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ANFIS Modeling of Dynamic 
Load Balancing in LTE

ABSTRACT

Modelling of ill-defined or unpredictable systems can be very challenging. Most models have relied on 
conventional mathematical models which does not adequately track some of the multifaceted challenges 
of such a system. Load balancing, which is a self-optimization operation of Self-Organizing Networks 
(SON), aims at ensuring an equitable distribution of users in the network. This translates into better user 
satisfaction and a more efficient use of network resources. Several methods for load balancing have been 
proposed. While some of them have a very buoyant theoretical basis, they are not practical. Furthermore, 
most of the techniques proposed the use of an iterative algorithm, which in itself is not computationally 
efficient as it does not take the unpredictable fluctuation of network load into consideration. This chapter 
proposes the use of soft computing, precisely Adaptive Neuro-Fuzzy Inference System (ANFIS) model, 
for dynamic QoS aware load balancing in 3GPP LTE. The use of ANFIS offers learning capability of 
neural network and knowledge representation of fuzzy logic for a load balancing solution that is cost 
effective and closer to human intuition. Three key load parameters (number of satisfied user in the net-
work, virtual load of the serving eNodeB, and the overall state of the target eNodeB) are used to adjust 
the hysteresis value for load balancing.

INTRODUCTION

Mobile communication systems are unpredictable 
and stochastic in nature due to a number of factors 
such as constantly changing propagation channels, 
random mobility of users and sudden changes in 
network load. This renders conventional math-
ematical tools less effective for system modelling 
of communication systems. Thus communication 

systems can be best modelled by adopting soft 
computing which exploits the tolerance for im-
precision, partial truth and uncertainty to achieve 
robustness, low solution cost and tractability. One 
of such soft computing platforms is the Adaptive 
Neuro-Fuzzy Inference System (ANFIS). ANFIS 
is an architecture which can serve as a basis for 
constructing a set of fuzzy if-then rules with 
appropriate membership functions to give the 
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specified input/output pairs model (Jang, 1993). 
ANFIS modelling have been utilized in a number 
of applications such modelling of Microarray 
Cancer Gene Expression Data (Wang, 2005), 
Speed Control of Induction Motor (Kusagur, 
Kodad, & Ram, 2010), and for Optimization 
of Multiple Response Systems (Cheng, Cheng, 
& Lee, 2002). This chapter proposes the use of 
ANFIS modelling for dynamic load balancing for 
the Third Generation Partnership Project (3GPP) 
Long Term Evolution (LTE).

The 3GPP LTE is Self-Organizing Network 
(SON). Self-Organizing Network operation was 
introduced to enhance system performance by 
improving network operations and maintenance. 
SON operations are also promising in reducing 
both CAPital EXpenditure (CAPEX) and OPera-
tional EXpenditure (OPEX). Load balancing is a 
SON operation which aims at ensuring an equitable 
distribution of cell load among eNodeBs in order to 
improve the overall system capacity of the network 
(ETSI TS 136 300, 2011), (M. of WINNER, 2005). 
To this end, several algorithms have been proposed. 
In (Lobinger, Stefanski, Jansen, & Balan, 2010), 
a load balancing algorithm aimed at finding the 
Optimum Handover (OH) offset value between 
the overloaded cell and a possible target cell was 
proposed. Another approach, which is based on 
a network formulation of heterogeneous services 
with different quality of service requirements was 
proposed in (Wang et al, 2010). A utility-based 
load-balancing framework was used to develop an 
algorithm called Heaviest-First Load Balancing 
(HFLB) in (Wang et al, 2010). However, these 
methods and algorithms are not computationally 
efficient because they involve the use of iterative 
processes. Moreover, the need to minimize load 
overhead due to excessive handover and Ping-
Pong effect needs to be taken into consideration. 
Also, to make a more informed and informed load 
balancing decision, there is a need to consider 
not only the load of the serving cell, but other 

indicators such as the overall state of the serv-
ing cell and the number of satisfied users in the 
entire network must be taken into account. These 
challenges points to the need for a robust and cost 
effective approach.

