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Neural Network Control of a 
Laboratory Magnetic Levitator

ABSTRACT

Magnetic levitation (maglev) systems are nowadays employed in applications ranging from non-contact 
bearings and vibration isolation of sensitive machinery to high-speed passenger trains. In this chapter 
a mathematical model of a laboratory maglev system was derived using the Lagrangian approach. A 
linear pole-placement controller was designed on the basis of specifications on peak overshoot and 
settling time. A 3-layer feed-forward Artificial Neural Network (ANN) controller comprising 3-input 
nodes, a 5-neuron hidden layer, and 1-neuron output layer was trained using the linear state feedback 
controller with a random reference signal. Simulations to investigate the robustness of the ANN control 
scheme with respect to parameter variations, reference step input magnitude variations, and sinusoidal 
input tracking were carried out using SIMULINK. The obtained simulation results show that the ANN 
controller is robust with respect to good positioning accuracy.

1. INTRODUCTION

Essentially magnetic levitation (maglev) is the 
use of controlled magnetic fields (or magnetic 
forces) to cause a magnetic object to float in air 
in defiance of gravity (Richard, 2004). Maglev 
systems are widely used in various fields, such 
as magnetic (non-contact) bearings (Hassan & 
Mohamed, 2001), high-speed maglev passenger 
trains (Murai & Tanaka, 2000) and vibration iso-
lation of sensitive machinery (Shen, 2002). Most 
of the current maglev systems are of the electro-

magnetic suspension (EMS) type, whereby electric 
current variations control the attractive force of 
an electromagnet. The mathematical models of 
such systems are highly nonlinear and open-loop 
unstable (Yang, Miyazaki, Kanae & Wada, 2005). 
Hence it is not a trivial task to construct a high 
performance controller to accurately position the 
levitated object.

In recent years, many techniques have been 
reported in the technical literature for controlling 
maglev systems. Barrie and Chiasson (1996) as 
well as Joo and Seo (1997) employed feedback 
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From (24) the linear state space model of the 
maglev system is

!

!

!

x x

x
Cx

Mx
x

Cx

Mx
x

x
Cx

L x
x

R
L

1 2

2
30
2

10
3 1

30

10
2 3

3
30

1 10
2 2

2 2

2

=

= −

= −

,

,

11
3

1

x
V
L

+ .

      (25)

Figure 3 shows the SIMULINK model of the 
maglev system represented by the state space 
model in Equation (25). Figure 4 shows an encap-

sulation of the SIMULINK model into a single 
block that is set up using a mask. The mask makes 
it possible to change the values of M, R, L1, x10, 
x30 and C for different simulations.

The desired system performance is prescribed 
by the poles of the general second order system 
transfer function given in parametric form as 
(Ogata, 2002)
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The maglev system’s closed loop poles are to 
be placed at s p ii= =( , , ),1 2 3  where p

1
 and p

2
 

are the dominant poles which are determined 
based on the given specifications in terms of the 
parameters of Equation (26).

From the specification on peak overshoot, the 
damping ratio ζ  may be computed using (Ogata, 
2002):

Peak overshoot

M e x= =− −ζπ ζ/ % %1 2

100 5       (27)

⇒ = =− −5
100

0 051 2

e ζπ ζ/ .

From which the value of ζ  can be calculated 

as ζ
π

=
+

= =
8.9744

8.9744
0.4762 0.6901

2

Figure 3. SIMULINK model of the magnetic 
levitation system

Figure 4. SIMULINK block of the magnetic levi-
tation system
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It was experimentally found that L
1
 is more 

than 25 times greater than L y
y
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Let the state variables be chosen such that 
x y x y x i1 2 3= = =, , .!  Thus substituting these in 
(14) and (20), the state space model of the mag-
netic levitation system can be written as
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3. LINEAR STATE FEEDBACK 
CONTROLLER DESIGN

The objective is to design a state feedback control-
ler such that the system works according to the 
following specifications:

Peak overshoot of approximately 5%.
Settling time of less than 1 second.

Equations (21) were used to model the open 
loop maglev system. However, for the design of 
the linear state feedback controller, the linearized 
model is required. Using the Jacobian linearization 
(Katende, 2004), the linear approximation to 
Equation (21) about the equilibrium point
x x x x y i0 10 20 30 0 00= ⎡⎣⎢
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coil; i is current (A) through the coil; R is the 
coil resistance (Ω); L is the coil inductance (H).

