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Abstract: Improvement of electro-Fenton (EF) process with granulated activated carbon 
(GAC) for the treatment of brewery effluent obtained from Ota, South-West Nigeria was 
investigated. The GAC was obtained by crushing, carbonising, sieving, and activating cow 
bones. Duplicate samples of the raw effluent and 10 treated brewery effluent samples 
were analysed for conductivity, turbidity, total dissolved solids (TDS), chemical oxygen 
demand (COD), copper, manganese, cadmium, lead, and zinc. The average readings 
were taken as final values. Results showed that the combined use of EF and GAC treat-
ment of the effluent yielded better result than use of EF alone. The removal efficiency 
was 1181, 50, 565, 4375, 160, and 840% for turbidity, COD, copper, cadmium, lead, and 
zinc respectively. EF and GAC treatment were, however, found to be inefficient for the 
treatment of conductivity, TDS, and manganese. It was also found that pH had a direct 
impact on the treatment media. Turbidity and cadmium, which had the highest removal 
rates were achieved at pH 2, while COD, copper, and zinc had optimum treatment at pH 
6. It was concluded that the combined advantage of electrolytic separation from EF and 
adsorption from GAC yielded better treatment result for the brewery effluent samples.
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1. Introduction
Industrialization leads to economic growth of any nation. However, industrialization also leads to 
environmental pollution and degradation when the waste products are not well managed. This 
problem is particularly pronounced in developing countries, where adequate treatment technolo-
gies are unavailable or expensive (Omole, Isiorho, & Ndambuki, 2016). Adapting any treatment 
method in any area, and at any given condition depends on several factors such as economic, re-
quired efficiency, available technology, concentration of the pollutants, and national standards, 
among other things (Emenike, Omole, Ngene, & Tenebe, 2016; Omole, Ndambuki, Nwafor-Oritzu, & 
Obata, 2014). Many reviews focus on various treatment and pre-treatment methods of water and 
wastewater for sustainable development (Garcia-Segura, Bellotindos, Huang, Brillas, & Lu, 2016; 
Huang et al., 2017; Mirzaei, Chen, Haghighat, & Yerushalmi, 2017; Nidheesh & Gandhimathi, 2012; 
Omole & Ogugua, 2017; Omole et al., 2014). This includes advanced oxidation processes and use of 
activated carbon (Babuponnusami & Muthukumar, 2014; Emenike et al., 2016; Emenike, Omole, 
Ngene, & Tenebe, 2017). The electro-Fenton (EF) method is based on the principle of ionization, oxi-
dation, and separation of wastewater constituents at atomic level using electric currents (electroly-
sis) while activated carbon employs the principle of surface adsorption (Atallah Aljubourya, 
Palaniandy, Aziz, & Feroz, 2015; Deng & Zhao, 2015; Emenike et al., 2016; Emenike, Omole, Ngene, & 
Tenebe, 2017; Glaze, 1987; Glaze, Kang, & Chapin, 1987; Knopp, Prasse, Ternes, & Cornel, 2016). 
Reviews on the improvement of Fenton treatment method has been done by various researchers 
(Babuponnusami & Muthukumar, 2014; Ghanbari & Moradi, 2015; Nidheesh & Gandhimathi, 2012; 
Wang, Zheng, Zhang, & Wang, 2016). The high solid sludge creation from Fenton process, is associ-
ated with the widespread use of iron salts as catalyst (Garcia-Segura et al., 2016; Yuan, Lai, & Tang, 
2016). The problem of extensive use of oxidant (hydrogen peroxide) for wastewater treatment in 
Fenton method subsequently led to the use of EF for various organic pollutant removal (Davarnejad 
& Bakhshandeh, 2017; Iglesias, Meijide, Bocos, Sanromán, & Pazos, 2015; Li, Jin, Zhao, Angelidaki, & 
Zhang, 2017). The EF process can be grouped into four classes, depending on the Fenton’s reagent 
formation (Babuponnusami & Muthukumar, 2014). In class 1, a sacrificial anode and an oxygen giv-
ing cathode are used to electro-generate the hydrogen peroxide and the ferrous ion respectively 
(Ting, Lu, & Huang, 2008). In class 2, hydrogen peroxide is added while the ferrous ion is produced 
from the sacrificial anode (Kurt, Apaydin, & Gonullu, 2007) as shown in Equation 1. In class 3, ferrous 
ion is inputted into the system while hydrogen peroxide is generated from oxygen giving cathode 
(Badellino, Rodrigues, & Bertazzoli, 2006; Brillas & Casado, 2002). In class 4, hydroxyl radical (*OH) is 
produced by the application of the Fenton’s reagent in an electrolytic cell. The cathode, however, 
regenerates ferrous ions through the reduction of ferric ions (Zhang, Fei, Zhang, & Tang, 2007; Zhang, 
Zhang, & Zhou, 2006). 