OVERVIEW OF 3GPP LTE

The Long Term Evolution (LTE) started in 3GPP 
(Third Generation Partnership Project) release 8 
and continued in release 10 with the objective 
of meeting the increasing performance require-
ments of mobile broadband (Dahlman, Parkvall, 
& Skold, 2011). LTE is a new radio-access tech-
nology geared towards higher data rates, high 
spectral efficiency, very low latency, support of 
variable bandwidth, simple protocol architecture, 
and support for Self-Organizing Networks (SON) 
operation. Release 10, otherwise known as LTE 
advanced is a fourth generation (4G) specification 
that provides enhanced peak data rates to support 
advanced services and applications (100 Mb/s for 
high mobility and 1 Gb/s for low mobility). LTE 
is the radio access network for Evolved Packet 
System (EPS), which has a core network known 
as Evolved Packet Core (EPC). The overall archi-
tecture of the EPS is shown in Figure 1.

The LTE radio access network consists of 
evolved Node Bs (eNodeBs) and no centralized 
controller (for normal user traffic). Due to the 
absence of a network controller, it is said to have 
a flat architecture. This structure reduces system 
complexity and cost and allows better performance 
over the radio interface. The eNBs are intercon-
nected by the X2 interface. The S1-MME interface 
connects the eNBs to the key control plane of the 
core network-the MME, while the S1-U interface 
connects the eNBs and the S-GW. Intra-LTE load 
balancing is usually accomplished over the X2 
interface.
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REVIEW OF ANFIS MODELLING

Adaptive Neuro-Fuzzy Inference System (ANFIS) 
otherwise referred to as Adaptive Network-based 
Fuzzy inference System was originally proposed 
in (Jang, 1993). ANFIS is a blend of Fuzzy Logic 
(FL) and Artificial Neural Network (ANN) that 
captures the strengths and offsets the limitations 
of both techniques for building Inference Systems 
with improved results and enhanced intelligence. 
Fuzzy logic is associated with the theory of fuzzy 
set, which relates to classes of objects with rough 
boundaries in which membership is a matter of 
degree. It is an extensive of multivalued logical 
system that departs in concept and substance from 
the traditional multivalued logical systems. Much 

of fuzzy logic may be viewed as a platform for 
computing with words rather than numbers. The 
use of words for computing is closer to human 
intuition and exploits the tolerance for impreci-
sion, thereby lowering the cost of the solution 
(Mathwork Inc., 2011). However, there are no 
known appropriate or well-established methods 
of defining rules and membership functions based 
on human knowledge and experience for fuzzy 
inference systems. ANFIS uses ANN for adapt-
ing these membership functions by adjusting the 
adaptive parameters associated with the member-
ship functions. Artificial Neural Networks are 
made up of simple processing elements operating 
concurrently. These elements model the biologi-
cal nervous system, with the network functions 

Figure 1. EPS network elements
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MCS with a higher throughput needs a higher 
SINR to operate [7]. We assume that the best 
modulation coding scheme (MCS) is used for a 
given SINR and the highest data rate R SINR( )  
is achievable, this can be represented by Shannon 
formula as shown below:

R SINR SINRu u( ) = +log ( )2 1       (10)

For better approximation to realistic MCS, 
the mapping function is scaled by attenuation 
factor (say 0.75) and is bounded by the minimum 
required SINR (-6.5 dB) and a maximum bitrate 
(4.8 bps/Hz).

LOAD METRIC

The specific number of subcarriers allocated to 
users for a predetermined amount of time is re-
ferred to as the Physical Resource Blocks (PRBs) 
(Zyren & McCoy, 2007). PRBs possess both 
frequency and time dimension. The eNodeB is 
responsible for the allocation of PRBs using a 
scheduling function. The amount of Physical 
Resource Blocks (PRBs) required by user u  can 
be expressed as:

N
D

R SINR BWu
u

u

=
( ) ⋅

       (11)

where Du =  required data rate and BW is the 
transmission bandwidth of one resource blocks 
(180 kHz for LTE). The load of cell c can be 
expressed as the sum of required resources of all 
users connected to cell c to the total number of 
resources  Nt :
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The total number of available resources (sub-
carriers) depends on the chosen transmission 
bandwidth of the system as shown in Table 1 
(Holma & Toskala, 2009).