The Lagrange formulation uses the kinetic and 
potential energies in the system to determine the 
dynamical equations of motion (Boldia & Nasar, 
1986). The kinetic energy of the system ( )T  is 
the sum of the kinetic energy of the levitated ball 
and that of the inductance of the coil and is given 
by:

T My L y i= + ( )1
2

1
2

2 2!          (1)

The potential energy ( )P  of the system is 
given by:

P Mgy=−           (2)

The Rayleigh dissipation function is given by:

F Ri=
1
2

2           (3)

The Lagrange function ( )Γ  is the difference 
between the kinetic and the potential energies of 
the system:
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The inductance L y( )  is a nonlinear function 
of the ball’s position,y,  that is [8]:
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where y
0
 is an arbitrary reference position for the 

inductance,L
1
 is the coil inductance in the absence 

of the ball, L
0
 is additional inductance due to the 

levitated ball and C is the force constant.
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The Lagrangian equations are given by
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Figure 2. Schematic diagram of a magnetic levi-
tation system
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linearization techniques to design control laws for 
maglev systems. Al-Muthairi and Zbiri (2004) and 
Phuah, Lu and Yahagi (2005) applied the nonlinear 
sliding mode control technique to improve the 
positioning accuracy of maglev systems. Other 
types of controllers for maglev systems reported 
in the technical literature include: phase-lead 
compensation (Wong, 1986; Sani, 2004); fuzzy 
logic controllers (Golob, 2000; Tzes, Chen, & 
Peng, 1994) and artificial neural network control-
lers (Kemal, 2003).

Artificial neural networks (ANNs) have shown 
a great promise in identification and control of 
nonlinear systems. ANNs constitute a powerful 
data-modelling tool that is able to capture and 
represent complex input/output relationships. 
The motivation for the development of ANN 
technology stemmed from the desire to develop 
an artificial system that could perform “intel-
ligent” tasks similar to those performed by the 
human brain (Hagan, M., Demuth, H., & De 
Jesus, 2002). ANNs are composed of simple 
elements operating in parallel. These elements 
were inspired by biological nervous systems. 
One can train a neural network to perform a 
particular function by adjusting the values of the 
connections (weights) between elements. ANNs 
have been trained to perform complex functions 
in various fields of application including pattern 
recognition, identification, classification, vision 
and automatic control.

This work considers a laboratory maglev 
system that was implemented by Sani (2004) and 
controlled using a lead compensator. An artificial 
neural network controller for the system is pro-
posed and simulated in the MATLAB/SIMULINK 
environment. The proposed controller is trained 
based on the performance of a linear state feedback 
controller, which was designed to satisfy a pair of 
dominant poles in the state-space. The rest of the 
chapter is organized as follows. Section 2 deals 
with the mathematical modelling of the maglev 
system. In Section 3 a linear state feedback con-
troller for the maglev system is designed based 

on well-known engineering specifications of peak 
overshoot and settling time. Section 4 contains the 
design and training of an ANN controller for the 
maglev system. Section 5 presents and discusses 
simulation results of the proposed ANN control-
ler. Conclusions drawn from the study are given 
in the last section.

2. MATHEMATICAL MODEL 
OF THE MAGLEV SYSTEM

The maglev system considered in this paper con-
sists of ferromagnetic ball suspended in a magnetic 
field. Only the vertical motion is considered. The 
objective is to keep the ball at a prescribed refer-
ence level. The dynamical equations of the maglev 
system are derived using the Lagrange method.

Figure 1 shows a photograph of the maglev 
system while Figure 2 shows the corresponding 
schematic diagram, where: M is the levitated ball 
mass (kg); g is acceleration due to gravity (m/s2); 
V is the voltage (V) applied to the electromagnet 

Figure 1. Photograph of a laboratory magnetic 
levitation system
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From the specification on settling time, the 
un-damped natural frequency ω

n
 may be com-

puted using (23)

ts
n

=
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Substituting the value of ζ = 0.6901  in Equa-
tion (28) and solving for ω

n
 gives

ω
n
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Substituting ω
n
= 5.7963 and ζ = 0.6901  in 

(26) gives
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Thus the required dominant poles are
p1 = -4.0000 + j4.1952,  a n d
p2 = -4.0000 - j4.1952.  The remaining pole is 
to be located far to the left of the dominant pole-
pair and is given as p3 40=− .  The state feedback 
control law is:

u x r= +K N         (30)

where r is the reference command signal. State 
feedback controller matrix K assigns the closed 
loop poles while N is a scalar to eliminate off-set 
between the actual output and the desired output.

