 

is the ith measured value, O is the mean value of O(i), and M 

is the number of test data. The coefficient B describes the 

fitness of the ANN output variable approximation curve to 

the actual test data output variable curve. Higher B 

coefficients indicate an ANN with better output 

approximation capabilities. To avoid any influence in 

selecting the test data, a random technique was applied in 

the selection, and the entire process is repeated 

independently many times. Afterward, the distribution of B 

values is recorded and the percentage of B ≥ 0.9 is 

calculated, since this value is identified as corresponding to 

a high predictive quality, that is, less than 15% of the root 

mean square error is between the predicted values and the 

measured ones. It is clear that the higher the percentage of B 

(B ≥ 0.9), the better the quality (Bezerra et al., 2010). 

Another aspect that should be observed is the increase of the 

percentage of test data with a B value of ≥0.9 as a function 

of the number of neurons in the hidden layers. 

 
RESULT AND DISCUSSIONS 

In this section, results are discussed using the network 

(Figure 1) to predict the microhardness, yield strength, 

tensile extension, modulus, ultimate tensile strength, tensile 

stress, time at fracture (break), load at maximum extension, 

tenacity, electrical resistivity and conductivity. The 

maximum performance was reached using a multilayer 

perceptron composed by 20 neurons in two hidden layers.  

 

The regression R values measure the correlation between 

outputs and targets. An R value of 1 means a close 

relationship, 0 a random relationship and from Figure 4, 

Training has R value of 0.99987, Validation has R value of 

0.92398, Test has R value of 0.9448 and All has R value of 

0.96826. It can be inferred that there is close relationship 

between the outputs and the targets. 

Training samples were presented to the network during 

training and the network was adjusted according to its error, 

Validation samples were used to measure network 



            International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:15 No:06                              156 

                                                                                                         154502-1706-7979-IJMME-IJENS © December 2017 IJENS                                                                                      I J E N S 

generalization and to halt training when generation stops 

improving, while Testing samples have no effect on training 

and so provided an independent measure of network 

performance during and after training (Figure 2 and Figure 

3). The summary of ANN results, a pattern recognizing tool 

is indicated in Figure 4. 

 

 
Fig. 2. ANN Training Graph for the Data Used. 
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Fig. 3. The ANN Validation Checks, Mu and Gradient 
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Fig. 4. ANN Output Graph for the Dataset. 

CONCLUSIONS 

The hardness of the composite was found to be considerably 

higher than that of the matrix alloy and increased with 

increasing particle content. The higher hardness of the 

composite samples relative to that of the matrix Al-alloy 

could be attributed to the reducing grain size and existing of 

nano-hard particles acting as obstacles to the motion of 

dislocation. The addition of ceramic particles resulted in 

significant improvements in yield strength and ultimate 

tensile strength of the composites. Different strengthening 

mechanisms contributed in the obtained strength 

improvements including Orowan strengthening, grain 

refinement, and the load bearing effects. 

 

Unlike the experimental approach, which is time consuming, 

the use of Excel, MATLAB and ANN method are capable of 

generalizing the complex relationships and provide 

approximate solutions. Mechanical properties are related to 

volume percentage and the size of SiC in the composite. 

Information obtained from the model predictions and 

simulations can be used as guidelines during the conceptual 

design and optimization of manufacturing processes; thus, 

reducing the time and costs that would otherwise be incurred 

by experimental methods. 
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