If we chose the number of unsatisfied users as 
an assessment and simulation metric, then we can 
focus on the CBR traffic rather than the network 
throughput. In this case, the UEs either get exactly 
the CBR or they totally unsatisfied. Equation 
(12) implies that the cell load parameter should 
not exceed 1 for all users to be satisfied. This can 
be extended to give a general indication of how 
overloaded (or otherwise) a cell is, by defining a 
virtual load given by:

Box 2.  
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Where 
α
i

 and β
i

 models the channel estimation errors, P P vtx1 = /  represents the homogenously distributed transmit power, γ
i

 

models a simple Zero Forcing (ZF) receiver noise enhancement, σ2  is the uncorrelated receiver noise and θ  models the interference. 
! !!,!!! ,! ,!!! ,!L L Psf T U pl T Ui j i j

and 1  stand for the shadow fading and pathloss between the UE, u  and its attached eNodeB c  (for 

Ti = 0)  and its interferers (for T Ni t= …1, , )  respectively.
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be noted as Lmp T Ui j, ,
 where Ti  is the i-th transmit-

ter (denoted as 0 for the attached eNodeB and 
1, ,… N  for the interfering eNodeBs. Uj  is the 
j-th UE which is located at an ( , )x y  position. The 
pathloss was generated using a distance dependent 
pathloss of 128 1 37 6 10. . ( [ ])+ log R Km  (ETSI TR 
136 942, 2009) and a θ3 65 15dB =

° / dBi  an-
tenna (3GPP TR 25.814, 2006). Shadow fading 
occurs due to obstacles in the propagation path 
between the eNodeB and UE. Shadow fading can 
be seen as the changes in the geographical prop-
erties of the terrain associated with the mean 
pathloss derived from the macroscopic pathloss 
model. It is often approximated by a log-normal 
distribution of standard deviation 10 dB and mean 
0 dB. A UE moving in the Region of Interest 
(ROI) will experience a slowly changing pathloss 
due to the shadow fading of the attached eNodeB 
being correlated with the shadow fading of the 
interfering eNodeBs. Shadow fading can be de-
noted by ! .,!!! ,!Lsf T Ui j

 The large scales fading (shad-
ow fading and pathloss) are position dependent 
and time-invariant. Small scale fading results 
primarily due to the presence of reflectors and 
scatterers that cause multiple versions of the 
transmitted signal to arrive at receiver. The small 
scale fading is modelled as a time dependent 
process for different transmission modes.

LTE supports both Single-Input Single-Output 
(SISO) and Multiple-Input Multiple-Output 
(MIMO) transmission techniques. The MIMO 
transmission modes supported are Transmit Diver-
sity and Spatial Multiplexing. Transmit diversity 
provides a source of diversity for averaging out 
the channel variation either for delay sensitive 
services (Such as voice over internet protocol) at 

both low and high User Equipment (UE) speeds or 
for operation at higher UE speeds (Khan, 2009). 
Transmission diversity is useful for delay sensitive 
services, but does not help in improving the peak 
data rates because only a single data stream is al-
ways maintained. Spatial multiplexing facilitates 
achieving higher peak data rates by utilizing the 
multiple transmission antennas at the eNodeB in 
combination with multiple receive antennas at the 
UE. The MIMO OSLM channel can be modelled 
to obtain the per-layer SINR. This transmission 
mode consists of a precoding for Spatial Multiplex-
ing (SM) with large-delay Cyclic Delay Diversity 
(CDD) (ETSI TS 136 211 (2011)). The OLSM 
MIMO precoding is defined by:
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       (8)

where:

Nt =  Number of transmit antennas
v =  Number of layers (a layer is a mapping of 

symbols to the transmit antenna)
W i N vt( ) = ×   Is the precoding matrix
D and U are v v×  diagonal matrixes introducing 

the CDD.