Based on the prescribed set of poles the MAT-
LAB pole placement function acker is used to 

Box 1.  
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compute the controller matrix K. The MATLAB 
code in Box 1 determines the controller matrix 
K and the scale factor N.

Running this MATLAB code gives the state 
feedback controller matrix K and input scale fac-
tor N as

K = [-103.4559 -1.6011 -0.9600]      (31)

N = -1.4559         (32)

A SIMULINK model of state feedback con-
troller is developed as shown in Figure 5. The 
model is encapsulated in a subsystem as shown 
in Figure 6.

4. NEURAL NETWORK 
CONTROLLER DESIGN

The ANN structure used in this paper is a 3-layer 
feed forward network with an input layer, one 

hidden layer and one output layer as shown in 
Figure 7.

The input layer, which is not neural, has 3 
nodes, the hidden layer has 5 neurons and the 
output layer has 1 neuron. The activation functions 
used in the hidden layer and output layer are tan-
sigmoid and pure linear respectively. The network 
is trained by supervised learning using the pole-
assignment state feedback controller as a teacher. 
The training function uses the Levenberg-Mar-
quardt back-propagation algorithm implemented 
by the MATLAB function trainlm, which updates 
the ANN weight and bias values (Mathworks, 
1998).

For generating the training data a random input, 
which consists of a series of pulses of random 
amplitude and duration, is used. Figure 8 shows 
the SIMULINK model of the maglev system with 
the pole-assignment state feedback controller for 
generating the training data. The three controller 
input signals (x1, x2 and x3) are stored in MATLAB. 
The target for the neural network is the control 
signal u generated by the state feedback controller. 
The three state variables and the control signal are 
exported to the MATLAB workspace for training 
the ANN controller.

The MATLAB code in Box 2 trains the neural 
network.

When the training is finished, the SIMULINK 
model of the ANN controller is generated using 
the MATLAB gensim command. The state feed-
back controller is replaced with the neural network 
controller as shown in Figure 9.

5. SIMULATION RESULTS

Simulation runs were carried out to investigate a 
number of scenarios. These include:

Effect of ball mass variations.
Effect of magnitude of step input command.
Tracking of sinusoidal reference input.

Figure 5. SIMULINK model of a state feedback 
controller

Figure 6. State feedback controller subsystem mask
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Figure 7. 3-layer feed forward network

Figure 8. Maglev system for generating the training data

Box 2.  
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The parameters of the maglev system are as 
follows [10].

Mass of the ball, M = 0.02312kg,
Coil resistance, R = 3Ω, t
Coil inductance, L1 = 0.0425H,
Magnetic force constant, C = 9.07x10-5Nm2A-2,
Nominal state variables: x10 = 0.01m, and x30 = 

0.5A.

5.1. Ball Mass Variation

To investigate the robustness of the ANN control 
scheme with respect to parameter variations, 
simulations were performed with different values 
of the mass M of the levitated ball commanded 
to move from the nominal position y m0 0 01= .  
to a new position y m= 0 02. .  Thus simulations 
were performed with the nominal mass M = 
0.02312kg, M±25%, and M±50%. Figures 10 and 
11 show the plots of ball position versus time. 
Table 1 summarize the results with respect to peak 
overshoot, rise time and settling time for the ball 
position.

From the simulation results, it can be seen that 
the ball position converges to the commanded 
value even when the mass of the levitated object 
varies by ± 50%. Hence, the control system is 

Figure 9. Maglev system with ANN controller

Figure 10. Response for M, M+ 25% and M+ 50%

Figure 11. Response for M, M - 25% and M - 50%
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CONCLUSION

In this work, a neural network controller was 
designed for a laboratory maglev system. The 
neural network consisted of three layers; the in-
put layer, one hidden layer, and the output layer, 
with 5 neurons in the hidden layer and 1 neuron 
in the output layer. The activation functions used 
in the hidden layer and output layer were tansig 
(hyperbolic tangent sigmoid transfer function) 
and purelin (linear transfer function) respectively. 
The network was trained by supervised learning 
using a pole-assignment state feedback controller 
as a teacher with a random signal as reference. 
After training a SIMULINK model of the ANN 
controller was generated.

To evaluate the performance of the ANN 
controller, simulations were carried using SIMU-
LINK. The ball’s mass was varied in the range ± 

50% of the nominal value and the step response 
simulation results showed that, the ball position 
converges to the desired value even when the mass 
of the levitated ball varies by ± 50%. It was ob-
served that the peak overshoot decreases if the ball 
mass is less than the nominal value and increases 
when the ball mass is greater the nominal value. 
Moreover, the ANN-controlled system’s peak 
overshoot was higher than the specified 5% even 
though the desired position was achieved in all 
simulation scenarios. Thus in terms of positioning 
accuracy, the ANN is very robust but the dynamic 
accuracy was found to be inadequate.