Electro-Fenton is particularly known as an efficient method for reducing chemical contaminants 
from effluents (Kahoush, 2017; Mohapatra, Brar, Tyagi, Picard, & Surampalli, 2014; Pintado-herrera, 
Biel-maeso, & Rueda, 2017). Activated carbon, on the other hand, makes use of different materials 
with the potential for carbon for removing metal ions from wastewater (Emenike et al., 2016). The 
activated carbon is also known for its treatment efficiency (Knopp et al., 2016; Zhao, Wang, Chen, 
Tian, & Zhao, 2017). This study, therefore, explores the use of the combined technologies of EF and 
granulated activated carbon (GAC) from cow bones in varied pH environment for the treatment of 
industrial wastewater from brewery, which is a novel approach in treating both the physical and 
chemical water quality parameters. This combined technology has limited coverage in literature.

2. Materials and methods

2.1. Reagent and equipment used
Iron (II) Sulphate Heptahydrate (FeSO4·7H2O), Sodium hydroxide (NaOH) and Tetra-oxo Sulphate (VI) 
acid (H2SO4), which were used during experiments, were purchased from Merck KGaA (Germany). 
Hydrogen Peroxide solution (H2O2) was supplied by Wine-light Analytical System Limited. Iron 

(1)Fe = Fe2 + 2e−1



Page 4 of 15

Ogbiye et al., Cogent Engineering (2018), 5: 1447224
https://doi.org/10.1080/23311916.2018.1447224

electrodes with thickness, length, and width dimension 2, 60, and 75 mm respectively were used as 
cathode and anode. The electrodes were connected to a DC power supply (KYSAN, DC Digital, 0–30 V, 
0–3 A) as illustrated in Figure 1.

2.2. Preliminary sampling method
Duplicate effluent samples were taken from a brewery industry, located at GPS location 0523357N 
and 0744330E; with elevation 29.075 m along Lagos-Abeokuta expressway, Sango Otta near a tribu-
tary of the Atuwara River in Ogun state, Nigeria. The GPS location was determined using the Germin 
GPS Map 76 Global Positioning System (GPS). The brewery produces various malts and malt-liquor 
drinks daily for public consumption. Effluent generation is very high as water is an integral part of 
production. The effluent, which had undergone preliminary treatment prior to discharge into the 
river was collected from the industry’s main effluent discharge point into a sterilized 25-L plastic 
container. Physical parameters of the effluent such as pH, temperature and turbidity were measured 
in situ using Horiba U-10 multiparameter instrument. The stored effluent samples were taken to 
Covenant University Chemistry Research Laboratory for further analyses.

2.3. Electro-Fenton process
The EF oxidation of the wastewater was done in a 0.5-L capacity beaker. The detailed EF schematic 
diagram is shown in Figure 1. The Iron electrodes, serving as cathode and anode, were arranged in 
parallel. The space between the cathode and anode was 6 cm, while the effective electrode surface 
area was 45 cm2. The electrodes were connected to a direct current (DC) power supply and the elec-
trochemical treatment was conducted at 10 volts, since high volts above 5 volts increase degradabil-
ity of organic compounds (Ren, Zhou, Liu, Ma, & Yang, 2016) and 1.5 Ampere (power rating of 15 
Watt). All experiments were conducted at a constant room temperature of 27 °C. The study was 
performed for varying pH values ranging from 2 to 6. For each experiment, the desired pH was 
achieved using 1 N of H2SO4 (Sulfuric acid) and subsequent incremental pH adjustments was 
achieved using sodium hydroxide (NaOH). The study was performed at a constant oxidant (H2O2) 
dose of 3000 mg/L. The EF experiments were conducted within a constant time frame of 30 min.