For the MIMO OLSM, the SINR for the UE 
can be expressed as Equation (9) in Box 2.

A given MCS (Modulation Coding Scheme) 
requires a certain SINR (measured at the re-
ceiver of the UE) to operate with an acceptably 
low BER (Bit Error Rate) in the output data. An 

Box 1.  

z w z w z w p x q y r w p x q y r= + = + + + + +1 1 2 2 1 1 1 1 2 2 2 2( ) ( )  (6)

z w z w z w x p w y q w r w x p w y q r= + = + +( ) + ( ) + ( ) +1 1 2 2 1 1 1 1 1 1 2 2 2 2 2( ) ( )                                                    (7)
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This layer essentially computes the contribu-
tion of each rule to the overall output. It is the 
defuzzification layer and provides output values 
resulting from the inference of rules. The param-
eters in this layer p q ri i i, ,{ }  are known as conse-
quent parameters.

Layer 5: There is only one fixed node in this 
layer. It computes the overall output as the 
summation of contribution from each rule:

i

i i i
i

i i

i i

w z O
w z

z∑ ∑∑
= =5 !        (5)

HYBRID LEARNING ALGORITHM

The objective of learning is to tune all the adjust-
able parameters to make the ANFIS output match 
the desired data. In order to improve the training 
efficiency, a combination of learning algorithms 
is adopted to adjust the parameters of the input 
and output membership functions. The consequent 
parameters are optimized using the least square 
method with the antecedent parameters fixed. 
After updating the consequent parameters, the 
gradient descent method using back-propagation 
training algorithm is used to fine-tune the premise 
parameters (Jang, 1993). Assuming the premise 

parameters are held fixed, then the overall output 
of the ANFIS will be a linear combination of the 
consequent outputs given by that show in Box 1.

LOAD BALANCING SYSTEM MODEL 
AND METRIC

The system model is based on a 3GPP downlink 
multi-cell network serving multiple users with 
a homogenous QoS requirement. Specifically, 
constant bit error rate (CBR) users are taken 
into account. The Signal to Interference Noise 
Ratio (SINR) is used as a metric measuring the 
link quality of the link model (M. of WINNER, 
2005). Performance analysis is hinged on two 
factors, namely: fairness distribution of load and 
the number of unsatisfied users in the network.

Link Model

The post-equalization symbol SINR was deter-
mined from three parts of the link measurement 
model: (1) shadow fading, (2) macroscopic path-
loss and (3) small scale fading (for Multiple-Input-
Multiple Output). The propagation pathloss due 
to distance and antenna gain can be modelled by 
the macroscopic pathloss between an eNodeB 
sector and a User Equipment. The pathloss can 

Figure 2. Type 3 ANFIS architecture
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predominantly determined by the connections 
between the elements. Neural Networks have the 
ability to learn from data by adjusting the values 
of the connections (weights) between the ele-
ments. Merging these two artificial intelligence 
paradigms together offers the learning power of 
neural networks and the knowledge representa-
tion of fuzzy logic for making inferences from 
observations (input/output data sets).

BASIC ANFIS ARCHITECTURE

The ANFIS architecture described here is based 
on type 3 fuzzy inference system (other popular 
types are the type 1 and type 2). In the type 3 
inference system, the Takagi and Sugeno’s (TKS) 
if-then rules are used (Takagi & Sugeno, 1985). 
The output of each rule is obtained by adding a 
constant term to the linear combination of the 
input variables. Final output is then computed by 
taking the weighted average of each rule’s output. 
The type 3 ANFIS architecture with two inputs 
(x and y) and one output, z, is shown in Figure 2.

