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Mathematical Models of 
Video-Sequences of Digital 

Half-Tone Images

ABSTRACT

This chapter is devoted to Mathematical Models (MM) of Digital Half-Tone Images (DHTI) and their 
video-sequences presented as causal multi-dimensional Markov Processes (MP) on discrete meshes. 
The difficulties of MM development for DHTI video-sequences of Markov type are shown. These dif-
ficulties are related to the enormous volume of computational operations required for their realization. 
The method of MM-DHTI construction and their statistically correlated video-sequences on the basis 
of the causal multi-dimensional multi-value MM is described in detail. Realization of such operations 
is not computationally intensive; Markov models from the second to fourth order demonstrate this. The 
proposed method is especially effective when DHTI is represented by low-bit (4-8 bits) binary numbers.

INTRODUCTION

As at this writing, the intensification of scientific 
research and increased complexity of solving 
scientific and technological problems require the 
investigation of not only one-dimensional random 
processes, but also the investigation of the multi-
dimensional ones, for example, different types of 
fields presented in the form of images or video-

sequences. Image processing is of great interest 
to researchers and engineers in various fields of 
practice for example: engineers in the area of 
flaw inspection and the non-destructive testing, 
developers of industrial robots and systems for 
the visual inspection of technological processes, 
experts in automation of scientific research, in 
TV technologies, in security systems, in remote 
sensing of natural resources, in space investiga-
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tions, biologists, medical experts, specialists in 
forensic crime detection, physicists, astronomers, 
meteorologists, geologists, cartographers, and so 
forth (Bykov, 1971; Pisarevsky & Chernyavsky, 
1988; Vasiliev, 1995; Ablameiko & Lagunovskiy, 
2000; Berchtold, 1999; Vasiliev, 2002; Elfeki, 
2001; Shalizi, 2003; Bondur, 2003). It is difficult 
to find a scientific or technological area, in which 
applied problems of image processing is not pres-
ent in one form or the other.

The transition to digital image processing 
using small-bit numbers (4-8 bits) has sharply 
extended the possibilities of image application 
as the most capacious carrier of various types 
of information. In this connection, digital image 
processing, because of its importance, has been 
distinguished as an independent scientific and 
communication area, involving a great number of 
highly qualified experts. There is every reason to 
believe that in the nearest future, there will be a 
great extension of the practical implementation 
of image processing methods from Medicare to 
other various types of technological processes.

The development and investigation of image 
processing algorithms are based on mathematical 
models (MM), which adequately represent real im-
ages. To date, a variety of MM for two-dimensional 
images are already developed, on the basis of which 
whole series of effective processing algorithms 
offered has been reported in the literature by Jine 
(1981) as well as Derin and Kelly (1989). Most 
of these algorithms however require enormous 
computational resources. Approximation of digi-
tal half-tone images (DHTI) by random Markov 
processes (MP) allows for the achievement of sig-
nificant progress in the area of MM development 
and algorithms of image processing. Important 
contributions in the development of Markov type 
MM have been introduced by Russian researchers 
like Berchtold (1999), Bondur (2003), Krashenin-
nikov (2003), Vasiliev (1995), Vasiukov (2002), 
Furman (2003), Soifer (2003) as well as other 
experts such as Jine (1981), Abend (1965), Woods 
(1972), Besag (1974), Kashyap (1981), Vinkler 

(2002), Modestino (1993), Politis (1994), Chel-
lapa (1982, 1985). The most interest for practical 
application is generated by multi-dimensional 
mathematical models of DHTI video-sequences. 
The number of publications devoted to such MM 
are few. Notable among them are Bykov (1971), 
Vasiliev (1995, 2002), Jine (1981), Derin and 
Kelly (1989), Spector (1985), Dagion and Mer-
cero (1988), Politis (1994), Petrov (2003), Trubin 
(2004a, 2004b), Trubin and Butorin (2005).

The MM of DHTI video-sequences based on 
the multi-dimensional discrete-time and continu-
ous-values Markov process are the most studied by 
researchers like Vasiliev (1995), Spector (1985), 
Dagion and Mercero (1988). Two-dimensional 
MM of DHTI presented by Jine in Jine (1981) 
and constructed on the basis two-dimensional 
Gaussian Markov process was developed by 
Krasheninnikov, Vasiliev, and Spector in Krash-
eninnikov (2003), Vasiliev (1995), Spector (1985) 
up to multi-dimensional image MM based on the 
multi-dimensional Gaussian MP. The structure 
of the algorithm for generating these processes 
is rather simple and clear, however, the MM 
proposed in Jine (1981) based on the causal two-
dimensional Gaussian MP has found the widest 
application (see Box 1).

To realize the MM of equation (1) it is neces-
sary to use four multiplications and three additions, 
which is fully acceptable for medium sized im-
ages.

Krasheninnikov (2003), Vasiliev (1995), Spec-
tor (1985), suggested on the analogy of equation 
(1), MMs of processes of larger dimensions. Thus, 
for the description of the image frame sequence 
with two spatial coordinates defining the location 
of the image element in the frame and the third 
coordinate: the number of the frame or the discrete 
time in the frame sequence, the MM will be of 
the form shown in Box 2.

The computational effectiveness defined by 
the required computer memory usage and the 
number of computational operations is one of the 
most important features of MM. We should con-
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sider as most effective the MMs, in which the 
necessary number of required calculation opera-
tions per the image element does not depend on 
the image size. Most of the known MMs require 
a number of computational operations propor-
tional to log ,N  N 2  and even larger powers for 
realization of the image with sizes N N× .  For 
example, in spite of the simple MM structure for 
the multi-dimensional Gaussian processes offered 
in Spector (1985), the number of calculation 
operations at its realization quickly increases with 
the growth of the dimension of the generating 
process. For instance, to generate one element of 
the three-dimensional Gaussian MP (equation 2), 
which is adequate for the video-sequence of 
Gaussian Markov images, it is necessary to have 
seven multiplications and six additions, which 
makes application of the method of MM construc-
tion for processes with large number of measure-
ments and elements for each measurement offered 
in Spector (1985) problematic.

It is envisaged that difficulties in MM develop-
ment will significantly increase when required to 
develop and examine algorithms for the DHTI 
processing and statistically couple video-sequenc-
es, which represent random processes with more 
than two dimensions. Random processes become 
not only multi-dimensional but multi-valued as 
well, taking Q g= 2  discrete values where g is 
the number of bits of DHTI elements presentation. 
Therefore, we devote the main attention to the 
MM of DHTI construction and their video-se-
quences required for realizing minimal computa-
tion resources.

The problem of MM construction for DHTI 
video-sequences on the basis of multi-dimensional 
and multi-valued random processes require non-
traditional approach to its solution because of 
the great computational complexity. In Petrov 
and Chasikov (2001) and Petrov, Trubin and Bu-
torin (2005a), the validity of multi-dimensional 
discrete-value MP selection as the MM of the 

Box 1.  

µ µ µ µ σ ξξi j i j i j i jr r r r r r i j, , , , ,= + + − −( ) −( ) (− − − −1 1 2 1 1 2 1 1
2

1
2

2
21 1 )),                                                                    (1)

where µij  is the image element with spatial coordinates i m j n∈ ∈( ), ;

r r1 2,  are horizontal and vertical correlation coefficients respectively;

ξ i j,( )  is sample of white Gaussian noise with zero mean and the unit variance σξ
2.

Box 2.  
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where r ii ∈( )3  are correlation coefficients between the image elements in horizontal, vertical and in time, accordingly; µi j k, ,
i m j n k∈ ∈ =( ), , , ,...1 2  is the image element with sizes m n×  in the k-th frame. On the analogy of Equation (2) we can 

construct MM of higher orders as shown in Vasiliev (1995).
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ν4,  we can write the transition probability matrix 
for the complicated Markov chain as shown in 
Box 9.

Elements of the matrix Π  are connected with 
the elements of matrices (10), (11) by the equa-
tions shown in Box 10.

Elements of the matrix (18) satisfy the nor-
malization requirement, i.e.

α α
l l

l+ ′= =1 1 4, , .        (21)

For instance, elements α
1
 and ′α

1
 of the ma-

trix, where

′ = − =α α
π π

π1 1

1 2

3
1 ij ij

ii

,       (22)

are equal in sum by 1, i.e. α α1 1 1+ ′ = .
Let us consider the most important issues of 

the MM operation for the random Markov type 
BBI confirming its adequacy to real images.

Let the transition probability matrices in 
horizontal and on vertical be specified and equal, 
i.e. 1 2 1 2π πij ij i j i j= = ≠( , , ; ).

We assume 1 2 0 9π π
ii ii
= = , .  Then, in ac-

cordance with (19) we obtain that shown in Box 
11.