Figure 1. Electro-Fenton (EF) 
experimental set-up.
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2.4. Granulated activated carbon process
Cow bones were obtained locally from a slaughter house in Agege, Lagos State, Nigeria. Dirt and 
flesh were thoroughly removed from the bone samples. Thereafter, the bone samples were washed 
with distilled water at 100°C, sun dried, and subsequently oven dried at 150°C for 4 h, for the removal 
of oily matter and moisture. A mass of 2500 g of the oven dried sample was weighed out and car-
bonised at 800°C (in a muffle furnace) for 3 h (pyrolysis), following which it was cooled and dried in 
a desiccator. The carbonised bones were subsequently crushed with a mortar and pestle. The 
crushed samples were passed through a sieve of 212 microns for uniformity of size. Further chemical 
activation of the carbonised samples was achieved by adding 250 ml of HCl (hydrochloric acid) with 
a concentration of 2 M (molarity) to 200 g of crushed carbonised sample until an even mixture (a 
paste) was formed. The paste was then transferred into a dry crucible and put into a muffle furnace 
at 400°C with an hourly increase of 100°C until the final temperature of 800°C. The GAC sample was 
then cooled to room temperature, washed with distilled water and dried for 3 h in an oven at 150°C, 
to remove ash particles. Finally, the dried GAC was passed through a sieve of 212 micron, once again, 
for size uniformity as surface area has direct effect on rate of adsorption (Emenike et al., 2016).

2.5. Preparation of electro-Fenton and GAC wastewater treatment system
The Ferrous Sulphate (FeSO4·7H2O) catalyst of 0.002 M was added to the wastewater system in solid 
form to activate the oxidant (H2O2) in an electrolytic cell (Zhang et al., 2007). The EF oxidation of 
wastewater was conducted in an undivided reactor. The oxidant (hydrogen peroxide) was added to 
the wastewater treatment system (class 4, EF process). The Iron electrodes (serving as cathode and 
anode) were arranged in parallel and connected to a DC power supply (electrolysis). For consistency 
of results, the experiment was performed at constant room temperature of 27°C.

To further check the effect of the properties of the water quality parameters, the EF treated waste-
water was treated with 2 g of GAC, placed on a magnetic stirrer with a revolution of 1000 revolution 
per minute (rpm) for 5 min after which its allowed to settle for 30 min.

3. Result and discussion

3.1. Effect on initial pH
Result of the physico-chemical characteristics of the raw effluent from the beverage industry is 
shown in Table 1. Also, results of the physico-chemical parameters of the brewery effluent post-
treatment using EF alone and EF with GAC at different pH ranges of 2 to 6 are presented in Tables 2 
and 3. It was shown that for a treatment period of 30 min and initial pH values ranging from 2–5, the 
final pH and temperature values of the effluent increased. The increase in pH indicates increased 
production of hydroxyl ion (radical). At initial pH of 6, however, there was a marginal decrease in the 
final pH value to 5.94 (Table 2). This slight drop in pH does not signify a reduction in the formation of 
the hydroxyl ion but rather attributed to the formation of colloidal ferric species such as ferric-hy-
droxo complexes.

The constant increase in the effluent temperature (Tables 2 and 3) is due to the electrical energy 
exerted on the system (EF process). The pH of the solution was varied from 2 to 6 with the oxidant 
(H2O2) concentration kept constant at 3000 mg/L. Table 2 also shows the post-treatment behaviour 
of the physical (conductivity, turbidity and total dissolved solids (TDS)) and chemical properties (COD 
and heavy metals) of the effluent with increasing pH, using EF (alone). Table 3, on the other hand, 
shows the same set of parameters using the combination of EF and GAC.

3.2. Effect on conductivity
Conductivity (or specific conductance) of a solution indicates its ability to conduct electricity. 
Conductivity in a solution gives a measure of ionic constituent of that solution (Badejo et al., 2015). 
Figure 2 shows that the conductivity of the solution increased drastically when the pH level was 
dropped to 2 from its raw state pH of 6.58; the conductivity decreased steadily as the pH level was 
raised until it reached pH of 4. The study suggests that use of EF or GAC for treatment of conductivity 
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made no difference in the system. The increase in the conductivity of the raw effluent could be at-
tributed to the ions generated from the sulfuric acid which was introduced into the solution to lower 
the pH. Furthermore, the combined use of EF and GAC yielded comparatively better result for all the 
samples than the use of EF method alone.

3.3. Effect on turbidity
Turbidity, is a measure of clarity or cloudiness of a solution which may be brought about by sus-
pended particles that are visible (Badejo et al., 2015). Turbidity is measured as nephelometric turbid-
ity unit (NTU). Generally, Figure 3 indicates that turbidity improved greatly when the pH of the 
solution was lowered between 2 and 5, with the optimum result occurring at pH 2 with a treatment 
efficiency of 1,181%. For EF alone, the turbidity tended to increase gradually as pH was increased. 
This can be attributed to the presence of ferric hydroxide precipitate and relatively redundant ferric 
oxyhydroxides (Fe-OOH2+) (Parsons, 2004). It attained its worst state at pH of 6. At this point, the 
amount of hydroxyl radical generation is reduced due to minimal free iron ions. After further treat-
ment with GAC, Figure 3 also indicates that treatment of the effluent with EF and GAC further gave 
better results than use of EF alone. This improvement can be explained by the added advantage of 
surface adsorption provided by the GAC.

