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Chapter  2
Numerical Methods of 
Multifractal Analysis in 

Information Communication 
Systems and Networks

ABSTRACT

In this chapter, the main principles of the theory of fractals and multifractals are stated. A singularity 
spectrum is introduced for the random telecommunication traffic, concepts of fractal dimensions and 
scaling functions, and methods used in their determination by means of Wavelet Transform Modulus 
Maxima (WTMM) are proposed. Algorithm development methods for estimating multifractal spectrum 
are presented. A method based on multifractal data analysis at network layer level by means of WTMM 
is proposed for the detection of traffic anomalies in computer and telecommunication networks. The 
chapter also introduces WTMM as the informative indicator to exploit the distinction of fractal dimen-
sions on various parts of a given dataset. A novel approach based on the use of multifractal spectrum 
parameters is proposed for estimating queuing performance for the generalized multifractal traffic on 
the input of a buffering device. It is shown that the multifractal character of traffic has significant impact 
on queuing performance characteristics.

INTRODUCTION

Often in telecommunication applications, the 
measured characteristics of traffic datasets display 
stochastic self-similar properties (i.e. fractality). 
Here it is assumed that a measure of similarity 

is the traffic type with appropriate amplitude 
normalization. Accurate structural observation is 
complicated for datasets, self-similarity however 
allows for considering the stochastic nature of 
many network devices and events, which jointly 
influence the network traffic. One value suffices 
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for the quantitative description of fractals (i.e. the 
Hausdorff dimension or a scaling index) describ-
ing an invariance of geometry or statistical per-
formances at a given level of rescaling. However 
in the fields of physics, chemistry, biology, and 
telecommunications, there are many appearances, 
which demand propagation of the fractal concept 
on complicated structures with more than one scal-
ing index. Such structures are often characterized 
by a whole spectrum of indices and Hausdorff 
dimension is only one of them. Complex frac-
tals, also known as multifractals, are important 
because they as a rule occur in nature, whereas 
simple self-similar objects represent idealization 
of real appearances. Actually, employment of the 
multifractal approach means that the studied object 
somehow can be divided into parts, each having 
its own self-similar properties. 

Thus multifractals are non-homogeneous 
fractal objects, for which complete description 
is required, unlike the regular fractals, there 
is not enough information in any one value of 
fractal dimension, but a whole spectrum of such 
dimensions is required, the number of which, 
generally speaking, is infinite. The distinctive 
feature of the latter consists in the fact that they, 
along with the global characteristics of stochastic 
processes (obtained as a result of the procedure 
of averaging on large time intervals), allow for 
considering singularities of their local structure. 
Their versatility is in important techniques based 
on fractal representations and wavelet transforms.

The material in this chapter is divided into three 
parts. The first part sets out the basic theory of 
fractals and multifractals, as well as methods of 
determining the basic parameters of multifractal 
processes using wavelet transforms. The other 
two parts deal with specific technical tasks, where 
investigation of multifractal properties of the pro-
cessed sequences yield innovative solutions and 
algorithms. The second part is devoted to the use of 
fractal analysis for problems of detection of traffic 
anomaly, which allows for a fundamentally new 

approach to algorithms development. In the third 
part, for the generalized multifractal traffic the new 
practical evaluation method of telecommunication 
networks queuing performance is offered.

THEORY OF FRACTALS 
AND MULTIFRACTALS

The term “fractal” was used for the first time in 
Benoît Mandelbrot’s work (Mandelbrot, 1982). 
The word fractal is derived from the Latin fractus 
meaning “fractured” or “broken.” Mandelbrot 
used the term “fractals” for geometric objects that 
have strongly fragmented shape and can possess 
the property of self-similarity. It is possible to 
generalize the concept of fractal to any object 
(image, speech, telecommunication traffic, etc.) 
some parameters of which are remain invariant 
with change in scale or time. Thus, the principal 
property of such objects (i.e. self-similarity) im-
plies that at augmentation, its parts are similar (in 
some specified sense) to its total shape.

The property of exact self-similarity is a char-
acteristic of the regular fractals only. If an element 
of randomness is to be included in the algorithm of 
their creation instead of the determined method of 
construction (as it happens, for example, in many 
processes of diffusion growth of clusters, voltage 
failure, etc.), then the so-called incidental fractals 
appear. Their basic difference from regular ones 
is that the property of self-similarity holds true 
only after a corresponding averaging on the base 
of all statistically independent realizations of the 
object. For quantitative description of fractals, 
a single value is enough - a fractal dimension 
(Hausdorff dimension) or the index of scaling 
which is determined as follows 
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Here   Df is fractal dimension of set occupying 
area by volume of LDf  in D-dimensional space, 
covered with a number of cubes with a volume 
of εDf .  The minimum number of such nonempty 
cubes occupying the set is M LD

D
f fε ε( ) = ( )1 / .  