The ball’s command position was varied in the 
range 0.002m and 0.3m. The simulation results 
showed that in all cases the ball position converges 
to its desired value and there was no change in the 
peak overshoot, settling time and rise time (i.e. 
14%, 0.95s, and 0.3s respectively). The maximum 
ball’s position that the ANN controller can handle 
was 0.4m.

Simulations were also performed for the maglev 
system with the ANN controller using sinusoidal 
reference input of amplitude 0.001m with different 
frequencies. The simulation results showed that, 
the ANN controller tracks the sinusoidal reference 
input in the bandwidth of 1.115Hz. Further work 
is looking into how to effectively reduce the peak 
overshoot and practical implementation of the 
ANN controlled maglev system.

Figure 23. Frequency response of ANN-controlled 
maglev system
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Figure 19. Position for 1.4Hz

Figure 20. Position for 1.6Hz

Figure 21. Position for 1.8Hz

Figure 22. Position for 2Hz

Table 3. Summary of ANN controller simula-
tion results with sinusoidal input for different 
frequencies 

Frequency 
(Hz)

Amplitude of Response 
Signal (m)

Gain

0.1 0.00100 1.00
1.0 0.00082 0.82
1.2 0.00062 0.62
1.4 0.00046 0.46
1.6 0.00034 0.34
1.8 0.00026 0.26
2.0 0.00021 0.21

Figure 18. Position for 1.2Hz
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5.3. Sinusoidal Input Tracking

Simulations were also performed for the maglev 
system with the neural network controller using 
sinusoidal reference input of amplitude 0.001m 
with different frequencies. The simulations were 
performed with the frequency of the reference 
signal set to 0.1Hz, 1Hz, 1.2Hz, 1.4Hz, 1.6Hz, 
1.8Hz, and 2Hz, respectively. Figures 16 through 
22 show the plots of position versus time. From 
the simulation results, it can be seen that as the 
frequency of the input signal increases, the am-
plitude of the response decreases. Table 3 sum-
marizes the simulation results.

In order to find the bandwidth of the system 
a graph of gain versus frequency was plotted as 
shown in Figure 23, using the Matlab code in Box 
3.

From Figure 23 it can be seen that the band-
width of the system is 1.115Hz.

Figure 15. Step response for 0.3m

Table 2. Summary of ANN controller simulation 
results for different ball positions 

Ball’s 
Position

Percent 
Overshoot

Rise Time Settling 
Time

0.002m 14% 0.3s 0.95s
0.02m 14% 0.3s 0.95s
0.1m 14% 0.3s 0.95s
0.3m 14% 0.3s 0.95s

Figure 16. Position for 0.1Hz

Figure 17. Position for 1Hz

Box 3.  
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robust with respect to changes in the ball mass. 
Also, it can be seen that from the simulation results 
the percent overshoot and settling time decrease 
with decrease in mass and increase with the in-
crease in mass. While the rise time increases with 
increase in mass and remains constant with de-
crease in mass.

5.2. Effect of Step Input Magnitude

Simulations were also performed for the maglev 
system with the neural network controller for dif-
ferent positions of the ball. The simulations are 
performed with the position set to 0.002m, 0.02m, 
0.1m and 0.3m respectively. Figures 12 through 
15 show the plots of position versus time. Table 
2 summarizes the ball’s position peak overshoot, 
rise time and settling time.

From the simulation results, it can be seen that 
the position converges to any set value within the 
range 0.002m to 0.3m. Hence, the control system 
is robust with respect to changes in the step input 
magnitude. Also, it can be seen that from the 
simulation results there is no change in peak 
overshoot, rise time and settling time when the 
command position is varied.

Table 1. Summary of ANN controller simulation 
results for different values of M 

Ball Mass Peak 
Overshoot

Rise Time Settling 
Time

0.02312kg 14% 0.3s 0.95s
0.02312 - 25% 8% 0.29s 0.76s
0.02312 - 50% 1% 0.29s 0.42s
0.02312 + 
25%

19% 0.31s 1.06s

0.02312 + 
50%

23% 0.34s 1.5s

Figure 12. Step response for 0.002m

Figure 13. Step response for 0.02m

Figure 14. Step response for 0.1m
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