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ABSTRACT

The authors present in this entry chapter the basic rubrics of models, modeling, and simulation, an un-
derstanding of which is indispensible for the comprehension of subsequent chapters of this text on the 
all-important topic of modeling and simulation in Information Communication Systems and Networks 
(ICSN). A good example is the case of analyzing simulation results of traffic models as a tool for investigat-
ing network behavioral pattarns as it affects the transmitted content (Atayero, et al., 2013). The various 
classifications of models are discussed, for example classification based on the degree of semblance to 
the original object (i.e. isomorphism). Various fundamental terminologies without the knowledge of which 
the concepts and models and modeling cannot be properly understood are explained. Model stuctures 
are highlighted and discussed. The methodological basis of formalizing complex system structures is 
presented. The concept of componential approach to modeling is presented and the necessary stages of 
mathematical model formation are examined and explained. The chapter concludes with a presentation 
of the concept of simulation vis-à-vis information communication systems and networks.

FUNDAMENTALS OF MODELS AND 
MODELING

A model is essentially the representation of an 
object, system or concept in a form different 
from that in which it occurs naturally. A model 
may likewise be defined as a tool, which helps in 

the explanation, understanding or perfection of a 
system. Modeling can be described as the process 
of substituting a test object (the original) for its 
image, description, or substitute object known as 
a model and providing a behavior close to that 
of the original within certain reasonable limits 
of assumptions and uncertainties. Simulation is 
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usually performed in order to gain knowledge of 
the properties of the original object by studying 
its model, rather than the object itself.

The use of models is justified in cases when 
they are simpler in comparison with the option of 
creating the original object, or when the original 
object is better left uncreated for whatever reason. 
In the words of D.K. Nordstrom (2012), “Models 
are one of the principal tools of modern science 
and engineering…” Scientists and engineers de-
vote a lot of time to design, build, test, compare, 
and revise models (Frigg and Hartmann, 2009).

A model may be the exact replica of an object 
(albeit on a different scale and from a different 
material) or depict certain characteristic properties 
of the object in an abstract form; i.e. a represen-
tation of a real system or process (Konikow and 
Bredehoeft, 1992). A model is thus essentially 
an instrument for forecasting the effect of input 
signals on a given object, while modeling is a 
method of improving the reasoning efficiency 
and intuitive capacity of specialists.

All models are but simplified representations 
or abstractions of the real world. An abstraction 
contains within itself the major behavioral traits of 
an object, but not necessarily in the same form or 
as detailed as in the object. Usually a large portion 
of the real characteristics of the object of study is 
disregarded, while such peculiarities that idealize 
a real event version are chosen. As a result, most 
models are abstract in nature.

The degree of semblance of a model to its 
object is called isomorphism. Two conditions 
must necessarily be satisfied for a model to be 
considered isomorphic (or similar in form) to the 
original object:

1.  Existence of exclusive correspondence be-
tween elements of the model and the modeled 
object;

2.  Maintaining the exact relationships or inter-
actions between these elements.

From the foregone, we see that a model is es-
sentially a physical or abstract object, with proper-
ties similar to those of the original object under 
study in certain defined ways. The specification 
of models depends on the particular problem of 
study as well as the available resources. The gen-
eral requirements for models are as listed below:

1.  Adequacy: This refers to the level of ac-
curacy in replicating the properties of the 
original object.

2.  Completeness: The ability of the model to 
deliver to the receiver all necessary informa-
tion about the original object.

3.  Flexibility: The ability to playout different 
situations in the whole range of conditions 
and parameters.

4.  The complexity of developing the model must 
agree with the existing time and software 
constraints.

According to Tedeschi (2006), the design 
of the tests for adequacy for a particular model 
should of necessity evaluate weaknesses to be ad-
dressed. He further contends that a combination 
of several statistical analyses vis-à-vis the original 
conceptual purpose of the model is essential for 
determining its adequacy.

Since modeling s the process of creating a 
replica of an object and the subsequent study of 
the object’s properties through the created replica 
(a.k.a. model), entails two major stages:

1.  Model design;
2.  Model evaluation/validation and conclusion 

derivations.