Apart from regular fractals there is a special class 
of fractal objects, within which the distribution 
of points of set is heterogeneous. The reason of 
heterogeneity is different occupation probabilities 
of geometrically identical elements of the fractal, 
or in the general case, a disparity of occupation 
probabilities with geometrical sizes of the cor-
responding areas. Such heterogeneous fractal 
objects are known as multifractals. For their 
complete description, unlike the case of regular 
fractals introducing only one value, its fractal 
dimension Df ,  is not enough, and the whole 
spectrum of such dimensions, infinite in their 
number, is required. It can be accounted for by 
the fact that such fractals also possess some sta-
tistical properties along with the purely geometri-
cal descriptions determined by Df  dimension.

General definition of a multifractal: we con-
sider a fractal object occupying a certain limited 
area L  of the size L in Euclidean space with 
dimension d. We divide the whole area under L  
into cubic cells having a length of size ε << L  
and a volume εd .  We will hereafter be interested 
only in the occupied cells containing at least one 
point. Let the number of the occupied cells i change 
within the range of 1 2, , , ( ),… N ε  where N( )ε  is 
the general number of the occupied cells, defined 
naturally, by the size of the cell ε.  Let ni ε( )  be 
the quantity of points in the ith cell, then the value 

p
n

Ni N

iε
ε

( ) = ( )
→∞
lim          (2)

represents the probability of a point taken at 
random from our set being in the cell i. In other 

words, probabilities р, characterize the relative 
filing of the cells. It follows from the normalizing 
condition of probability that

i

N

ip
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∑ ( ) =
1
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ε

ε           (3)

We now consider the generalized statistical 
sum S q,ε( )  (henceforth called the decomposition 
function), characterized by an exponent q, which 
can take any values in the range of −∞ < <+∞q  

S q p
i

N

i,ε ε
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( ) = ( )
=

( )

∑
1

         (4)

The spectrum of generalized fractal dimensions 
Dq  characterizing the given distribution of points 
in area L,  is defined by the following correlation:

D
q
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where the function τ q( )  is defined as
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If D D constq = =  (i.e. it does not depend 
on q) then the given set of points represents a 
regular fractal (monofractal), characterized only 
by one value – the fractal dimension D. On the 
contrary, if the function Dq somehow varies with 
change in q, then the considered set of points is 
a multifractal. Thus, the multifractal is generally 
characterized by some nonlinear function τ

q
 

(hereafter called the scaling function) defining 
the behavior of the statistical sum S q,ε( )  at 
ε→ 0.
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Bozhokin and Parshin (2001) showed what 
physical meaning the spectrum of generalized 
fractal dimensions Dq has at various values of q. 
Thus, at q=0

N Dε ε( )≈ − 0          (8)

It means that the value D0 represents the 
usual Hausdorff Dimension of the set L.  It is the 
roughest characteristic of a multifractal and does 
not provide any information on its statistical 
properties.

At q=1
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         (9)

where Z p p
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ln represents the en-

tropy of a fractal set. 
This definition of the entropy of a set is com-

pletely identical to the one used in thermodynam-
ics where pi is the probability of detecting a 
system in a quantum condition i. Claude E. Shan-
non generalized the concept of entropy Z known 
in thermodynamics, in his epochal work on the 
mathematical theory of communication (Shannon, 
1948). For such problems, entropy became a 
measure of the information quantity required for 
defining a system in some position i. In other 
words, it is a measure of our ignorance of the 
system, i.e. a measure of uncertainty about the 
system. Coming back to initial problem of distri-
bution of points in the fractal set L,  it is possible 
to say, that since from (9) it follows that

Z Dε ε( )≈ − 1         (10)

then the value D
1
 characterizes the information 

necessary for the definition of the location of a 
point in some cell. This is why the generalized 
fractal dimension D1 is often called information 
dimension. It shows how the information neces-
sary for the definition of location of a point in-
creases when the size of the cell ε  tends to zero.

At q = 2, !we!have  
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the paired correlation integral is defined as

I
N

r r
N

n m
n mε θ ε( ) = − −( )
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,

1
2

     (12)

where summation is done for all pairs of points 
in our fractal set with radius-vectors rn  and rm ;  
θ x( )−  is the Heaviside’s step function. θ x( ) = 1,  
if x ≥ 0  and θ x( ) = 0,  if x < 0.  