Assuming the rule base contains two first 
order TKS if-then rules as follows:

Rule if x is A and y is B then z p x q y r! : ! ! ! ! ! ! ! ,! ! !1
1 1 1 1 1 1

= + +

Rule if x is A and y is B then z p x q y r! : ! ! ! ! ! ! ! ,! !2
2 2 2 2 2 2

= + +

The ANFIS structure is functionally equivalent 
to a supervised, feed-forward neural network with 
one (1) input layer, three (3) hidden layers and one 
output layer, whose functionality are:

Layer 1: Every node in this layer is an adaptive 
layer that generates the membership grades 
of the input vectors. A bell-shaped (Gauss-
ian) function with maximum equal to 1 
and minimum equal to 0 is often used for 
implementing the node function:

O x
x c a

i A

i i

bi i

1
2

1

1
= ( ) =

+ −
µ

( ) /
       (1)

where Oi
1 =  output of the ith  node in the first 

layer, µAi x( ) is the membership function of input 
x  in the linguistic variable ! .Ai  The parameter set 
{ , , }a b ci i i  are responsible for are responsible for 
defining the shapes of the membership functions. 
These parameters are called premise parameters.

Layer 2: Each node in this layer determines the 
firing strength of a rule by multiplying the 
membership functions associated with the 
rules. The nodes in this layer are fixed in 
nature. The firing strength of a particular 
rule (the output of a node) is given by:

w O x y ii A Bi i
= = ( ) ( ) = …2 1 2µ µ⋅ , , ,        (2)

Any other T-norm operator that performs fuzzy 
AND operation can be used in this layer.

Layer 3: This layer consists of fixed nodes that 
are used to compute the ratio of the ith  
rule’s firing strength to the total of all firing 
strengths:

w O
w

w w
ii

i= =
+

= …3

1 2

1 2, , ,         (3)

The outputs of this layer are otherwise known 
as normalized firing strength for convenience.

Layer 4: This is an adaptive layer with node 
function given by:

w z O w p x q y ri i i i i i i= = + +4 ( )        (4)
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ρC
u X u c u

t

N

N

"

= ( )=∑ :        (13)

where ρ
C

"

≤ 1  means all users in the cell are 

satisfied, ρC U
"

=  means 1 /U  of the users are 
satisfied

The total number of unsatisfied users in the 
whole network (With a total number of Mc  users 
in cell ! )c  is given by:

z M
c

c C= −∑max( , ( / ))0 1 1⋅ ρ
"

     (14)

For performance analysis, the use of a fairness 
distribution index proposed in (Jain, Chiu, & Hawe, 
1984) is employed. Thus, the load distribution 
index measuring the degree of load balancing of 
the entire network is given as:

µ
ρ

ρ
t

t

N t
c c

c c

( ) = ( )∑
∑

( )

( ( )))

2

2
      (15)

where N  is the number of cells in the network 
(used for simulation) and t is the simulation time. 
The load balance index µ t( ) takes the value in 

the interval ! , .
1
1

N

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 A larger µ indicates a more 

balanced load distribution among the cells. Thus, 
the load distribution index is 1 when the load is 
completely balanced. The aim of load balancing 
(for CBR users) is to maximize is to maximize 
µ t( ) at each time !.t

In order to improve the load balancing perfor-
mance among adjacent cells, it is necessary to 
find the optimum target cell. This can be achieved 
by adopting a two-layer inquiry scheme proposed 
in (Zhang et al, 2011). The source eNodeB (the 
cell requiring load balancing) requests both the 
load state and environment state from all neigh-
bouring eNBs (first layer cells). The load state is 
the load of the first layer cell, while the environ-
ment state is the average load of the first layer 
cell’s adjacent cells excluding the one to be ad-
justed (denoted as the second layer cells). The 
Overall State of the first layer cell i  is obtained 
by a weighted combination of the load state ( )LSi  
and environment state ( )ESi  in one figure as 
follows:

OS LS ESi i i= + −( )α α1       (16)

where the environmental state is given by:

ES n
ni i i ni
j

n

j
= + +…+ = =∑( ) /ρ ρ ρ

ρ
1 2

1 (17)

LSi i= ρ ,  the load of first layer cell i,  and α  is 
a parameter that indicates the relative contribu-
tion of LSi  and ESi  to ! .OSi