Model validation is concerned with ascertain-
ing that a model performance in satisfactorily 
accurate vis-a-vis model design objectives; it is 
all about building the model right (Balci, 1997). It 
is pertinent to note here that a uniform procedure 
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for validation does not exist, and as such no model 
has ever been (or will ever be) fully validated 
(Greenberg et al., 1976).

At each level of modeling, different tasks are 
resolved using means and methods that differ in 
context. In practice, different modeling methods 
are adopted. Depending on the method of their 
realization, all models belong to one of two classes: 
physical or mathematical.

Mathematical modeling is generally considered 
as a means of investigating processes and events 
via their mathematical models.

A good majority of models are homomorphic 
i.e. similar in form though with different basal 
structures. In this case, the semblance between 
different groups of elements and the object is 
only superficial. Homomorphism in models is 
a result of simplification and abstraction. In the 
design of homomorphic models, the system is first 
subdivided into smaller parts to allow for ease of 
required analysis. To this end, it is necessary to 
identify parts that are independent of each other 
in first approximation.

This type of analysis is linked to real system 
simplification process (i.e. discarding unimportant 
components or adopting assumptions of simpler 
relationships). For example, it may be assumed 
that there is a linear relationship between a certain 
set of variables. In control, it is common practice 
to assume that processes are either deterministic 
or their behavior can be described using known 
probability distribution functions.

Sequel to the analysis of the parts of a system 
their synthesis is embarked upon, this must be done 
accurately taking into consideration all available 
interconnections.

As the basis of a successful modeling meth-
odology must be a thorough test of the model. It 
is common practice to start with a simple model 
and move towards a more perfect form, that de-
picts difficult situations more accurately. There 
is direct interaction between model modification 
and the data analysis process.

The Modeling Process consists of the follow-
ing steps:

1.  Decomposition of overall system investiga-
tion task into a series of easier tasks;

2.  Concise formulation of aims;
3.  Search for analogy;
4.  Consideration of special numerical examples 

related to current task;
5.  Choice of specific symbolism;
6.  Documentation of obvious relationships;
7.  Expansion of derived model if it can be 

described mathematically, conversely it is 
further simplified.

Hence, the development of a model is not lim-
ited to a single basic version. New tasks constantly 
emerge with the aim of improving the degree of 
isomorphism.

MODEL CLASSIFICATIONS

There is a myriad of ways for classifying models. 
In this section, typical model groups that can 
serve as basis for classification are mentioned. In 
the context of information systems, physical and 
information environments can be distiguished. 
Each of these environments can in turn either be 
described by physical or theoretical models.

Physical models are often called natural since 
in appearance they remind one of the system 
under study. They can be either a scaled-down 
(e.g. model of the solar system) or scaled-up (e.g. 
model of the atom) version of the system i.e. they 
are scalable models. Hereafter, only theoretical 
models of information systems will be considered.

Theoretical models can be subdivided into 
mathematical and graphical models.

Mathematical Models (MM): This is a com-
pendium of mathematical objects and the rela-
tionships between them, which adequately depict 
certain properties of the object. In this category 
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are models that employ symbols for the descrip-
tion of processes (e.g. differential equations et 
cetera), as opposed to physical properties. Hence, 
a mathematical model is the simplification of a 
real situation and can be considered as the abstract, 
formal description of an object that can be studied 
mathematically.

Graphical Models (GM): These show the 
relationship between different quantitative charac-
teristics and are capable of forecasting the change 
in a set of quantities as a result of changes in oth-
ers. Depending on the character of the selected 
properties of an object, MM is subdivided into 
functional and structural models.

Functional models depict processes concerned 
with the functioning of the object. They are usually 
in the form of a system of equations.

Structural models can take the form of matri-
ces, graphs, lists of vectors, et cetera and express 
the spatial orientation of objects. These models 
are usually employed in cases when structural 
synthesis tasks can be defined and resolved by 
abstracting physical processes contained in the 
object. They reflect the structural properties of 
studied object.

So-called schematic models can be used for 
obtaining static representation of the modeled 
system, i.e. models containing graphical rep-
resentation of the system modus operandi (e.g. 
technological maps, diagrams, multifunctional 
operational diagrams and schematic diagrams).