The sum in the expression (12) defines the 
number of pairs of points n, m, with the distance 
between them less than ! .ε  Divided by N 2,  it 
defines the probability of two randomly chosen 
points to be separated by a distance smaller than 
ε12.  The same probability can be defined in an-
other way. The value pi,  according to its defini-
tion in (2), represents the probability of a point 
being in the cell i having size ! .ε  Hence, the value 
pi  can be defined as the probability of two points 
being in this cell. By finding the sum of pi

2  for 
all occupied cells, we will get the probability of 
any two randomly chosen points from set L  fall-
ing in a cell with size ! .ε  Consequently, the distance 
between these points will be less than or of an 
order of ! .ε  Thus taking Equation (11) into con-
sideration, we have
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It is possible to draw the conclusion that the 
generalized dimension D2 defines the dependence 
of the correlation integral I ε( )  on ε.  It is for this 
reason that the value D2 is known as the correla-
tion dimension. However, the values of Dq are 
not, strictly speaking, fractal dimensions in the 
generally accepted sense. Therefore, along with 
them, the so-called function of multifractal spec-
trum (multifractal singularities spectrum) is often 
used to characterize the multifractal set. One of 
the main characteristics of a multifractal is a set 
of probabilities pi,  showing the relative filling 
of cells ! ,ε  covering the set. The smaller the cell 
is, the smaller its filling. For self-similar sets, the 
dependence of pi,  on the size of the cell has an 
exponential character

pi
iε εα( )≈         (14)

where α
i
 is some exponent (different for different 

cells i). 
Let n dα α( )  be the probability of α

i
 being 

in a range from α α! ! .tod  In other words, n dα α( )  
represents the relative number of cells i, with the 
same measure of pi  with α

i
,  lying in this range. 

In the case of a monofractals, for which all α
i
 are 

the same (and equal to the fractal dimension D), 
this number is obviously proportional to the total 
number of cells N Dε ε( )≈ − ,  dependent by ex-
tension on the size of the cell ε.  The fractal di-
mension of the set D determines the index in this 
ratio. However, it is not accurately true for mul-
tifractals, and different values of α

i
 occur with a 

probability that is characterized not by one and 

the same value of D, but by different values (ac-
cording to α)  of the exponent f α( ),

n fα ε α( )≈ − ( )         (15)

Thus the physical meaning of the function 
f α( ) is that it represents the Hausdorff dimension 
of a homogeneous fractal subset Lα,  from the 
original set L,  characterized by equal probabili-
ties of filling of the cells pi ≈ ε.  Since the frac-
tal dimension of a subset is clearly always less 
than or equal to the fractal dimension of the 
original set D0, there is an important inequality 
for the function f α( ) :

f Dα( )≤ 0
        (16)

The conclusion is that a set of different values 
of the function f α( )  (for different ! )α  represents 
a spectrum of fractal dimensions of homogeneous 
subsets of Lα  into which the original set of L  
can be divided. This explains the term of a mul-
tifractal. It can be understood as a kind of incor-
poration of the various homogeneous fractal 
subsets Lα of the original set of ! ,L  each of which 
has its own value of the fractal dimension f α( ).  
Since any subset contains only a fraction of the 
total number of cells N ε( ),  into which the initial 
set of L  is divided, normalization condition of 
probability (3), is obviously not fulfilled in the 
case of summation for this subset only. Since the 
sum of the probabilities is less than one. Therefore, 
the probabilities pi  with the same value of α

i
 are 

obviously less than or at least are of the same 
order as the value ε αf i( ),  which is inversely pro-
portional to the number of cells, covering the 
given subset (in the case of a monofractal 



25

Numerical Methods of Multifractal Analysis in Information Communication Systems and Networks

decompose input signal s t( )  into its coef-
ficients: 

W u j s t t s t
t u

dt
s u j

j
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Step 2: In the resulting array of wavelet coeffi-
cients, find the position of local maxima and 
their absolute values u jp p Z

( ) ,{ }
∈

 thus form-

ing an array of local maxima W u js p( , )

Step 3: Calculate the partition function: 

S q j W u js p
P

q
( , ) ( , )=∑

Step 4: Calculate the scaling function τ(q) for 
each q R∈ :

τ( , ) lim inf
ln ( , )
ln

q j
S q j

j j
=

→0 2

Step 5: Using the Legendre transform, compute 
the multifractal spectrum fL( )α

f j q q jL q R
( , ) min( ( ) ( , ))α α τ= −

∈

Step 6: For each octave j, compute multifractal 
dimension of order q:

D
q

q q j f q jq j, [ ( ( , ) ( ( ), )]=
−

−
1
1
α α

For q < 0  the value of S q j( , )  depends 
mainly on small maxima of the amplitude 
Wf u jp( , ) .  It is for this reason that the computa-
tion maybe unstable. To avoid false modulus-
maxima created by computational errors in areas 
where s is almost constant, wavelet-maxima are 
chained together to form a scale-dependent curve 
of maxima.