  OSi  gives a comprehensive load information 
of the first layer cell, thereby indicating whether 
the eNodeB can be a target cell. Taking the value 
of α = 0 2. Equation (17) can be expressed as:

Table 1. PRBs of different downlink bandwidths 

Bandwidth 
(MHz)

Physical Resource Blocks 
( )Nt

1.4 6

3.0 15

5.0 25

10 50

20 100
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DESIGN OF LOAD BALANCING 
INFERENCE SCHEME

In the first stage, that is, the fuzzification pro-
cess, the crisp variables (the virtual load of the 
source cell, the overall state of the target cell and 
number of unsatisfied users) are converted into 
fuzzy (linguistic) variables. The fuzzification 
maps the three (3) input variables to fuzzy labels 
of the fuzzy sets. Each linguistic variable has a 
corresponding membership function. A triangular-
shaped membership function was determined to 
be the most suitable for this scenario. There are 
three 3 inputs and 3 fuzzified variables; thus the 
inference system has a set of 27 rules (Figure 5). 
The 27 rules included in the inference system 
are given in Figure 3 in the form of a flowchart:

The neural network training helps select the 
appropriate rule to be fired. Next, the rules are 
de-fuzzified to produce quantifiable results. De-
fuzzification can be achieved using several tech-
niques such as maximum methods, centre of 
gravity method, centre of singleton method etc. 
The centre of gravity method is adopted for this 
work. The de-fuzzified output is then used for 
making dynamic load balancing decisions. The 
structure of the ANFIS Model used is depicted 
in Figure 4. The model consists of 78 nodes, 27 
fuzzy rules, 27 linear parameters and 27 nonlinear 
parameters. The total number of parameter is very 
important in deciding the number of training data 
pairs required. In order to realize a good gener-
alization capability, it is recommended to have 
the number of training data points to be many 
times larger than the number of parameters being 
evaluated (Mathwork Inc., 2011). 1500 input/
output pairs of training data was used for training. 

Thus, the ratio between the data points and pa-
rameters is about twenty seven times (1500/54).

For parameter optimization, hybrid training 
(which combines least square errors and back-
propagation) was used. To ascertain how well the 
training data models the load balancing system, 
model validation using checking and testing data 
sets was adopted. Model validation involves pre-
senting input/output data sets on which the infer-
ence system was not trained to check the degree 
to which the inference system model predicts the 
corresponding data set outputs values. This is 
achieved using the testing data set. The second 
type of data set for model validation is the check-
ing data set. The checking data helps prevent the 
potential of model overfitting of the data, by se-
lecting model parameters that corresponds to the 
minimum checking data model error. The training, 
testing and checking data sets used for modelling 
were obtained from simulation result using a 
tweaked version of an open source LTE system 
level simulator (Ikuno, Wrulich, & Rupp, 2010). 
A sample of training, testing and is given in Table 
2.

SIMULATION RESULTS AND 
DISCUSSION

The Neuro-fuzzy model was developed using the 
ANFIS Editor GUI (Graphical User Interface). 
In the initial stage of the simulation, the UEs in 
the network are scheduled using the best channel 
quality indicators (CQIs) scheduling function of 
the eNodeB. The 27 rules written using the rule 
editor of the ANFIS Editor GUI is saved as a .fis 
file. The .fis file is then imported into the simula-
tor using Matlab command line function readfis. 
After running the simulator, the three (3) inputs 
and one (1) output training parameters are stored in 
a variable in the command window. The ANFIS is 
properly trained using the anfis Matlab command 
function which takes the fuzzy rule base, training 
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data and the optional checking data as input argu-
ments. The checking data set was used to control 
the potential of overfitting the data. The checking 
data and the training data are presented to the 
ANFIS so that the fuzzy inference model selects 
parameters associated with the minimum check-
ing data model error. An average checking error 
of 0.087521 was realized using 1500 input/output 
checking data set (Figure 6). The ANFIS model 

was validated using testing data sets. The testing 
data sets were presented to the trained ANFIS to 
see how well the ANFIS model predicts output 
values. An average testing error of 0.086525 was 
achieved for an average training error of 0.0067812 
using 20 training epochs.