Considering the method of obtaining func-
tional MM, they are subdivided into theoretical 
and formal models. Theoretical MM are obtained 
by studying physical laws. Equation structure 
and model parameters have a definitive physical 
interpretation. Formal MM are obtained on the 
basis of the effect of the property of the modeled 
object on the external medium, i.e. the object is 
considered a cybernetic ‘black box’.

The theoretical approach allows for obtaining 
more universal models representative of a wider 
range of change of eternal parameters, while the 
formal MM are more accurate relative to the pa-
rameters used for measurement.

Depending on the linearity or otherwise of 
equations, MM are classified as linear and non-
linear.

In the context of set of values of variables, MM 
can either be continuous or discrete.

MM can be either stochastic or deterministic 
when the criterion for classification is method of 
description.

Using the form of connection between output, 
internal and external parameters as classification 
criterion, MM can be algorithmic (as a system of 
equations); analytic (in the form of dependence 
of output parameters on internal and external 
parameters); and numerical (in the form of nu-
merical sequences).

Using the consideration of presence of inertia 
of physical processes in the model as classification 
criterion, there are dynamic MM and static MM.

In general, the type of mathematical model 
depends not only on the nature of the real object, 
but also on those tasks, for the resolving of which 
it is being developed as well as the required ac-
curacy of their resolution.

MODEL STRUCTURES

Knowledge of the structural elements making up a 
model is necessary before its design is embarked 
upon. Though mathematical and physical models 
can be very complex, as a rule the basis of their 
makeup is always simple.

The general model’s structure may be presented 
in the form of a mathematical formula

E f X Yi i= ( )!,!           (1)

where E – result of systemic action; Xi – control-
lable variables and parameters; Yi – uncontrollable 
variables and parameters; fn of dependence of Xi 
on Yi that determines the magnitude of E.

In the case of dynamic systems (Figure 1) an 
established way of representing their models exists. 
A complex system functions in a given external 
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medium, the properties and states of which are 
characterized at every moment in time by a set 
of parameters forming a vector z (disturbance).

The systemic state and properties at every 
moment k is characterized by a group of internal 
parameters that are subdivided into state vector 
x and control vector u.

Dynamic model as a rule contains the following:

1.  Description of all possible system states;
2.  Description of the system state transition 

law;

x F x u zk k k+ = ( )1 , ,          (2)

where F – vector function.
The set of all possible states of a system is oth-

erwise known as the state space of the system. The 
state space can be either continuous or discrete.

The system state transition law is also known 
as transition function or transitions operator.

In the general case, a model is a combination 
of the following:

Components
Parameters
Functional dependences limitations
Objective functions

Components are parts that under right connec-
tions form a system. Components are sometimes 
regarded as elements or subsystems of a system.

A system is defined as a group of objects joined 
by a certain form of regular external action or in-
teraction for the purpose of executing a given task.

Parameters are quantities that may be selected 
arbitrarily unlike variables, that can only take 
values predetermined by the given function type. 
Once defined, parameters become constants.

In a model, there are exogenic (input) variables 
emanating from outside the system or resulting 
from external actions on the system as well as 
endogenic variables occurring in the system either 
as a result of internal interactions (state variables), 
or under the influence of output variables.

Functional dependences describe the behavior 
of variables and parameters. They express the fol-
lowing relationships between system components: 
deterministic – this is a definition that sets the 
relationship between given systemic parameters 
and variables in cases when the system output 
process is definitely known; stochastic relation-
ships when given input information results in 
undefined results.

Limitations are a set range of change of value 
for variables or conditions limiting the spread 
of certain resources. They can be introduced by 
either the system designer (artificial limitations), 
or by the system itself as a result of its inherent 
properties (natural limitations).

Figure 1. Dynamic model of a system in “input – output” terms
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Stage 4

This stage is for experimenting, testing, and cor-
recting of the model under synthesis.

After a model has been developed, it is neces-
sary to test its adequacy for the task it was created 
to perform. There exists a number of aspects of 
adequacy evaluation: the mathematical basis of 
the model must be non-contradictory and satisfy 
all laws of mathematical logic; the verity of a 
model is determined by its ability to adequately 
describe the starting situation.