Values of matrix Π  elements α α3 4 0 5= = ,  
are the specific checking point for correctness of 
the MM operation. Really, at equal transition 
probabilities 1 2π π

ii ii
=  (in horizontal and in 

vertical) and for opposite values of elements ν
1
 

and ν
2

 the appearance of the value M
1
 or M

2
 

in the element ν
4

 is equiprobable.
Let us calculate the matrix Π  elements using 

formula (19) for the limit cases of matrices 1Π  
and 2Π.

Let

1 2
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2 2

1 0
0 1

Π Π= =, .
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π π
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ji jj
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where 3 1 2πij i j i j( , , ; )= ≠  is the element of the matrix

3 1 2
3

11
3

12
3

21
3

22

Π Π Π= ⋅ =
π π
π π

.                                                                                                                                                   (20)
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ν
1
 and ν

2
 i the vicinity Λi j,  and subtract it from 

(13) (see Box 6).
By definition, the BBI MM represents the 

superposition of two one-dimensional Markov 
chains, therefore, the information between ele-
ments ν

4
 and ν

3
 can be eliminated from (15). 

Then, the equation for the information quantity 

between the element ν
4

 and elements ν ν1 2,  takes 
the form (see Box 7).

The transition probability density in the com-
plicated Markov chain w( | , , )ν ν ν ν4 1 2 3  can be 
expressed in the form (13) (see Box 8).

Using the entropy between mutually indepen-
dent elements of the vicinity Λi j,  and the element 

Box 6.  

I I
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p

=                                                                                      (15)

where w( | , , )ν ν ν ν4 1 2 3  is the transition probability density in the three-dimensional Markov chain.

Box 7.  
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Box 8.  

w M M M M

M
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ν π ν ν ν ν
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where δ( )⋅  is the delta-function., i = 1 2, .

Box 9.  

Π = =

′
′
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ρ µ µ σ α αk l l k
i j i k j l

, , exp ,
, ,( ) ⎡
⎣⎢

⎤
⎦⎥ { }= = − −

+ +
Ε 2

1 2
        

                                                                         (8)
where E ⋅⎡⎣⎢ ⎤⎦⎥  is the expected value; σµ

2  is the image 
signal variance; α α1 2,  are multipliers depending 
upon the width of the power spectral density of 
the random processes on horizontal and on verti-
cal. The fragment of the two-dimensional BBI 
corresponding to area F4 of NSHP (Figure 1) is 
shown in Figure 2, where the following designa-
tion are taken:

v v v v1 1 2 1 3 1 1 4= = = =− − − −µ µ µ µi j i j i j i j, , , ,; ; ; .  
           (9)

Dotted lines in Figure 2 indicate the presence 
of the statistical correlation between image ele-
ments.

We consider the two-dimensional Markov 
chain on the NSHP with two equiprobable 
p p1 2=( )  values of M1,  M

2
 and probability 

matrices of the transition from the value Mi  to 
the adjacent value Mj  on image horizontal and 
vertical, accordingly, as the MM of Markov BBI:

2
2

11
2

12
2

21
2

22

Π =
π π
π π

,        (10)

2
2

11
2

12
2

21
2

22

Π =
π π
π π

.        (11)

If we know the correlation coefficients between 
BBI elements in lines rhor  and in columns rver ,  
the matrix elements of the transition probability 
(10) can be obtained so:

1 1

2
πii

horr=
+

,

2 1

2
1π π πii

ver
ii ij

r
i j i j=

+
= − ≠ ( ); ; , .     (12)

The probability of appearance of the BBI ele-
ment ν

4
 (Figure 2) with the value M

1
 or M

2
 

completely defines by the mutual information 
quantity between ν

4
 and its vicinity 

Λij = { }ν ν ν1 2 3, , .

According to Dech (1971), let us present the 
information quantity containing BBI elements 
ν ν ν1 2 3, ,  with regards to the element ν

4
 in the 

form.

I
p

p p p p
( , , , ) log

( , , , )

( ) ( ) ( ) ( )
,ν ν ν ν

ν ν ν ν
ν ν ν ν1 2 3 4

1 2 3 4

1 2 3 4

=   (13)

where p ii( ), ,ν = 1 4  are a priori probability 
densities values of BBI element; p( , , , )ν ν ν ν1 2 3 4  
is the mutual probability density of values of im-
age element.

The quantity of mutual information between 
elements falling in the vicinity Λij = { }ν ν ν1 2 3, ,  
can be written in the form on the analogy of (13):

I
p

p p p
( , , ) log

( , , )

( ) ( ) ( )
.ν ν ν

ν ν ν
ν ν ν1 2 3

1 2 3

1 2 3

=      (14)

In the complicated Markov chain, as BBI is, 
all elements falling in the vicinity Λi j,  must be 
independent. For this, we shall find the mutual 
information between the element ν

3
 with elements 

Figure 2. The image fragment with the vicinity of 
three elements
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The most useful property of the causal field 
is the opportunity to express the mutual distribu-
tion µql mnq l,( , )∈{ }Φ  in the form if the product 
of the causal conditional distributions as described 
in Derin and Kelly (1989) (see Box 4).

The property is similar to those of the one-
dimensional Markov chains and allows for the 
construction of processing algorithm for two-
dimensional signals on the analogy of the one-
dimensional signals.

It should be noted that on the field boundary, 
i.e. for i = 1 or j = 1 the vicinity Λi j,  has a con-
figuration different from that of the internal points. 
Since the values of elements lying over an upper 
line of more left of the initial column are unknown 
(or not defined), the vicinity for the boundary 
elements is taken in the form of the intersection 
of the general carrier with the existing mesh. Thus, 
for these elements, only ‘abbreviated’ vicinities 
are obtained. In other words, in the field boundary 
e lements  the  condi t ional  probabi l i ty 
w q li j q l i jµ µ, , ,; , ∈( )( )Λ  is given as depending 
upon only those parts of Λi j, ,  that fall in Ψi j, .

Thus, and in line with Derin and Kelly (1989), 
all UMRF area with the vicinity of type (5) can 

be conditionally divided into four parts, each of 
which has its own view of Λi j,  (Figure 1) (see 
Box 5).

This circumstance will be further considered 
investigated for obtaining the algorithm of UMRF 
element formation.

It has been shown by Petrov (2003), Trubin 
(2004a, 2004b), Trubin and Butorin (2005) and 
Petrov et al. (2006a, 2006b) that DHTI represen-
tation by the set of g bit binary images reduces 
the problem of constructing mathematical models 
for DHTI to one of the creation of mathematical 
models of BBI. This represents the stationary 
two-dimensional Markov chain with two equiprob-
able values of M

1
 and M2.

MATHEMATICAL MODEL OF 
THE TWO-DIMENSIONAL 
BINARY MARKOV IMAGE

Let us specify the vicinity Λi j,  of the element ν
4

 
in the form given in expression (5) and let us as-
sume that BBI represents the stationary field of 
the Markov type with the autocorrelation function:

Box 4.  

p q l w q lq l m n i j q l i j
j

n

i

m

µ µ µ, , , , ,; , ; ,( )∈( ) = ( )∈( )
==
∏∏Φ Λ

11

                                                                                                  (6)

Box 5.  

Λi j

if i j F

i j if i j F

i j if i j F

i

,

, ,

, , ,

, , ,
=

∅ ( ) ∈
−( ){ } ( ) ∈
−( ){ } ( ) ∈

1

2

3

1

1

,, , , , , , ,j i j i j if i j F−( ) −( ) − −( ){ } ( ) ∈

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪ 1 1 1 1 4

                                                                                     (7)
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it from the communication channel, only earlier 
received image elements can fall in the aperture 
of this filter. Filtering can be executed repelling 
from the causally located element’s variety only. 
The DHTI MM should therefore be in this case 
the causal random field as well. Based on the 
above-mentioned considerations, the unilateral 
Markov random field (UMRF) discussed in Jine 
(1981), Derin and Kelly (1989) were chosen as 
the digital half-tone image mathematical model.

We adopt the definition of the unilateral Mar-
kov field also called the two-dimensional Markov 
chain on the non-symmetric half-plane (NSHP) 
given in Derin and Kelly (1989):

Let µ µ= { }i j,  be the random field speci-
fied on the rectangular mesh 
L i j i m j n= ( ) ≤ ≤ ≤ ≤{ }, : ,1 1  with sizes 
m n×  elements. Let us assume that:

Φi j q l q i l j i j L, , ; , , , ,= ( ) ≤ ≤ ≤ ≤{ } ( )∈1 1

Ψ i j q l L q i or q i l j, , ; ,= ( ){ } ∈ ≤ = <( )  
           (3)

Λ Ψi j i j, , .⊂

These subsets are shown in Figure 1.
In order for μ to be the unilateral Markov 

random field (a.k.a. the Markov chain on the non-
symmetric half-plane) it is necessary to fulfill the 
condition shown in Box 3.