Having trained and validated the model, it is 
now ready use in making inferences for load 
balancing. The simulation is now run with the 

Figure 3. Fuzzy inference system flowchart
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functionality for load balancing activated and the 
ANFIS model incorporated. As the simulation 
runs, the ANFIS model evaluates the hysteresis 
using the Matlab function evalfis. The output is 
used to decide the number of UEs to be transferred 
from the overloaded cell in order to improve users’ 
satisfaction and load distribution fairness index 
which indicates equitable distribution of UEs in 
the network. The steps needed for the simulation 
purposes can be summed up in the following steps:

1.  Write the rules using the ANFIS rule editor 
and save the rules as a .fis file in the same di-
rectory with the LTE system level simulator.

2.  Import the .fis file into the Matlab Work 
Space (WS).

3.  Run the simulator to schedule users and get 
training parameters for the ANFIS, omitting 
the evaluation (usage) stage of the ANFIS 
model.

4.  Train the ANFIS using hybrid training al-
gorithm and a suitable number of epochs.

5.  Run the simulator again; this time skip the 
training stage and include the evaluation 
stage of the ANFIS Model.

The ANFIS model uses the hysteresis value 
for load balancing. The hysteresis increases as the 
virtual load of the serving eNodeB increases. This 

Figure 4. Rule viewer for the inference system
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Adaptive Neuro-Fuzzy Inference System has been 
investigated in this chapter. The ANFIS Model 
was developed using Matlab and incorporated 
into an LTE system level simulator. The Infer-
ence system of the ANFIS is hinged on 27 fuzzy 
rules. The main advantage of using the ANFIS 
model in load balancing is to exploit the tolerance 
for imprecision and uncertainty associated with 

wireless network to achieve a cost effective load 
balancing strategy.

The virtual load of the source eNodeB plays a 
more vital load in determining the output value of 
the ANFIS model associated with load balancing. 
The overall load state of the target eNodeB ensures 
that the target eNodeB is not overload by the source 
eNodeB by forcing the hysteresis to zero when it 
is getting overloaded. The number of unsatisfied 
users in the entire tends to decrease the load bal-
ancing hysteresis when the source eNodeB is not 

Figure 9. Relative contribution of target eNodeB 
overall state users to hysteresis value

Figure 10. Combined effect of virtual load and 
overall state on load balancing hysteresis

Figure 11. Combined effect of unsatisfied user 
and overall state on load balancing hysteresis

Figure 12. Combined effect of unsatisfied user and 
virtual load on load balancing hysteresis
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of unsatisfied users. This is because the virtual 
load is more specific to the source eNodeB, which 
is directly involved in the load balancing, where-
as the number of unsatisfied users is a network 
wide performance indicator.

CONCLUSION

A systematic method of equitably distributing the 
loads among cells in an LTE network by means of 

Figure 6. Model validation using checking data sets

Figure 7. Relative contribution of virtual load to 
hysteresis value

Figure 8. Relative contribution of unsatisfied users 
to hysteresis value
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overloading the target eNodeB. Wedging the 
number of unsatisfied users against TeNB-OS 
yields a similar result. As the number of unsatis-
fied users increase from 0 to 10, the hysteresis 
value increases correspondingly. However, a cor-
responding increase in the TeNB-OS tends to 
reduce the hysteresis value in order to force the 

serving eNodeB to choose another target cell as 
the current target cell’s overall load state ap-
proaches (0.8 see Figure 11). The interplay be-
tween virtual load and the number of unsatisfied 
users is illustrated in Figure 12. The impact vir-
tual load on determining load balancing (hyster-
esis) is more pronounced than that of the number 