Depending on the complexity of the mathemati-
cal description of a system, the following basic 
ways of mathematical model usage are identified: 
analytic research; qualitative research; research 
using numerical methods; simulation on digital 
computers (the opposite of analogue modeling).

Analytic Research

Presupposes the availability of a sufficiently 
complete and accurate analytical description of a 
whole system. As a rule, a mathematical model in 
its initial form is unsuitable for direct research (for 
example, it may not present required quantities in 
obvious enough form). In this case, it is necessary 
to transform the initial model vis-à-vis the input 
quantities in a manner that makes it possible to 
obtain results by analytic methods. This gives 
the possibility of obtaining sufficiently complete 
information on the functionality of the research 
objects. Suffice it to note here that practical ap-
plication of this type of research is relatively rare.

Qualitative Research

This is embarked upon in cases when an obvious 
solution is absent, but certain properties of the 
solution can be found, e.g. evaluation of solution 
robustness etc. Investigation of the structural 
robustness of models using the relatively new 
methods of the mathematical theory of catastrophe 
falls under this category.

Numerical Methods-Based Research

This is employed sequel to the transformation of 
the model into a system of equations relative to 
input quantities. A solution is obtained by realiz-
ing a corresponding numerical method. However, 
problem solution is usually less complete in this 
case compared to the analytical scenario, since it 
doesn’t show the structure and character of system 
functionality as a whole, but merely allows for the 
evaluation of its state at selected numerical values 
of the parameters.

The use of numerical methods has become 
very effective with the use of contemporary PC 
processing power. The use of PC however, is not 
the principal factor since all it does is limited to 
computational automation.

Expert opinion and intuition play a decisive 
role in the process of model formation (in the 
case of simulation). Expert opinion is engaged in 
choosing the most productive approach in resolv-
ing which elements to include in a model while 
it is under development.

SIMULATION

Shannon (1998) defines simulation as “the process 
of designing a model of a real system and conduct-
ing experiments with this model for the purpose 
of understanding the behavior of the system and/
or evaluating various strategies for the operation 
of the system.”

This is not limited to machine models alone. 
Results can also be obtained via paper, pen and 
desktop calculator. Imitation models are inca-
pable of providing solutions in the form they are 
produced by analytical models. They only serve 
as a means of analyzing system behavior under 
conditions stipulated by the experimenter. For 
this reason, simulation is an experimental and 
application methodology, with an aim to describ-
ing the behavior of a system; develop theories 
and hypotheses, capable of explaining observed 
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alize the formalization of each element and the 
relationship between them.

Depending on the character of system ele-
ments (deterministic, stochastic, continuous-time, 
discrete-time, etc.) typical mathematical schemes: 
differential equations, probabilistic automata, 
network switches, graphic models etc. employed 
for the description of elements.

Deterministic objects functioning in con-
tinuous time are usually described by differential 
equations.

Markov random processes or large-scale ser-
vice systems are used to describe mathematical 
models of stochastic objects with continuous 
time. This method gives a false impression that 
all is taken into consideration. In reality however, 
the modeled object displays series of properties, 
which do not obtain from the set of properties of 
its elements.

Identification Method

Under this method, data collated by observing an 
object’s input and output signals over limited time 
interval is used to create a mathematical model 
that optimally describes the studied object relative 
to given criteria.

If no conditions on the structure of the model are 
given a priori, then the task is one of identification 
in the broad sense of the word. A general method 
of solving this task does not exist at time of this 
writing. Under identification in the narrow sense 
of the word, an a priori form of the structure of 
certain mathematical model is added. In this case 
only the parameters of the adopted mathematical 
model need be defined.

STAGES OF MATHEMATICAL 
MODEL FORMATION

A generalized block diagram of the stages of form-
ing a mathematical model is as shown in Figure 4.

Stage 1

Definition of model’s objective function. Since 
a singular meaning for the term “system model” 
does not exist, it may be modeled in any way de-
pending on the desired outcome. For this reason 
the elements of a model and their interactions 
should be selected based on the specifications of 
the task a system is required to perform. Using 
the example of a house, a builder sees it as the 
object of difficult tasks, while a sociologist sees 
it as just an element of the environment. Stage 
1 delivers the most appropriate mathematical 
model, for example, with the use of block dia-
grams, employing system of equations and other 
mathematical methods.