The main property of the UMRF is that, if the 
conditional dependence is defined starting from 
the upper left fragment, then µi j,  depends on the 
random variables only from some subset Λi j,  of 
this fragment; this subset is called a neighborhood.

The key UMRF property consists in the fact 
that if the conditional function is defined from 
the left upper segment, value of µi j,  depends upon 
the random variables from some subset Λi j,  of 
this segment called the vicinity. The vicinity Λi j,  
may be any subset Ψi j, ,  but it usually has a fixed 
configuration with respect toµi j, .  The following 
vicinity configuration offered in Derin and Kelly 
(1989) best satisfies the causality condition:

Λi j i j i j i j, , , ,, , .= { }− − − −µ µ µ1 1 1 1         (5)

Box 3.  

w q l w q li j q l i j i j q l i jµ µ µ µ, , , , , ,; , ; , .( )∈( ) = ( )∈( )Ψ Λ                                                                                                       (4)

Figure 1. OSMRF areas with the vicinity of three elements
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Then

π
π π

πiiii

ij ij

ii

i j= −
⋅

= − = ≠1 1 0 1
1 2

3
, .

If

1 2
2 2

2 2

0 5 0 5
0 5 0 5

Π Π= =
, ,
, ,

, ,
π π
π π
ii ij

ji jj

then

π
π π

π

π
π

iiii

ij ij

ii

ij

ii
i j= −

⋅
= −

⋅
= ≠1 1

0 5

0 5

1 2

3

2

2
,

,
, .

Let us check the normalization requirement 
for the matrix Π  on the example of the first line. 

For this we calculate the element located in the 
matrix right column (see Box 12).

Let us sum the values of the first line elements

π πiiii jiii i j+ = + = ≠0 9878 0 0122 1, , , .

As we see, the normalization requirements are 
fulfilled and for other lines as well.

BBI MATHEMATICAL MODELS WITH 
VICINITY OF FOUR ELEMENTS

Let the vicinity of element ν
4

 consist of four BBI 
elements (Figure 3) located at the upper-left, ac-
cording to Krasheninnikov (2003). At that, the 
condition of the strict causality peculiar to the 
vicinity of (5) type is something disturbed but this 
disturbance is not critical as to define the causal 
properties or UMRF it is not required any addi-

Box 11.  

α π ν ν ν ν
π π

π1 4 1 1 1 2 1 3 1

1 2

3
1 1

0 1 0 1
0 82

= = = = = = − = −
⋅

( | ; ; )
, ,
,

M M M M ij ij

ii

== 0 9878,

α π ν ν ν ν
π π

π2 4 1 1 1 2 2 3 1

1 2

3
1 1

0 1 0 9
0 18

= = = = = = − = −
⋅

( | ; ; )
, ,

,
M M M M ij ii

ij

== 0 5,

α π ν ν ν ν
π π

π3 4 1 1 2 2 1 3 1

1 2

3
1 1

0 9 0 1
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= = = = = = − = −
⋅

( | ; ; )
, ,

,
M M M M ii ij

ij

== 0 5,

α π ν ν ν ν
π π

π4 4 2 1 2 2 2 3 2

1 2

3
1 1

0 1 0 1
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= = = = = = − = −
⋅

( | ; ; )
, ,
,

M M M M ij ij

ii

== 0 9878, .

Box 12.  

′ = = = = = = =
⋅

=α π ν ν ν ν
π π

π1 4 2 1 1 2 1 3 1

1 2

3

0 1 0 1
0 82

0( | ; ; )
, ,
,

,M M M M ij ij

ii

00122.
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tional element sets besides the left segment Φij  
or accordingly NSHP Ψij  (Figure 1).

The probability of appearance of the BBI ele-
ment ν

4
 with the value M

1
 or M

2
 is completely 

defined by the mutual information quantity be-
tween elements of the vicinity

′ = { }Λi j, , , , ,v v v v1 2 3 5        (23)

and the image element ν
4

 (Figure 3).
The information quantity between ′Λij  and the 

element ν
4

 can be determined as shown in Box 
13.

At mutual independence of elements of the 
vicinity ′Λi j,  the information quantity between 
the element ν

4
 and ′Λi j,  can be determined on 

the analogy of (15) (see Box 14).
Because of v4  is the element of the two-di-

mensional Markov chain, the information between 

elements v v3 4,  and v v5 4,  is redundant disturbing 
the information balance between elements v v1 2,  
and the element v4.

Let us subtract the redundant information 
caused by elements ν

3
 and ν

5
 from equation (25) 

(see Box 15).
Having compared (26) and (16), we can con-

clude that the use of the vicinity (5) or (23) does 
not change the probability of the element ν

4
 

value.

Figure 3. The image fragment with the vicinity 
of four elements

Box 13.  

I
p

p p p p
v ,v ,v ,v ,v

v ,v ,v ,v ,v

v v v v1 2 3 4 5
1 2 3 4 5( ) = ( )

( ) ( ) ( ) ( )
log

1 2 3 4 pp v5( )
,                                                                                              (24)

where p iiv( ) =, ,1 5  are a priori probability densities of values of image elements; p v ,v ,v ,v ,v1 2 3 4 5( )  is the mutual 
probability density.

Box 14.  

′( ) = ( )− ( )

=

I I I

p

v ,v ,v ,v ,v v ,v ,v ,v ,v v ,v ,v ,v

v
1 2 3 4 5 1 2 3 4 5 1 2 3 5

1log
,,v ,v ,v v v ,v ,v ,v

v ,v ,v ,v v

v v ,v2 3 5 4 1 2 3 5

1 2 3 5 4

4 1( ) ( )
( ) ( )

=
w

p p

w
log 22 3 5

4

,v ,v

v

( )
( )p

,
                                                                       (25)

where w v v ,v ,v ,v4 1 2 3 5( )  is the transition probability density in the complicated Markov chain.
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THE ALGORITHM OF MARKOV 
BBI FORMATION

To construct the artificial BBI representing the 
two-dimensional Markov chain with two equiprob-
able values it is necessary to have the a priori 
known matrices of one-step transition probabili-
ties (13) and the vector of initial probabilities of 
values P = ⎡⎣⎢ ⎤

⎦⎥p p1 2, ; p p1 2=( ).
The BBI modeling includes several stages. 

The first line of BBI is modeling (areas F F1 2,  in 
Figure 1) as thew one-dimensional stationary 
Markov chain with two equiprobable values and 
the given matrix 1Π.  The length of state’s se-
quences of Markov chain is equal to the length of 
the line m.  The modeling of BBI elements of the 
area F

3
 (Figure 1) is similar to those for elements 

of the first line.
The modeling of the area F

4
 (Figure 1) is the 

most complicated and it consists in the following.

1.  Matrices 3Π  and Π  are calculated in the 
basis of known matrices 1Π  and 2Π;

2.  We take an arbitrary number ξl l m n( ),≤ ⋅  
which is equally distributed on the interval 
0 1, ;⎡
⎣⎢
⎤
⎦⎥

3.  From the first column of the matrix Π  we 
select the element α

s
s( , )= 1 4  correspond-

ing to element values of the vicinity Λij ;

4.  The number ξ
l
 is compared to the selected 

element α
s
s( , ).= 1 4  If α

s
s( , )= 1 4  and 

ξ αl s≤ ,  the image element ν
4

 takes the 
value M1 0= ,  otherwise M2 1= ;

5.  If l m n≤ ⋅ ,  we transit to p. 2, otherwise 
– to point 6;

6.  Stop.

To check the correctness of the model opera-
tion let us consider the process of the image 
formation for the extreme cases of the Markov 
chain along one of coordinates, when matrices 
1Π  or 2Π  become either the unitary matrices or 
all elements in matrices are equal to 0.5.

Let the BBI probability matrix of transitions 
in horizontal be an unitary matrix:

1 1 0
0 1

Π = .         (27)

For the probability matrix of transition in 
vertical 2Π  the following condition acts:

2 1Π Π≠ .         (28)

The BBI with sizes 256×256 obtained in ac-
cordance of the above-described algorithm and 
the matrix (27) is presented in Figure 4а. The BBI 
with the unitary matrix 2Π  is shown in Figure 

Box 15.  

I v v v
w p p p

p v v v p1 2 4
3 4 5

3 4 5

, , log
, ,

( ) =
( ) ( ) ( ) ( )

( )
v v ,v ,v ,v v v v4 1 2 3 5

vv

w p p

p w

w
4

3 5

( )

=
( ) ( ) ( )
( ) ( )

=log log
v v ,v ,v ,v v v

v ,v v v ,v
4 1 2 3 5

3 5 4 3 5

vv v ,v ,v ,v

v v v v

v v ,v ,v v v

v v

4 1 2 3 5

4 3 4 5

4 1 2 3 4 5

4

( )
( ) ( )

=
( ) ( )

w w

w w

w
log

33 4 5

4 1 2 3

4 3v v

v v ,v ,v

v v( ) ( )
=

( )
( )w

w

w
log .