Table 2. Training and testing data sets for the ANFIS modelling 

S/N Training Data Testing Data
Inputs Output Inputs Output

ρ
C

" z OSi
Hysteresis

ρ
C

" z OSi
Hysteresis

1 1.361042 3.390306 0.180923 12.72999 0.353646 0 0.749619 1.766065

2 0.986637 0.187466 0.286651 10.57362 0.330942 0 0.765693 1.517912

3 1.156888 1.838407 0.235804 11.60829 0.313339 0 0.778156 1.332797

4 1.007555 0 0.394951 8.38957 0.303509 0 0.785115 1.232539

5 1.079373 0 0.48721 6.560096 0.290151 0 0.794573 1.100192

6 0.854589 0 0.52705 5.783147 0.282019 0 0.80033 1.022009

7 0.72428 1.68249 0.240914 11.5041 0.288542 0 0.795712 1.084577

8 0.668008 0 0.427388 7.74233 0.296069 0 0.790383 1.158243

9 1.072156 0 0.470869 6.881359 0.285589 0 0.797803 1.056098

10 0.808774 0 0.481104 6.679979 0.769553 0 0.455156 7.191513

11 0.74736 0 0.422182 7.845935 0.296266 0 0.790243 1.1602

12 0.732904 0 0.482266 6.657147 0.274937 0 0.805344 0.95548

13 0.816126 0 0.430747 7.675532 0.330087 0 0.766298 1.508767

14 0.731263 0 0.51925 5.9345 0.308539 0 0.781554 1.283552

15 0.80403 8.511785 0 17.97495 0.365803 0 0.741012 1.902821

16 0.679026 7.971445 0 17.26954 0.350186 0 0.752068 1.727625

17 1.516234 3.992071 0.157461 13.21086 0.473118 0 0.665032 3.197888

18 1.468122 8.975134 0 18.61837 0.711819 0 0.496032 6.387242
19 1.190027 3.390306 0.180923 12.72999 0.446675 0 0.683754 2.866685
20 1.560075 0.187466 0.286651 10.57362 0.438088 0 0.689834 2.760585
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increase is gradual before the cell is overloaded 

( ).ρ
C

"

≤ 1  However, when the serving eNodeB 

gets overloaded ( ),ρ
C

"

> 1  the hysteresis value 
increases rapidly Figure 7. Before the number of 
unsatisfied users reaches a certain threshold (in 
this particular case, 6), the hysteresis tend to 
decrease. This is due to overriding influence of 
other parameters (especially the overall state of 
the target eNodeB). However, the trend changes 
spontaneously when the number of unsatisfied 
users becomes significant (or reaches a certain 
threshold). The slope of increase in hysteresis 
when the threshold is attained is much higher than 
the rate of decrease experienced earlier: see Fig-
ure 8. The change in hysteresis due to the overall 
state of the target eNodeB (TeNB-OS) depicts a 
completely different trend from that of the other 
two indicators. Generally, the TeNB-OS sets a 
check on the value of the hysteresis due virtual 

load and number of unsatisfied users. Between 
TeNB-OS values of 0.0 and 0.45, the decrease in 
hysteresis due to TeNB-OS is gradual. The rate 
of decline in hysteresis becomes more pronounced 
between TeNB-OS values of 0.45 and 0.75. When 
the TeNB-OS approaches the value of 1.0, it 
forces the hysteresis to zero, indicating that the 
target eNodeB cannot accept more loads even if 
the source eNodeB is still overloaded, see Figure 
9. When this happens, the serving eNodeB is 
forced to choose another target eNodeB.

When the virtual load of the serving eNodeB 
is benchmarked against the TeNB-OS of the se-
lected target eNodeB, their respective effects is 
depicted in Figure 10. If the decrease in hyster-
esis value due TeNB-OS does not offset the in-
crease in hysteresis value due to virtual load, 
another target eNodeB will be selected (when 
TeNB-OS for the currently selected target eNodeB 
reaches 0.8). This is necessary in order to avoid 

Figure 5. ANFIS model structure
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overloaded and increase the hysteresis when the 
source cell is overloaded because it is a network 
wide parameter. The results obtained from model 
validation using testing and checking data sets 
shows that the ANFIS model is robust tool for a 
dynamic load-balancing scheme in 3GPP LTE.
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