Stage 2

At this stage, the block diagram of the discrete 
process is developed as well as linking a system of 
equations to the discrete form. This stage ends with 
the mathematical description and block diagram 
of all discrete systems.

Stage 3

At this stage it is imperative to abide strictly by 
the time relationships in the mathematical model 
being synthesized.

Figure 4. Block diagram of formation of a mathematical model
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Control may be removed in the process of sys-
tem development or on the basis of investigating 
similar systems.

Reverse task: This entails the use of system 
response and mathematical description of the 
system to determine the input signal. This belongs 
in the class of control tasks.

A more difficult task is one obtained if the input 
and output signals of a system are given and it is 
required to determine the mathematical description 
of the system. This is an identification or system 
structural synthesis task. The difficulty entails in 
the fact that one and the same state between the 
inputs and outputs of a system can be described 
by different mathematical expressions.

In the general case of component designation 
for converting input to output signals, there are 
three types of components (Figure 3):

1.  Conversion: One or more input signals are 
converted into one or more output signals,

2.  Sorting: One or more input signals are 
distributed (sorted) over two or more output 
signals,

3.  Feedback: Input signals changes with a 
corresponding change in the output signal.

The difficulty level of system component 
structure is a function of the knowledge of the 
system a priori. If the nature of the process under 
investigation is known either partially or wholly, 
then the identification task is presented as <black 
box>. In this case, the system is described by 
means of linear or nonlinear equations with transfer 
characteristics. In certain cases it is possible to 
know a lot about the nature of a process and not 

know the values of only a few parameters, such 
an identification task is known as <gray box>.

The basic methods of developing mathematical 
models are: axiomatic method, element equating 
method, and identification method.

Axiomatic Method

This entails the ab initio postulation (formulation) 
of certain submissions relative to the real process 
expressed in the form of a set of mathematical 
expressions – axioms. Subsequently, definitive 
conclusions are made based on the axioms. The 
advantage of this method is that it allows for non-
contradictory deductions in relation to the existing 
properties of the object within the limits of the 
adopted axioms. A major disadvantage of this 
method is the fact that the axioms are not tested 
in the course of the experiment.

Element Equating Method

A method used when it is required to develop 
the mathematical model of an object based on 
the properties of its components or when given 
a group of elements and it is required to develop 
a complex object and determine its properties. 
As a rule, complex objects are disintegrated into 
subsystems and elements so as to be able to re-

Figure 3. Types of system components: a) conver-
sion, b) sorting, and c) feedback

Figure 2. Model of a system



7

Principles of Modeling in Information Communication Systems and Networks

velopment of formalized schematics is carried out 
in conjunction with specialists in the applied area 
of technology and modeling (or mathematicians). 
Though the form of description may remain tex-
tual, it must be a formal description of the process.

In order to develop formalized schematics it 
is imperative to select process characteristics; 
setup a system of parameters defining the process; 
define all interrelations between characteristics 
and parameters, while taking into consideration 
factors considered during formalization. In addi-
tion, a concise mathematical formulation of the 
research objective must be stated.

In the process of developing a model it is 
necessary:

1.  To identify factors influencing the flow or 
the results of the process under study,

2.  To select those that are susceptible to for-
malized representation (i.e. those that can 
be expressed quantitatively),

3.  To group identified factors by common 
indicators, thus reducing their list,

4.  To define quantitative relationships among 
them.

Usually, the most difficult stage of the modeling 
process is the translation of identified germane 
factors to mathematical language and the defining 
the relationships between these quantities. The 
crux of the matter lies in the contradiction inherent 
in the requirement for a componential and deduc-
tive model. In order to satisfy the componential 
requirement it becomes necessary to consider in 
the model as many real process factors as possible. 
The model naturally becomes more complex, 
leading to difficulty of its study and consequently 
obtaining componential results. However, the 
desire to obtain results through simpler methods 
invariably leads to a need for model simplification, 
hence reducing its componential nature. Reaching 
a sensible compromise is important; such that will 

guarantee neutral results and at the same time 
maintain the substance of the real process. To 
this end, an accurate set of all input data, known 
parameters and starting conditions is employed.