3.4. Effect on total dissolved solids (TDS)
TDS is a measure of inorganic substances and small organic matter which are mostly invisible 
(Omole et al., 2017). They are contaminants, though invisible to the human eye, and they are meas-
ured in mg/L. Figure 4 shows that TDS became worse in all treated samples than the raw effluent 
sample. The capacity of water (a universal solvent) to ionize substances dissolved in it, aids electroly-
sis. Thus, the ionization of added ferrous salts and the regeneration of the ferrous ion from ferric 
form increases the TDS in the solution. Also, the detected increased contaminants might have been 
precipitated by the introduction of the sulfuric acid and sodium hydroxide, which were used to adjust 
the pH levels. The observed increased turbidity might also be linked to dissolution of some particles 
of the GAC, when further treated. Thus, both EF and GAC are not efficient in the treatment of turbidity 
in the brewery wastewater.

3.5. Effect on chemical oxygen demand (COD)
COD is the amount of oxygen required to break down an inorganic pollutant in water or wastewater 
(Badejo, Omole, Ndambuki, & Kupolati, 2017). Figure 5 shows that the use of EF alone and EF with 
GAC led to improvement in the quality of COD in the brewery’s effluent, with the combined use of EF 
and GAC giving the better result in virtually all treated samples. At pH of 3, the concentration of COD 
was halved. This is due to high solubility of the iron species. Nevertheless, the COD removal improved 
just slightly across pH values of 2 to 6. This could be due to the excessive H2O2 scavenging free 

Table 1. The physico-chemical parameters of the raw Brewery effluent
Parameter Unit Value
Ph In-situ 6.580

Temperature °C 37.200

COD mg/L 463.000

Total dissolved solids mg/L 198.000

Turbidity mg /L 7.200

Conductivity mg/L 3.890

Copper mg/L 0.140

Zinc mg/L 0.840

Manganese mg/L 0.002

Cadmium mg/L 0.035
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Figure 2. Conductivity level of 
raw effluent and samples 1–5 
using EF (alone) and EF + GAC 
at different Ph level.

Figure 3. Turbidity level of raw 
effluent and samples 1–5 using 
EF (alone) and EF + GAC at 
different pH level.

Figure 4. TDS level of raw 
effluent and samples 1–5 using 
EF (alone) and EF + GAC at 
different pH level.
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radicals (OH*). The optimum treatment condition, however, was achieved at pH 6 where the use of 
EF with GAC lowered COD by over 50%.

3.6. Effect on copper
Copper (Cu) is a trace metal which can be harmful to the human body if high levels of the metal are 
ingested. Human and environmental exposure to copper from polluted water sources is commonly 
reported in literature (Emenike, Omole, Ngene, Tenebe, & Maxwell, 2017; Solisio, Lodi, Torre, Converti, 
& Borghi, 2006). Copper causes intestinal discomfort and anaemia (Emenike, Omole, Ngene, & 
Tenebe, 2017). The effect of varying pH on copper removal in brewery wastewater was studied for 
both EF and combined EF and GAC treatment. From Figure 6, it is evident that both EF and the com-
bined use of EF and GAC produced significant positive treatment results for copper, with the opti-
mum treatment pH being between 3 and 6. This result is in agreement with the study conducted by 
Lee, Lee, Sedlak, and Lee (2013) who affirm that a reaction of Cu(II) and H2O2 display better removal 
of impurities at pH range between 5.5–6.5. The best result, however, was achieved at pH 6 using 
combined EF and GAC treatment thereby giving a removal efficiency of 565%.

3.7. Effect on manganese
Manganese (Mn) is another trace metal that is found in air, soil or water and may lead to pneumonia 
or neurological problems, especially in children when they are exposed to excessive amounts 
(ASTDR, 2015). Figure 7 indicates that use of EF and GAC was not too efficient except with the com-
bined use of EF and GAC at pH 4 where a marginal reduction in manganese was recorded. This might 
be explained by the possibility the experimental pH range was not sufficient for the optimum re-
moval of manganese. Sharifi, Hosseini, Mirzaei, and Salmani Oskuloo (2015) stated that the opti-
mum pH for removal of manganese is 9–10. The reaction of manganese in the presence of hydroxyl 
ions (obtainable from the hydrogen peroxide) and iron catalyst (obtainable from the sacrificial elec-
trodes) yield manganese (II) hydroxide, which is a settleable solid that can be sieved from the solu-
tion, thus effectively reducing the Manganese content in the effluent (Sharifi et al., 2015).