                                                                        (26)
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4b. Figures 5а,b show the binary artificial im-
ages with sizes 256x256 obtained for 
1 2 0 5π π
i i ii
= = , ;  1 2 0 9π π

i i ii
= = ,  with esti-

mates of the transition probabilities 1π̂
ii

 и 
2 1 2ˆ , ,π
ii
i =  calculated on the basis of artificial 

images and the two-dimensional auto-correlation 
function.

Estimates r ii rˆ ,π =( )1 2  of elements of the 
transfer probabilities if artificial images coincide 
with the high accuracy (less than 0.2%) with the 
given values r ii

ˆ ,π = 0 9  on the statistic with 
sizes 512×512.

THE MATHEMATICAL 
MODEL OF THE DHTI

The mathematical model of DHTI represented by 
g-bit binary numbers is formed by the simple 
bitwise “summation” of g binary images in the 
register of the binary number. The factual sum-
mation is absent as the own bit position in the 
register with the appropriate weight corresponds 
to each BBI. It should be noted that proper transi-

Figure 4. The artificial BBI with unitary matrices 
1Π  and 2Π  a) 1 1π

ii
= ,  2 0 5π

ii
= , ;  b) 1 0 5π

ii
= , ,  

2 1π
ii
=

Box 16.  

r l q sl q s i j t i l j q t s, , , , , ,, exp ,= ⎡
⎣⎢

⎤
⎦⎥ = − − −{ }+ + +Ε µ µ σ α α αµ

2
1 2 3                                                                                (29)

where E ⋅⎡⎣⎢
⎤
⎦⎥  has the sense of the mathematical expectation; σµ

2  is the image signal variance; α α α1 2 3, ,  are coefficients similar to 
(8). In accordance with (29), the image sequence can be presented as the superposition of three one-dimensional discrete-valued MP with 
two equiprobable p p1 2=( )  values M1,  M

2
 and transition probability matrices from one value to another inside the image frame 

(10) and between adjacent frames 4Π

1
1

11
1

12
1

21
1

22

2
2

11
2

12
2

21
2

22

4
4

11
4

12
4

21

Π Π Π= = =
π π
π π

π π
π π

π π
π

 , , 44
22π

                                                                                 (30)

accordingly.

Box 17.  

Λi j k

k

k

if i j F

i j k if i j F

i j k if i, ,

, ,

, , , ,

, , ,
=

∅ ( ) ∈
−( ){ } ( ) ∈
−( ){ }

1

21

1 ,,

, , , , , , , , , ,

j F

i j k i j k i j k if i j F

k

k

( ) ∈
−( ) −( ) − −( ){ } ( ) ∈

⎧

⎨

⎪⎪

3

41 1 1 1

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

                                                                           (32)



220

Mathematical Models of Video-Sequences of Digital Half-Tone Images

Figure 5. The binary artificial images with sizes 256x256 and the two-dimensional auto-correlation 
function a) 1 2 0 5π π

i i ii
= = , ;  b) 1 2 0 9π π

i i ii
= = ,

Figure 6. Graphs of a value variation of the transition matrices’ (10), (11) elements of DHTI averaged 
over a great number of the real DHTI
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The random Markov process represents a 
superposition of four one-dimensional Markov 
chains with two states.

Let us construct the mathematical model for 
the l-th bit p pl l

1 2
( ) ( )=( )  of DHTI based on the 

four-dimensional stationary Markov chain with 
two equiprobable states M M1 2,  and the matrices 
of one-step transition probabilities from one 
value to another inside the frame 1Π l( ),  2Π l( ),  
from frame to frame 4Π l( )  and from position to 
position 8Π l( ),  accordingly:

1
1

11
1

12
1

21
1

22

2
2

11
2

12
2

21
2

22

4
4

11
4

12
4

21

Π Π

Π

= =

=

π π
π π

π π
π π

π π
π

 , , 

44
22

8
8

11
8

12
8

21
8

22π
π π
π π

, .Π =

   (45)

Let the random Markov process µijkd
l( )  being 

the process of l-th l g∈( )  binary bit of DHTI in 
k-th frame and in position d represent a superpo-
sition of four one-dimensional binary Markov 
processes. We take as the BBI mathematical 
model in k-th frame in position d, the UMRF in 
NSHP with the vicinity of type Figure 12 (see 
Box 26).

Consider the case when the BBI element ν
4

 
in k − th frame in position d belonging to F k d4, ,  
area^w (Figure 12) is the subject for modeling. 
Modeling of the BBI elements belonging to areas 
F k d1, , ,  F k d2, ,  and F k d3, ,  is simpler than the area 
F k d4, ,  and reduces to modeling of one-dimension-
al, two-dimensional and three-dimensional sta-
tionary Markov chains.

Fragments of mathematical model of two 
statistically correlated sequences (Figure 13) for 
two adjacent frames and two adjacent positions 
in the space are presented in Figure 14.

BBI elements in position d  (Figure 14) will 
be designated as: ν µ1 1= −i j k d, , , ,  ν µ2 1= −i j k d, , , ,  
ν µ3 1 1= − −i j k d, , , ,  ν µ4 = i j k d, , , ,  ′ = − −ν µ1 1 1i j k d, , , ,  
′ = − −ν µ2 1 1i j k d, , , ,  ′ = − − −ν µ3 1 1 1i j k d, , , ,  ′ = −ν µ4 1i j k d, , , ,  

a n  a s  ε µ1 1 1= − −i j k d, , , ,  ε µ2 1 1= − −i j k d, , , ,  
ε µ3 1 1 1= − − −i j k d, , , ,  ε µ4 1= −i j k d, , , ,  
′ = − − −ε µ1 1 1 1i j k d, , , ,  ′ = − − −ε µ2 1 1 1i j k d, , , ,  
′ = − − − −ε µ3 1 1 1 1i j k d, , , ,  ′ = − −ε µ4 1 1i j k d, , ,  are the image 

elements in position d −1.
The vicinity of BBI element ν

4
 in position d  

has 15 adjacent image elements (see Box 27).
The quantity of information contained in ele-

ments of the vicinity (48) with regard to element 
ν
4

 without taking into account the statistical cor-
relation between elements of the Λijkd  vicinity 
can be represented similar to expression (35) in 
the form shown in Box 28.

The modeling process is the four-dimensional 
Markov chain, therefore, the information quan-
tity defining the appearance of this or that value 

Figure 12. Frames of the video-sequence of the 
artificial BBI
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information containing in BBI elements 
ν ν ν ν3 1 2 3, , ,' ' '  with regard to the element ν

4
 is 

redundant and we must eliminate it. In this case 
the equation for information between BBI elements 
ν
4

 and ν ν ν1 2 4, , ′  will take the form shown in Box 
21.

Having eliminated information about the ele-
ment ν

3
 in elements ν ν ν3 1 2, ,' '  in the conditional 

probability density w ν ν ν ν ν4 1 2 3 3
′ ′ ′( ), , , ,  equation 

(36) can be presented as shown in Box 22.
The transition probability density for the com-

plicated Markov chain, which can be approxi-
mated the BBI sequence is completely defined by 
the transition probability matrix Π,  which ele-
ments have the form shown in Box 23.

For known matrices 1 2 4Π Π Π, , ,  in order to 
calculate the matrix Π  elements, it is necessary 
to calculate preliminarily matrices

3 1 2

5 1 4

6 2 4

7 3 4 1 2 4

Π Π Π
Π Π Π
Π Π Π
Π Π Π Π Π Π

= ⋅
= ⋅
= ⋅
= ⋅ = ⋅ ⋅

;

;

;

.

      (39)

Using the entropy approach to statistically 
connected in-pairs the elements of the BBI video- 
sequence, we can rewrite the transition probability 
matrix for the complicated Markov chain in the 
form shown in Box 24.

Matrix Π  element values (36) can be calcu-
lated in accordance with (35). For example, ex-
pressions for calculation of elements of the first 
line of the matrix Π  have the form:

π
π π π π

π π π

π
π

iiiiiiii
ij ij ij ij

ii ii ii

jiiiiiii

= −
⋅ ⋅ ⋅

⋅ ⋅

=

1
1 2 4 7

3 5 6

1

,

iij ij ij ij

ii ii ii

i j
⋅ ⋅ ⋅

⋅ ⋅
≠

2 4 7

3 5 6

π π π

π π π
, .

     (41)

The determination of other elements of the 
matrix Π  is executed in accordance with the 
vicinity Λi j k, ,  element values. For instance, ele-
ments of the second line can be calculated as:

π
π π π π

π π π

π
π

iiijiiii
ij ij ii ii

ii ij ij

jiijiiii

= −
⋅ ⋅ ⋅

⋅ ⋅

=

1
1 2 4 7

3 5 6

1

,

iij ij ii ii

ii ij ij

i j
⋅ ⋅ ⋅

⋅ ⋅
≠

2 4 7

3 5 6

π π π

π π π
, .