Componential description may not give all 
the necessary information for the development of 
formalized schematics, in which case additional 
experiments and observations of the process under 
study become necessary. In this case however, 
obtained results must be used completely in the 
development of formalized schematics.

Subsequent transformation of formalized 
schematics into a model is carried out without 
the input of any additional information.

In mathematical modeling, for the transforma-
tion of formalized schematics to mathematical 
model it is necessary to present in analytical form 
all relationships yet to be presented, express con-
ditions as a system of inequalities, as well as give 
analytical form to other contents of the formalized 
schematics (e.g. numerical characteristics in the 
form of tables and graphs).

Numerical material is usually used in the form 
of approximating expression in Personal Comput-
ers (PC). Probability Flux Density (pfd) of typical 
probability distribution laws is selected as values 
for random quantities.

COMPONENT MODELING

Consider a simple system consisting of three ba-
sic objects (Figure 2): input; the system; and the 
response (output). In order to model the system, 
two of these three objects must be known (given).

In the process of modeling individual compo-
nents (elements, subsystems) of a complex system, 
different kinds of tasks are encountered. These 
can be divided into direct and reverse tasks.

Direct task: with the control describing a sys-
tem as given, the response on an input signal can 
be determined. This task can be easily modeled. 
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Objective function (criterion function) is an 
outline of systemic aims and objectives and the 
necessary rules for measuring their achievement. 
Aims can be divided into preservation aims di-
rected towards the preservation or sustenance of 
certain resources (energy) or states (safety), and 
acquisition aims connected with the acquisition 
of new resources or attainment of a defined state, 
to which the leader aspires.

The most general requirements on a model can 
be formulated as follows: a model must be simple 
and understandable to the user; aims-oriented, 
reliable i.e. guaranteed against production of 
absurd outputs; user friendly; complete from the 
view point of meeting main objective; adaptive, 
allowing for easy transition to other modifications 
or data reset; allowing for incremental change, 
i.e. starting out as simple, the model should have 
inherent capacity to become incrementally com-
plex as a result of user interaction.

METHODOLOGICAL BASIS 
OF FORMALIZING COMPLEX 
SYSTEMS STRUCTURES

Any model of a real system is an abstract formally 
described object. A model describing the formal-
ized process of a system’s operation is able to 
encompass only its main characteristic operational 
laws, neglecting unimportant secondary factors.

The formalization of any real process precedes 
a study of the structures making up its occurrence, 
as a result of which a componential description 
of the process is obtained.

Component Description

This is the first attempt at a concise expression of 
the operational laws characteristic of the process 
under study and definition of the objective. It 
provides information on: 1) the physical nature 

and quantitative characteristics of elementary 
occurrences of the process, 2) the character of 
interconnections among them, 3) the position 
of each occurrence in the process as a whole. 
Component description can be written only after 
a detailed study of the process.

In addition to the description of the process 
proper the aims of modeling the process under 
study are also included in the componential 
description, which should contain a list of input 
quantities and their required accuracy respectively. 
This part of the formalization process can be 
executed without the input of mathematicians or 
corresponding specialist in modeling.

In this case, while creating the static represen-
tation of a system the following indicators of the 
existence of subsystems are analyzed:

1.  Which components are to be included in the 
model,

2.  Which elements will be excluded or consid-
ered part of the surrounding environment,

3.  Which structural interconnections will be 
setup between them.

The definition of objectives should contain an 
exact description of the main idea of the proposed 
study, list of interrelations to be evaluated from 
the result of modeling, and stipulate those factors 
that must be considered in the design of the model. 
Data necessary for research are also included here: 
numerical values of known characteristics and 
parameters of the process (as tables, graphs), as 
well as values for initial conditions.

Componential description enables the con-
struction of formalized schematics and process 
models.

Formalized schematics of a process is de-
veloped in cases when due to difficulty of the 
process or formalization of some of its elements 
a direct transition from componential description 
to models is either impossible or unjustified. De-
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systemic behavior; engage the theories in the 
prognosis of future systemic behavior.