3.8. Effect on cadmium
Cadmium (Cd) is a heavy metal that is very dangerous to health, even at exposure to trace amounts 
(Omole, Ndambuki, & Balogun, 2015). Adverse health effects from cadmium include kidney and liver 
failure. Hence, its complete removal from the aqueous environment is recommended to prevent 
contamination of freshwater bodies by polluted wastewater effluents. Figure 8 demonstrates that 
cadmium was effectively treated using EF alone and the combination of EF with GAC. However, the 
optimum result was achieved with removal efficiency of 4375% using EF with GAC at pH value of 2. 

Figure 5. COD level of raw 
effluent and samples 1–5 using 
EF (alone) and EF + GAC at 
different pH level.
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Cadmium was reduced from 0.035 to 0.0008 mg/L. The limit of cadmium in ingestible waster is 
0.003 mg/L (Standards Organization of Nigeria, 2007).

It is therefore advantageous to apply the EF and combine EF and GAC for Cadmium treatment in 
brewery’s wastewater. At atomic level, the chemical reaction can be explained by Equation 2.

 

The cadmium contaminant reacts with hydroxide ions to form cadmium hydroxide (a solid material), 
which can thereafter be separated from the liquid.

3.9. Effect on lead
Lead (Pb) is a heavy metal that may also impact negatively on central nervous system in humans, 
even at trace quantities, thus leading to damaged internal organs (ASTDR, 2017). Figure 9 shows 
minimal removal of Pb from the brewery wastewater, mostly at pH level 3–6. Therefore, the concen-
tration of Pb was better treated in a less acidic solution for both EF and combined EF and GAC treat-
ment. The chemical equation that illustrates the removal process is shown in Equation 3. Again, the 

(2)Cd
2+

(aqueous) + 2OH−
(aqueous) = Cd(OH)2 (solid)

Figure 6. Copper level of raw 
effluent and samples 1–5 using 
EF (alone) and EF + GAC at 
different pH level.

Figure 7. Manganese level of 
raw effluent and samples 1–5 
using EF (alone) and EF + GAC 
at different pH level.
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Figure 8. Cadmium level of raw 
effluent and samples 1–5 using 
EF (alone) and EF + GAC at 
different pH level.

Figure 9. Lead level of raw 
effluent and samples 1–5 using 
EF (alone) and EF + GAC at 
different pH level.

Figure 10. Zinc level of raw 
effluent and samples 1–5 using 
EF (alone) and EF + GAC at 
different pH level.
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solid is precipitated while the portion in suspended state is adsorbed from the solution by the GAC. 
The optimum removal efficiency of 160% occurred at pH value of 5 using EF with GAC.
 

3.10. Effect on zinc
Zinc (Zn) is another trace metal that is beneficial to humans at trace levels; however when humans 
are exposed to levels higher than 10–15 times the permissible level for protracted periods of time, it 
may lead to nausea, stomach cramps, and damaged pancreas (ATSDR, 2015). Lower pH values seem 
to favour treatment of zinc when using EF and GAC (Figure 10). The combination of EF and GAC gen-
erally produced better treatment results than the use of EF alone. It became evident in the sequel, 
that concentration of Zinc is better reduced as the pH of solution tended to neutral for both treat-
ment (EF and GAC). A near complete removal of zinc was recorded at pH value of 6 with removal ef-
ficiency of 840%.

4. Conclusion
The study showed that combined use of EF and GAC yielded better results that use of EF alone. 
Obviously, the advantages of electrolysis and adsorption, which are two different wastewater treat-
ment methods associated with EF and GAC respectively, were brought to bear on the experimental 
set-up. Success was recorded in the treatment of turbidity, COD, copper, cadmium, Lead, and zinc. 
However, conductivity, TDS, and Manganese were not significantly improved with the use of either 
EF or GAC in treatment. The study also showed that pH of the media for treatment of brewery efflu-
ent impacted significantly on treatment efficiency, with optimum pH for efficient treatment of tur-
bidity and cadmium being 2, Pb being 5, and optimum pH level for reduction of COD, Cu, and Zn being 
6. It is therefore recommended that the combined use of EF and GAC could be employed in place of 
EF alone to achieve better results in the treatment of turbidity, COD, and most heavy metals.
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