     (42)

Box 24.  

Π =

π π
π π
π π

iiiiiiiii jiiiiiiii

iiijiiii jiijiiii

iijiiiii jijiiiii

ππ π
π π
π π
π

iijjiiii jijjiiii

ijiiiiii jjiiiiii

ijijiiii jjijiiii

ijjjiiiii jjjiiiii

ijjjiiii jjjjiiii

π
π π

α α
α α
α α
α α
α

=

′
′
′
′
′

1 1

2 2

3 3

4 4

5 αα
α α
α α
α α

5

6 6

7 7

8 8

1 2

′
′
′

= ≠, , , ; .i j i j                                                                                           (40)
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The information containing between BBI ele-
ments falling inside the vicinity Λi j k, ,  can be 
calculated similar to (33) (see Box 19).

In the complicated Markov chain representing 
the video-sequence the image elements inside the 
vicinity Λijk  should be independent. To fulfill 

this condition we shall obtain the difference of 
expressions (33) and (34) (see Box 20).

By the data, the BBI sequence represents 
three-dimensional discrete-valued Markov chain 
formed by the superposition of three one-dimen-
sional independent Markov chains. Therefore, the 

Box 20.  

I Iν ν ν ν ν ν ν ν ν ν ν ν ν ν ν1 2 3 4 1 2 3 4 1 2 3 1 2 3 4, , , , , , , , , , , , ,' ' ' ' ' ' ' '( )− ( )

==
⋅

log
( , , , , , , ) ( | , , , , ,' ' ' ' ' ' 'p wν ν ν ν ν ν ν ν ν ν ν ν ν ν1 2 3 1 2 3 4 4 1 2 3 1 2 3,, )

( ) ( , , , , , , )

log
( | , , ,

'

' ' ' '

ν
ν ν ν ν ν ν ν ν

ν ν ν ν ν

4

4 1 2 3 1 2 3 4

4 1 2 3

p p

w

⋅

= 11 2 3 4

4

' ' ' ', , , )
( )

.
ν ν ν

νp

                                                                          (35)

Box 21.  

I

w p p

ν ν ν ν

ν ν ν ν ν ν ν ν ν
1 2 4 4

4 1 2 3 1 2 3 4 1

, , ,

log
( | , , , , , , ) ( )

'

' ' ' ' '

( )

=
⋅ ⋅ (( ) ( ) ( ) ( )

( ) ( , , , , )

log
(

' '

' ' '

ν ν ν ν
ν ν ν ν ν ν

ν

2 3 3 4

4 1 2 3 3 4

⋅ ⋅ ⋅
⋅

=

p p p
p p

w 44 1 2 3 1 2 3 4

4 1 2 3 3

| , , , , , , )
( | , , , )

.
' ' ' '

' ' '

ν ν ν ν ν ν ν
ν ν ν ν νw

                                                     (36)

Box 22.  

I

w w w v w
w

ν ν ν ν

ν ν ν ν ν ν ν
1 2 4 4

4 1 4 4 4 2 4 3

, , ,

log
( | ) ( | ) ( | ) ( | )

(

'

' '

( )

=
⋅ ⋅ ⋅
νν ν ν ν ν ν4 3 4 1 4 2| ) ( | ) ( | )

.' '⋅ ⋅w w

                                                                                                    (37)

Box 23.  

π π ν ν ν ν ν

ν ν ν
ijklmnqr i j k l m

n q

M M M M M

M M

= = = = = =

= =

( | , ; ; ;

; ;

'

' '

4 1 2 3 1

2 3 44 1 2' ), , , , , , , , , .= =M i j k l m n q rr

                                                                             (38)
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Box 18.  

I
p

ν ν ν ν ν ν ν ν
ν ν ν ν ν ν ν

1 2 3 4 1 2 3 4
1 2 3 4 1 2 3, , , , , , , log
( , , , , , ,' ' ' '

' '

( ) =
'' ', )

( ) ( )
.

ν

ν ν

4

1

4

1

4

p pi
i

i
i= =

∏ ∏⋅ ′
                                                                           (33)

Box 19.  

I
p

ν ν ν ν ν ν ν
ν ν ν ν ν ν ν

1 2 3 1 2 3 4
1 2 3 1 2 3 4, , , , , , log
( , , , , , , )' ' ' '

' ' ' '

( ) =
pp pi

i
i

i

ν ν( ) ′( )
= =
∏ ∏
1

3

1

4
.                                                                                          (34)

Figure 10. The OSMRF area with the vicinity of seven elements
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The vicinity of the image element ν
4

 at mod-
eling of the video-sequence will be increased up 
to seven adjacent elements

Λ i j k, , ; ; ; ; ; ,= ′ ′ ′ ′{ }ν ν ν ν ν ν ν1 2 3 1 2 3 4  (Figure 
10).

The following designations are used in Figure 
11:

ν µ
ν µ
ν µ
ν µ

1

2

3

4

1

1

1 1

= −( )
= −( )
= − −( )
= ( )

i j k

i j k

i j k

i j k

, , ,

, , ,

, , ,

, , ,

′ = − −( )
′ = − −( )
′ = − − −( )
′ =

ν µ
ν µ
ν µ
ν µ

1

2

3

4

1 1

1 1

1 1 1

i j k

i j k

i j k

, , ,

, , ,

, , ,

ii j k, , .−( )1

The statistical connections between BBI ele-
ments including inside the vicinity Λi j k, ,  of the 
element ν

4
 are shown by the firm and dotted lines 

in Figure 11.
The information quantity containing in ele-

ments of the vicinity

Λijk = { }ν ν ν ν ν ν ν ν1 2 3 4 1 2 3 4, , , , , , ,' ' ' '

with regards to the elementν4,  can be determine 
from equation of the view shown in Box 18.

Figure 9. The BBI of the real and artificial DHTI “Lena”: a) 8-bit; b) 6-bit; c) 1-bit
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tion matrices (10), (11) satisfying the condition 
(16) correspond to the each l-th ( )l g∈  binary 
image. At constructing the DHTI MM adequate 
to the real situation, it is necessary to know values 
of transition matrix elements for each BBI. The 
graphs of value variation of transition matrix (10), 
(11) elements of DHTI averaged over the great 
number of the real DHTI, are presented in Figure 
6. These graphs concern to presentation in the 
form of g-bit (g=8) binary numbers and it follows 
from them that the correlation connection between 
DHTI elements bitwise is nonlinear in general 
case and it should be taken into consideration at 
modeling the BBI adequate to the real situation.

Figures 7 and 8 shows the real DHTI “Lena” 
and the artificial DHTI obtained with the help of 
MM at equal statistical characteristics. The BBI 
of 8,6,1 bits of the real and artificial DHTI “Lena” 
are presented in Figures 9,a,b,c.

The developed mathematical model of the 
artificial BBI was used to design nonlinear filter-
ing algorithms for the real DHTI represented by 
8-bit binary numbers and it showed high degree 
of correspondence with the real images which 
corroborates the findings of Petrov and Chasikov 
(2001) and Petrov, Trubin and Butorin (2005a).

MATHEMATICAL MODELS OF 
BBI VIDEO-SEQUENCES

The DHTI representation by the set of g binary 
sections reduces the problem of MM construction 
of the DHTI sequence to the construction of MM 
of the BBI sequence.

We shall assume that the sequence of BBI 
frames is the three-dimensional discrete-valued 
Markov process µ µk i j k= ( ), ,  with two spatial 
coordinates i j i m j n, ; ,∈ ∈( )  and time as the 
third coordinate k = 1,2…, related to the frame 
number in the image sequence.

We suppose that the correlation function of the 
BBI frame sequence has the form shown in Box 16.

Let us choose UMRF on NSHP with the vicin-
ity of the form shown in Figure 1 as the mathe-
matical model of BBI (see Box 17).

We consider the case when the BBI random 
binary element ν

4
 in the k-th frame (Figure 10) 

belonging to the area F k4,  should be modeled. 
The modeling of BBI elements belonging to areas 
F k1, ,  F k2,  and F k3,  is simpler than the area F k4,  
and it can be reduced to modeling of one-dimen-
sional and two-dimensional stationary Markov 
chains.

Figure 7. The real DHTI “Lena”

Figure 8. The artificial DHTI obtained with the 
help of MM at statistical characteristics of the 
real DHTI ”Lena”
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Similarly, we can write formulas for calculat-
ing the matrix Π  elements for various combina-
tions of values of the vicinity Λi j k, ,  elements.