Simulation is one of the few methods at the 
disposal of a researcher for solving problems. Since 
the choice of method must be tailored towards the 
solution of a problem, the question of when it is 
useful to employ simulation arises. Simulation 
can be employed if one of the following condi-
tions is present:

1.  A complete mathematical description of 
the problem does not exist (e.g. models 
of large-scale service system with queue 
consideration).

2.  Complex and difficult analytical methods 
exist, but simulation gives a simpler solution.

3.  Analytical solution exists, but they cannot 
be realized due to the low expertise level 
of available personnel. In this case, the cost 
implication of working with an imitation 
model is weighed against that of inviting a 
specialist.

4.  In addition to evaluating certain parameters, 
there is the need to observe the process flow 
within a given period.

5.  Simulation maybe the only possible option 
as a result of the difficulty of experimental 
setup and observing the process under real 
conditions (e.g. observing the behavior of 
space ships).

6.  It may be necessary to record time scale 
(both slowing down and accelerating).

Advantages of simulation are: possibility of 
use in education and professional training; pos-
sibility of playing out scenarios of real processes 
in situations that help the researcher understand 
as well as have a feel of the problem leading to 
innovative ideas.

As a result, simulation is widely used, ac-
counting for about 30% of all employed methods. 
This is irrespective of the fact that people with 
high level of mathematical training consider the 
imitation approach rough or the last means to be 
considered.

Imitation computation has a host of difficulties 
that boil down to the following:

Development of a good imitation model 
is often expensive and time consuming, 
requiring the input of highly qualified 
specialists;
Simulation is not accurate and its level of 
accuracy is not easily measurable. This 
can be resolved in part by analyzing the 
model’s sensitivity to changes in certain 
parameters;
Simulation in reality does not depict the 
real situation of things and this must be 
noted;
The result of simulation is usually numeri-
cal, and its accuracy is a function of the 
number decimal places.

If it is possible to reduce a task (problem) 
to a simple model and solved analytically, then 
there should be no need for imitation since it is 
a last resort option. Besides, with each increase 
in available information on the problem at hand, 
the choice of employing imitation should be 
reassessed.

Imitation requires the use of powerful comput-
ers and a large set of data, which accounts for the 
high cost of this type of modeling in comparison 
with analytic models. The imitation process is as 
shown in Figure 5.

Since imitation is used for investigating real 
systems, the following stages of this process may 
be identified:

1.  System definition: Boundary definition, 
limitations and evaluators of efficiency of 
system under investigation;

2.  Model formation: Transition from real 
system to logical schematics (abstraction);

3.  Preparation of data: Selection of data 
necessary for development of model, and 
their representation in the appropriate form;

4.  Model translation: Description of model in 
a language acceptable for computer usage;
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5.  Evaluation of adequacy: Raising certainty 
to acceptable level, at which a judgment may 
be made about the accuracy of conclusions 
about the real system;

6.  Strategic planning: Planning of the ex-
periment that should generate necessary 
information;

7.  Tactical planning: Definition of method 
of executing each series of experiments, as 
contained in the experiment plan;

8.  Experimenting: Process of executing imita-
tion with a view to obtaining desired results 
(data);

9.  Interpretation: Deduction of conclusions 
based on data generated from imitation;

10.  Realization: Practical use of model and 
modeling results;

11.  Documentation: Registration of project 
execution steps and its results, as well as 
recording of process development and usage.

For qualitative evaluation of a complex system, 
it is desirable to employ random process theory 
results. Experience of monitoring objects shows 
that they operate under the influence of a large 
quantity of random factors; this is why predicting 
the behavior of a complex system makes sense 
only within the limits of the probabilistic category.

In the study of the process of operation of each 
complex system considering random factors, it 
is necessary to have an exact understanding of 
the sources of the random interactions as well as 
reliable data on their quantitative characteristics. 
This is the reason for experimental collation of 
statistical material characterizing the behavior 
of independent elements as well as the system 
as a whole in real conditions, at the onset of any 
calculation or theoretical analysis in connection 
with investigating complex systems.

The main sources of random interaction are 
external factors and deviations from normal 
operating regimes (errors, noise, etc.) occurring 
within the system.

From the foregone, it becomes obvious that 
in the investigating of complex systems, consid-
eration of random factors must be given utmost 
priority.