If one of the initial matrices 1 2Π Π,  or 4Π  is 
the unitary matrix, elements of the matrix Π  will 
contain 1 and 0 only. The element ν

4
 value will 

coincide with the value of the vicinity Λi j k, ,  ele-
ment, whose transition probability is defined by 
the unitary matrix. In the case when one of ma-
trices 1 2Π Π,  or 4Π  consists of elements with 
value equaled 0.5 (equiprobable independent 
transitions), the product of this matrix with the 
others gives a similar matrix. Computation of the 
matrix Π  element becomes simpler. For instance, 
if elements of the matrix 1Π  are equal to 0.5, 
elements of matrices 3 5 7Π Π Π, ,  also equal to 
0.5. The value of the BBI element will be defined 
by matrices’ 2Π  and 4Π  elements only. If ele-
ments of matrices 1Π  and 2Π  are equal to 0.5, 
the appearance of this or that value of the BBI 
element ν

4
 will depend upon values of the matrix 

4Π  elements only. For the same and equal to 0.5 
elements of 1 2Π Π, , 4Π  the appearance of this or 
that value of the BBI element ν

4
 is equiprobable. 

Matrix Π  elements will be equal to 0.5.
Let us consider the case when matrices 1 2Π Π,  

and 4Π  are equal, i.e.

1 2 4 0 9 0 1
0 1 0 9

Π Π Π= = =
, ,
, ,

.       (43)

Let all elements of the vicinity have the equal 
values M1 0=  or M2 1= .  We calculate by 
formulas (38) probability of appearance and ab-
sence the element value ν4 1 0= =M .

π

π

iiiiiiii

ijjjj

= −
⋅ ⋅ ⋅
⋅ ⋅

=1
0 1 0 1 0 1 0 756
0 82 0 82 0 82

0 99863
, , , ,
, , ,

, ,

jjjj =
⋅ ⋅ ⋅
⋅ ⋅

=
0 1 0 1 0 1 0 756
0 82 0 82 0 82

0 00137
, , , ,
, , ,

, .

THE ALGORITHM OF FORMATION 
OF THE MARKOV BBI SEQUENCE

The basis for the mathematical model construction 
for Markov BBI sequence is the equation (37). The 
modeling of the Markov BBI sequence includes 
several stages.

1.  Specify the transition matrices 1 2Π Π, , 4Π  
and calculate matrices 3 5 6 7Π Π Π Π, , ,  and 
the matrix Π;

2.  Take the random number ξl l m n( )≤ ⋅  
equally distributed over the interval [ , ].0 1

Figure 11. Seven elements of vicinity of the image element ν
4
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3.  Select the element α
s
s( , )= 1 8  correspond-

ing to values of the vicinity Λi j k, ,  elements 
from the first column of the matrix Π;

4.  The number ξ
l
 is compared with the chosen 

element α
s
s( , )= 1 8  and if α

s
= 1 8,  and 

ξ αl s≤ ,  the image elements ν
4

 takes the 
v a l u e  ν4 1 0= =M ,  o t h e r w i s e 
ν4 2 1= =M ;

5.  If i n j m k K< < <; ; ,  where K is the se-
quence length we pass to point 3, otherwise 
to point 6;

6.  Stop.

Investigations of mathematical models of the 
BBI sequence for various statistical correlation 
between adjacent BBI elements in the space 
(frame) and time (between frames) was carried out.

MATHEMATICAL MODELS 
OF VIDEO-SEQUENCE 
OF MARKOV DHTI

The mathematical model of the DHTI video-se-
quence represents the three-dimensional Markov 
chain with q g= 2  values and consists of g ММ 
sequences of Markov BBI ordered by bits of bi-
nary numbers of the DHTI representation. Com-
bination of BBI - DHTI in the each video-sequence 
frame is fulfilled on the g-bits register and does 
not require calculation operations. At that, the 
memory volume does not exceed one frame of 
DHTI. At DHTI modeling we need to take into 
account that each BBI has its own individual 
matrices of the transition probabilities of type 
(30).

Figure 11 shows 1st, 5th, 10th, 20th frames 
of the video-sequence of the artificial BBI at 
matrix values

1 1 2 1 0 6π π
ii ii

( ) ( )= = , ,

1 2 2 2 0 65π π
ii ii

( ) ( )= = , ,  

1 3 2 3 0 7π π
ii ii

( ) ( )= = , ,  

1 4 2 4 0 75π π
ii ii

( ) ( )= = ,  

1 5 2 5 0 8π π
ii ii

( ) ( )= = , ,  

1 6 2 6 0 85π π
ii ii

( ) ( )= = , ,  

1 7 2 7 0 9π π
ii ii

( ) ( )= = ,  

1 8 2 8 0 95π π
ii ii

( ) ( )= = ,  

and

4 0 9π
ii
= , .  

The auto-correlation function analysis of 
video-sequences of artificial and real DHTI shows 

that the MM is adequate to the real process.
Results obtained from the construction of 

two- and three-dimensional mathematical models 
allow for assuming that the approximation of the 
statistically correlated video-sequences of DHTI 
by the multi-dimensional and multi-valued Markov 
process is the reasonable approach to solving the 
problem of construction of multi-dimensional 
mathematical models realized by means of mini-
mal computation resources.

Let µ Θ Θ Θ1 2, ,...,
h( )  (where Θ

i
 are discrete 

coordinates) be the multi-dimensional multi-
level multi-valued Markov process, this corre-
sponds to statistically correlated video-sequences 
of DHTI. Let us construct the mathematical mod-
els of several statistically correlated video-se-
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quences of DHTI, whose realization requires the 
minimal computing resources. In constructing the 
mathematical models, we shall assume that 
µ Θ Θ Θ1 2, ,...,

h( )  represents the superposition of 
h one-dimensional, multi-valued Markov process.

The correlation function of this process has a 
form shown in Box 25.

For better understanding of the method of 
multi-dimensional mathematical model construc-
tion we will be limited by four-dimensional, 
multi-valued Markov process, which is adequate 
for the spread of statistically correlated DHTI 
video-sequences in the space.

MATHEMATICAL MODELS 
OF TWO STATISTICALLY 
CORRELATED BBI SEQUENCES

Let us represent Markov DHTI with sizes m n×  
elements as a sum of g BBI. Similar to the previ-
ous mathematical model, we first construct the 
mathematical model of two statistically corre-
lated BBI sequences.

The more the dimensions of the random pro-
cesses, the more complicated it is to select an ex-
ample of its physical implementation. We assume 
that the three-dimensional random binary Markov 
process described earlier moves discretely in the 
space with equal intervals, sensing the image of the 
same object from the different locations. We shall 
suppose that the sequence of BBI elements from 
one position to another is the four-dimensional, 
multi-level, discrete-valued Markov process with 
the correlation function of the following form:

r Ef q s p
l

i j t v
l

i f j q t s v p
l

l

, , , , , , , , ,[ ]

exp{

( ) ( )
+ + + +
( )

(

=

= −

µ µ

σ αµ
2

1
)) ( ) ( ) ( )− − −f q s pl l lα α α2 3 4 },  

         (44)

where E i j t v

l

i f j q t s v p

l[ ], , , , , ,µ µ( )
+ + + +
( )  is the mathemat-

ical expectation; σµ
2  is a variance of the random 

process; αi
l i( ) =( , )1 4  are the scale multipliers 

related to the process’ spectrum on each coordi-
nate.

Box 25.  

r i j l hi j l h h, , ,..., exp{ },= − − − − −σ α α α αµ
2

1 2 3 …                                                                                            (43)

where α α1,... h  are coefficients similar to those in expression (9).

Box 26.  

Λi j k i j k d i j k d i j k d, , , , , , , , , , ,, ,= { }− − − −µ µ µ1 1 1 1
                                                                                                                                              (46)

Λi j k d

kd

kd

if i j F

i j k d if i j F

i j k, , ,

, ,

, , , , ,

, ,
=

∅ ( ) ∈
−( ){ } ( ) ∈
−( )

1

21

1 ,, , ,

, , , , , , , , , , , ,

d if i j F

i j k d i j k d i j k d

kd{ } ( ) ∈
−( ) −( ) − −( ){ }

3

1 1 1 1 iif i j F kd,( ) ∈

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪ 4

                                                         (47)
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Figure 13. The mathematical model of two statistically correlated BBI sequences
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MATHEMATICAL MODEL OF TWO 
STATISTICALLY CORRELATED 
DHTI VIDEO-SEQUENCES

Mathematical model of statistically correlated 
DHTI video-sequences represented by g-bit bi-
nary numbers are formed by the simple bitwise 
presentation of g values of binary images into the 
g-bit register of the binary number representing 
the sample of the four-dimensional multi-valued 
Markov process.

Figure 15 shows 1st, 5th, and 10th frames of 
two statistically correlated video-sequences of 
the artificial DHTI obtained with the help of 
the developed mathematical model for 
1 1 2 1 0 6π π
ii ii

( ) ( )= = , ,  1 2 2 2 0 65π π
ii ii

( ) ( )= = , ,  
1 3 2 3 0 7π π
ii ii

( ) ( )= = , ,  1 4 2 4 0 75π π
ii ii

( ) ( )= = ,  
1 5 2 5 0 8π π
ii ii

( ) ( )= = , ,  1 6 2 6 0 85π π
ii ii

( ) ( )= = , ,  
1 7 2 7 0 9π π
ii ii

( ) ( )= = ,  и 4 8 0 9π π
ii ii
= = , .

Figure 15. Frames of the statistically correlated video-sequences of the artificial DHTI
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falling in the vicinity (48) and form the matrix 
shown in Box 32.

Values of the element of matrix Π  may be 
calculated in accordance with the argument of the 
logarithm (51) using the entropy between the 
generating element ν

4
 in position d and mutu-

ally independent elements of the vicinity Λi j k d, , ,

. For example, at known values of the matrices in 
(53), expressions for element calculation of the 
first two lines of the matrix Π  have the form 
shown in Box 33.

We calculate the probability π
ii i...

 under the 
condition that

1 2 4 1 2 4 8
0 9 0 1

0 1 0 9
Π Π Π Π Π Π Π= = = ′ = ′ = ′ = =

, ,

, ,
.

πjiiii ii ii!"
11

0 0001522= , .

Other elements are calculated in the similar 
way depending on combinations of element values 
in the vicinity Λijkd .

From (55) one can easily obtain the matrix Π  
for the model of the discrete-valued Markov pro-
cess of the smaller dimension. For example, ex-
cepting the element of the transition probability 
matrix 8Π  and associated elements of transition 
probability matrices 9 15Π Π… ,  we obtain the 
matrix Π  for the model of the three-dimension-
al discrete-valued Markov process. If matrices 
associated with matrices 4Π  and 8Π  are ex-
cluded, we obtain the matrix Π  for two-dimen-
sional discrete-valued Markov process. Using the 
similarity with the approach of the four-dimen-
sional mathematical model constructions, we can 
construct mathematical model of several statisti-
cally correlated DHTI corresponding to the multi-
dimensional multi-valued Markov process of 
higher order.

THE ALGORITHM OF FORMATION 
OF STATISTICALLY CORRELATED 
SEQUENCES OF MARKOV BBI

The matrix Π  (54) and equation (51) are the 
basis for constructing the mathematical model for 
statistically correlated DHTI video-sequences 
representing the four-dimensional discrete Markov 
process. The algorithm of mathematical model 
operation consists of the following stages:

Step 1: The size of the random two-dimensional 
field (image) of m n×  elements, the video-
sequence length K and the number of posi-
tions D, matrices of transitions 1 2Π Π, , 4Π,  
8Π  a re  spec i f ied  and  mat r ices 
3 5 6 7 9 15Π Π Π Π Π Π, , , , ,...,  and Π  are cal-
culated;

Step 2:  We take the random number 
ξl l m n K D( )≤ ⋅ ⋅ ⋅  uniformly distributed 
over interval 0 1, ;⎡

⎣⎢
⎤
⎦⎥

Step 3: From the first column of the matrix Π  
we choose the element α

s
s( , )= 1 16  cor-

responding to element values of the vicin-
ity Λijkd ;

Step 4: The number ξ
l
 is compared with the 

chosen element α
s
s( , )= 1 16  and if 

α
s
s =( )1 16,  and ξ αl s≤ ,  then the image 

element ν
4

 takes the value ν4 1 0= =M ,  
otherwise ν4 2 1= =M ;

Step 5: If i n j m k K d D< < < <; ; ; ,  where K 
is the video-sequence length, D if the num-
ber of positions, then we pass to p. 3, oth-
erwise to p. 6;

Step 6: Stop.
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MP is stationary on all coordinates. Evidently, in 
this case there are 15 transition matrices:

1 1 2 2 4 4

3 1 2

3 1 2

Π Π Π Π Π Π
Π Π Π
Π Π Π

, , , , , ,

,

,

′ ′ ′

= ′× ′
′ = ′× ′

5 5 1 4

6 6 2 4

7 7 3 4

Π Π Π Π
Π Π Π Π
Π Π Π Π

, ;

, ,

, ,

′ = ′× ′
′ = ′× ′
′ = ′× ′

                    (53)

9 3 8

10 5 8

11 6 8

12 7 8

Π Π Π
Π Π Π
Π Π Π
Π Π Π

= ′×
= ′×
= ′×
= ′×

;

,

,

,

13 1 8

14 2 8

15 4 8

Π Π Π
Π Π Π
Π Π Π

= ′×
= ′×
= ′×

;

;

.

Probabilities of appearance of the BBI element 
ν
4

 with the value ν4 1=M  or ν4 2=M  depend 
upon combinations of values of BBI elements 

Box 32.  

Π =

π π

π π

iiiii ii ii jiiii ii ii

iiiij ii ii jiiij ii ii

!" !"

!" !"

11 11

11 11

## #

!$ %&& '&& !$ %&& '&&

!$ %

π π

π

ijjji jj jj jjjji jj jj

ijjjj jj jj

11 11

11
&&& '&& !$ %&& '&&

# #

π

α α
α α

α α
α α

jjjjj jj jj

i j

11

1 1

2 2

15 15

16 16

=

′
′

′
′

=, , 11 2, ; .i j≠                                                                               (54)

Box 33.  

π
π π π π π π π π

π πiiiii ii ii
ij ij ij ij ij ij ij ij

ii i
!"
11

1
1 2 4 8 7 9 10 11

3 5
= −

ii ii ii ii ii ii
6 13 14 15 12π π π π π

;

π
π π π π π π π π

π πjiiii ii ii
ij ij ij ij ij ij ij ij

ii ii
!"
11

1 2 4 8 7 9 10 11

3 5 6
=

ππ π π π πii ii ii ii ii

i j
13 14 15 12

; .≠                                                                                                        (55)

π
π π π π π π π π

π πiiiij ii ii
ij ij ij ii ii ij ij ij

ij i
!"
11

1
1 2 4 8 7 9 10 11

3 5
= −

jj ii ij ij ij ij
6 13 14 15 12π π π π π

;

π
π π π π π π π π

π πjiiij ii ii
ij ij ij ii ii ij ij ij

ij ij
!"
11

1 2 4 8 7 9 10 11

3 5 6
=

ππ π π π πii ij ij ij ij
13 14 15 12

.
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of the BBI element ν4,  should depend upon the 
statistical correlation only between the element 
ν
4

 and elements ν ν ν ε1 2 4 4, , ,′  of the vicinity (48) 
(see Box 29).

Taking into consideration that conditions of 
mutual independence of the vicinity Λijkd  elements 
are fulfilled, equation (50) can be transformed to 
the form shown in Box 30.

Equation (51) is the basis of the model con-
struction of the four-dimensional discrete-valued 
Markov process with two values.

Transition probabilities for the discrete-valued 
four-dimensional MP are defined by the matrix 

of transition probabilities Π,  with elements of 
the form shown in Box 31.

Let matrices of the single-step transition prob-
abilities on the four coordinates (dimensions) be 
specified. For the three-dimensional MP these are 
1 2 4Π Π Π, ,  in position d  and similar matrices of 
transition probabilities are 1 2 4′ ′ ′Π Π Π, ,  for three-
dimensional MP in position d −1.  The statistical 
correlation between the three-dimensional pro-
cesses in positions d  and d −1  is characterized 
by the matrix of transition probabilities 8Π.  We 
shall assume that the multi-dimensional random 

Box 31.  

π π ν ν ν ν ν νi j k l m n q r t s f h u v pw j k l n rM M M M M= = = = ′ = ′ =( | ; ; ; ; ;4 1 2 3 4 3

ε ε ε ε ε ε ε ε1 2 3 4 1 2 3 4= = = = ′ = ′ = ′ = ′ =M M M M M M M Mt s f h u v p w; ; ; ; ; ; ; ),                                           (52)

i j k l m n q r t s f h u v p w, , , , , , , , , , , , , , , , .= 1 2

Box 30.  

I

w w w w w

( , , , )

log
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ν ν ν ν ν ν ν ε
ν ε
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4 3 4 1 4 2 4 1

4 3
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Box 29.  
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1 2 4 4 4
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Box 27.  

Λi j k v, , , , , , , , , , , , , , , ,= ′ ′ ′ ′( ′ ′ ′ν ν ν ν ν ν ν ε ε ε ε ε ε ε1 2 3 1 2 3 4 1 2 3 4 1 2 3,, .′ )ε4                                                                                        (48)

Box 28.  