The effect of random factors on process flow 
is imitated with the aid of random numbers with 
predefined probability characteristics. Even then, 
the results obtained from a single modeling process 
should be considered as only the realization of a 
random process. Each of such realizations in isola-
tion cannot serve as an objective characteristic of 
the system under study. Initial quantities are usually 

Figure 5. Flowchart of imitation modeling
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defined from averages and statistical processing 
of data from a large number of realizations, hence 
the common name of statistical modeling method 
for this approach. However, simulation can also 
be employed in deterministic cases, there are no 
statistical tasks whatsoever.

Statistical modeling method allows for the 
computing of the value of any functional element 
defined for the set of realizations of the process 
under study. For example, given the possibility 
of determining the value of efficiency indicator 
of a system by means of statistical experiments, 
a host of complex system analysis tasks become 
solvable, tasks such as: evaluation of effect of 
parameter (or initial value) changes on system 
efficiency; evaluation of the efficiency of various 
control principles.

Modeling results are also useful in system 
synthesis for the evaluation of various modes of 
its structure as well as perspective planning.

The statistical modeling method has a dis-
advantage inherent in any numerical method. 
Results obtained by this method evaluate system 
efficiency only in those situation for which mod-
eling was done.

This serious disadvantage notwithstanding, 
simulation is currently the most effective method 
of investigating complex systems. At times, it is 
the only practically available means of obtaining 
information of interest on system behavior (espe-
cially during its development and modernization).

ANALYTIC MODELS (AM)

Presuppose the availability of mathematical de-
scription of processes, flowing in the original. 
They are usually developed under strict limita-
tions on the parameters of the original and eternal 
medium. AM allow for obtaining relationships 
of the form:

P fi j= …( )α α1 !,! ,!          (3)

IMITATION MODELS (IM)

These are the most universal and can be devel-
oped in the absence of a mathematical model of 
the original. The simulation idea is a simple one; 
it entails the development of an algorithm of the 
behavior of subsystems and individual elements 
of the system in time. During the productivity 
analysis, only the state of the subsystem is of 
interest (functional or not). The algorithm may 
be realized in the form of a computer program. 
By repeating the execution of the IM algorithm 
in the presence of random events at the system 
input and within the system statistical information 
on the dynamics of change of important variables 
of the IM states can be collated. The statistical 
processing of this information allows for obtaining 
the statistical indicator of efficiency. Unlike AM, 
IM exhibits a strong medical error, depending to 
a large extent on sample size and consequently, 
on IM observation time.

CONCLUSION

The role played by mathematical modeling de-
pends on a number of factors, including but not 
limited to: the character of task at hand, level of 
expertise of the investigator, amount of time and 
resources available for research, as well as the 
choice of model. It is important to always keep 
the original task in view all through the process 
of modeling.

The most common error is related to the fact 
that investigators often lose track of the original 
task and main aim. The other and not less impor-
tant mistake stems from moving on to the modling 
stage without sufficient data on the systems past 
behavior.
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A systematic method comprising of the fol-
lowing stages is available in the literature:

1.  Problem statement,
2.  Aggregation of experimental data,
3.  Determination of the effect of system’s 

working paramenters,
4.  Setting up of experimental methodology 

(e.g. changing of parameters with a view 
to determining factual effect on observed 
results),

5.  Reducing the number of working parameters 
(by eliminating those parameters to which 
the system is least sensitive),

6.  Determination of method’s characteristic 
limitations.

One of the major mistakes usually committed 
by researchers during modeling is the perceived 
notion of a need to try and change real condi-
tions, i.e. the conditions observed in real-world 
or technical systems. This perceived need often 
arises in their bid to employ specific models that 
were developed for other purposes. Such an ap-
proach is definitely not sensible even if it appears 
to be justifiable.

The researcher’s task is not limited to just 
model development. Upon a successful develop-
ment of the model, it is imperative to populate it 
with necessary information, in order to determine 
how accurately it mimicks the modelled system 
by a comparison with previously obtained experi-
mental empirical data. In conclusion, the onus 
rests on scientists and engineers to always keep in 
mind that perhaps the simplest and most concise 
definition of a model is – A model is a simplifica-
tion of reality (National Research Council, 2007).
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