I

w

( , , , , )

log
( | , , , , , , , , ,

ν ν ν ν ε
ν ν ν ν ν ν ν ν ε ε ε

1 2 4 4 4

4 1 2 3 4 1 2 3 1 2

′

=
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33 4 1 2 3 4

4

, , , , , )
( )

,
ε ε ε ε ε

ν
′ ′ ′ ′

p
                                                                                  (49)

where w ⋅( )  is the multi-dimensional probability density in the complicated Markov chain.

Figure 14. The MM fragment of two statistically correlated video-sequences
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The important peculiarity of the mathematical 
model operation algorithm is the absence of 
computing operations at creation of the artificial 
DHTI in the k-th frame in position d.

From the analysis of results obtained for the 
three-dimensional and four-dimensional mathe-
matical models, it follows that for the same sta-
tistical characteristics of the random process 
components its statistical redundancy increases 
with growth of the process dimension. If in the 
one-dimensional case the probability of appear-
ance of the same image value is equal to πii

l( ) = 0 9, ,  
in the two-dimensional case πii

l( ) = 0 987, ,  in the 
three-dimensional case ′ =π

i i i... , ,
7

0 998629
!

 in the 

four-dimensional case πi i i
l

... , .
15

0 9998478
!

( ) =  It 

follows from this that statistically correlated DHTI 
video-sequences may have a very large statistical 
redundancy, which can be expediently used at 
DHTI processing.

THE APPROACH TO CONSTRUCT 
THE MM OF STATISTICALLY 
CORRELATED DHTI VIDEO-
SEQUENCES OF THE BASIS OF THE 
H-DIMENSIONAL MULTI-VALUED MP

To construct the mathematical model of several 
statistically correlated DHTI video-sequences 
based on the h-dimensional Markov process, it 

is necessary, first of all, to divide the DHTI into 
BBI, the number of the latter is equal to digit 
capacity of the DHTI representation. Then we 
need to define the vicinity of the BBI element 
generating in the given moment.

If we succeeded to form the vicinity Λij h...  of 
the generating element ν41  (similar to the devel-
oped mathematical model) on the basis of the 
analysis of the h-dimensional discrete-valued MP, 
the next stage is the rewriting of the equation 
similar to (50), which defines the mutual informa-
tion quantity between the vicinity Λij h...  and the 
element ν41  (see Box 34).

The value of the element ν41  in mathematical 
model of h-th order should be determined by the 
statistical correlation only between the generating 
element ν41  and elements of the vicinity belong-
ing to h independent coordinates. All other ele-
ments of the vicinity Λij h...  have the redundant 
information, which should be eliminated. We can 
do it by means of the successive transformation 
of the multi-dimensional transition probabilities 
in (56) with the purpose to eliminate the statisti-
cal correlation between elements of any group 
falling in the vicinity Λij h... ,  which allows transfer 
from multi-dimensional transition probabilities 
of the complicated Markov chain to the simple 
equation for one-dimensional single-step transi-
tion probabilities similar to (51). The expression 
obtained in such a manner is the basis for the 
structure of construction of elements of the tran-

Box 34.  

I k k k kν ν ν ν γ γ γ γ11 41 11 41 1 4 1 4, ..., , , ..., , ..., , ..., , , ..., , .′ ′ ′ ′ ..., , ..., , , ...,

ln
, ..., , , ...

λ λ λ λ

ν ν ν ν
1 4 1 4

41 11 31 11

h h h h

w

′ ′( )

=
′ ,, , ..., , ..., , , ..., , ..., , ..., , ,′ ′ ′ ′ν γ γ γ γ λ λ λ41 1 4 1 4 1 4 1k k k k h h h ....,

, , ..., , ..., , ..., , , ...,

′( )
′ ′ ′

λ

ν ν ν ν γ γ γ
4

41 31 11 31 1 3 1

h

k k kw ′′ ′ ′( )γ λ λ λ λ4 1 3 1 4k h h h h, ..., , ..., , , ...,
,

                           (56)

where ν ν ν γ λ11 21 41 4 4, , ,..., ,...,′
k h  are elements of the vicinity Λij h...  belonging to h independent coordinates of the h-dimen-

sional discrete-valued MP. The second index of variables in (56) indicates the number of the DHTI sequence.
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sition matrix Π  in h-dimensional Markov chain. 
The matrix Π  in this case will have the form (see 
Box 35).

The algorithm of set formation of statistically 
correlated DHTI video-sequences consists of the 
following steps:

1.  The initial probabilities of the multi-dimen-
sional binary Markov process p

1
 and p

2
 

and matrices of one-dimensional single-step 
transition probabilities 1 2Π Π, ,..., hΠ  are 
specified and matrices of transition proba-
bilities and the matrix Π  (associated with 
the former) are calculated;

2.  We  t a k e  t h e  r a n d o m  n u m b e r 
ξl l m n K D T( )≤ ⋅ ⋅ ⋅ ⋅  uniformly distrib-
uted over the interval 0 1, ;⎡

⎣⎢
⎤
⎦⎥

3.  From the first column of the matrix Π  we 
choose the element αs

hs( , )= 1 2  corre-
sponding to values of the vicinity Λij h...  
elements;

4.  The number ξ
l
 is compared with the chosen 

element αs
hs( , )= 1 2  and if ξ αl s≤ ,  then 

the image element ν
4

 takes the value 
ν4 1 0= =M ,  otherwise ν4 2 1= =M ;

5.  I f  i n j m k K d D t T< < < < <; ; ; ; ,  
where K is the video-sequence length, D is 
the number of positions, Т is the number of 
sets, we pass to p. 3, otherwise to p. 6;

6.  Stop.

The mathematical model of the set of statisti-
cally correlated DHTI sequences represented by 
g-bit binary numbers is formed by the simple 
bitwise presentation of g values of the BBI ele-
ments in the g-bit register of the binary number 
representing the sample of the h-dimensional 
multi-valued process similar to p. 6.

Realization of the developed mathematical 
model does not require computation operations, 
and the memory volume at modeling of the h-
dimensional process does not exceed BBI size of 
h g−( ) ⋅2 .

CONCLUSION

The main conclusions are the following:

1.  The theory of conditional Markov processes 
is expanded to the static and dynamic DHTI 
representing the multi-dimensional discrete-
valued random processes with several states.

2.  The method of DHTI division is offered 
presented by g-bit binary numbers per g 
BBI (binary sections) each of which repre-
sents the causal binary Markov field or the 
binary Markov chain on the non-symmetrical 
half-plane.

3.  On the basis of the Markov type DHTI di-
vision method onto bit binary sections and 
using the entropy approach to probability 
calculation of each BBI element values, 
the DHTI mathematical models have been 
synthesized.

Box 35.  

Π =
− −

− −

π π

π π

i ii ii j ii ii

i jj jj i jj jj

h h

h h
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' '=
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α α

1 1

2 2

1 2

h h

i j i j, , , ; ,                                                                                       (57)

and the number of the transition matrices of type (53) will be 2 1h − .
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4.  The model adequacy to real image is con-
firmed by element estimations of the transi-
tion probability matrices calculated for the 
artificial and real images.

5.  The spatial-time MM of the DHTI video-
sequence is synthesized, which is the three-
dimensional multi-valued Markov process 
with the dividable exponential correlation 
function allowing the presentation of the 
three-dimensional multi-valued Markov 
process as a superposition of three one-
dimensional multi-valued Markov processes.

6.  The approach for MM construction of several 
statistically correlated DHTI video-sequenc-
es is offered, which can be presented by h-
dimensional multi-valued Markov processes. 
This approach can be reduced to formal 
procedures of the sequential elimination of 
the statistical redundancy between vicinity 
elements of the simulating image element 
belonging to h independent coordinates and 
all others.

DIRECTIONS OF FURTHER 
RESEARCHES AND 
DEVELOPMENTS

Developed methods for construction of DHTI 
and video-sequence mathematical models are the 
effective tool for development of simple, reliable 
and affective algorithms of multi-dimensional 
signals allowing approximation by the discrete-
valued Markov random processes.

We suppose to apply the DHTI MM and 
video-sequences synthesized at development of 
new algorithms on the basis of Markov chains 
with several states.

Investigation of multi-dimensional non-
stationary mathematical models is interesting 
as well, which have been created of the basis of 
Markov chains with several states.

The authors in the of this chapter have done 
extensive research and are widely published in 

the area of development of DHTI mathematical 
models and the synthesis on its basis of algorithms 
of recovering images distorted by the noise.
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APPENDIX

List of Abbreviations

BBI: Bit binary image
DHTI: Digital half-tone image
MAP: Maximal a posteriori probability
MC: Markov chain
MM: Mathematical model
MP: Markov process
MTP: Matrix of transition probability
NF: Nonlinear filter
NSHP: Non-symmetric half-plain
OSMRF: One-sided Markov random field
RRD: Radio receiving device
VS: Video-sequence
WGN: White Gaussian noise