If ψ θ= −( ) ,( )1 P p  where θ
π

= =1

2

2 2e t /  is 

the Gaussian function, then all the lines of max-
ima up(j) define curves that spread up to the 
limit j=0. Therefore, all maxima lines, that do not 
spread up to the smallest scale are removed in the 
calculation of S q j( , ).  

MULTIFRACTAL ANALYSIS 
IN THE DETECTION OF 
TELECOMMUNICATION 
TRAFFIC ANOMALIES

Researches (Sheluhin, Smolskiy, & Osin, 2007; 
Bacry, Muzy, & Arneodo, 1993; Jaffard, 1997; 
Riedi, Crouse, Ribeiro, & Baraniuk, 1997; Meyer, 
1997; Feldmann, Gilbert, & Willinger, 1998) 
abound which show that the network traffic is 
self-similar in time scales of the order of some 
hundreds of milliseconds and more. At the same 
time, it also shows multifractal properties in 
smaller time scales (the order of milliseconds). 
It is possible to tell that self-similarity reflects 
long-range behavior of a measured signal, and 
multifractal properties reflect its instant behavior. 
The search for singularity distribution (peculiar-
ity) in a multifractal signal is very important 
for the analysis of its properties. A number of 
methods have been advanced in the literature for 
the determination of the singularity spectrum of 
a multifractal signal based on wavelet transform 
(Riedi, Crouse, Ribeiro, & Baraniuk, 1999 ; Muzy, 
Bacry, & Arneodo, 1999). 

Datasets made available by the Lincoln Labo-
ratory of MIT - 1999 DARPA Intrusion Detec-
tion Evaluation (MIT, 2012) were analyzed as 
the experimental test sequence. The datasets are 
network traffic collected by the end router of the 
institute’s network. Figure 5a shows a realization 
of pure network traffic without attack for 72,700 s 
(~20 hours) sampled at 1s intervals, while Figure 
5b depicts the same realization with different types 
of anomalies relating to attacks such as Denial of 
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sequence of modulus-maxima that converges to 
ν on small scales (Hwang and Mallat, 1994). For 
this reason, a set of maxima of scale j may be 
interpreted as covering the carrier of the singular-
ity s with wavelets of scale 2 j at the points of 
occurrence of these maxima. 

W u js
j( , ) ( / )∼ 2 0 1 2α +        (25)

Let u jp p Z
( ){ } −

∈
 be the position of local 

maxima of W u js( , ) on a fixed scale j. Partition 
function S measures the sum of all these maxima 
of wavelet-modulus raised to power q: 

S q j W u js p
P

q
( , ) ( , )=∑       (26)

For each scale s, it is assumed that any two 
consecutive maxima up  and up+1 !are located at 
distance | |u u sp p+ − >1 ε  for a given ε! ! .>0  If 
this is not so then at intervals with size ε2j, the 
sum expressed in (26) will consist of only the 
maxima with the highest amplitudes. This concept 
protects the partition function from superposition 
of close maxima that are consequences of fast 
oscillations. For each q R∈ ,  the scaling function 
τ( )q  measures the asymptotic decrease of S q j( , )  
at small scales of j:

τ( , ) lim inf
ln ( , )
ln

q j
S q j

j j
=

→0 2
      (27)

This usually implies that S q j j q( , ) .( )∼ 2 τ

Function τ( )q  is connected to the Legendre 
transform for self-similar signals through expres-
sion (28). This result has been discovered (Bacry, 
Muzy, Arneodo, 1993) for a private class of frac-
tal signals and generalized by Zhaffar (1997).

τ α α
α

( , ) min( ( ) ( , ))q j q f JL= −
∈∧

      (28)

This theorem proves that the scaling function 
τ( )q  is the Legendre transform of function fL( ).α  
For this purpose it is necessary to use only wave-
let with a sufficient number of zero moments. At 
numerical implementations τ( )q  is estimated via 
the evaluation of S q( , ).ε  Therefore it is necessary 
to convert the Legendre transform in (28) to re-
cover a singularity spectrum ! ( ).fL α

It can be shown that the scaling function τ( )q  
is a convex and increasing function of q (Mallat, 
2005) that the spectrum f ( )α  of the self-similar 
signals is convex, while the Legendre transform 
in Equation (28) is reversible iff f ( )α  is a convex 
function. In this case Equation (29) holds. 

f j q q jL q R
( , ) min( ( ) ( , ))α α τ= −

∈
      (29)

This formula holds for a wide class of multi-
fractals. For example, it may be applied in the 
case of statistical self-similar signals such as in 
the realization of Fractional Brownian Motion 
(FBM). The multifractals having some stochastic 
self-similarity have a spectrum, which can be 
often calculated as reversal of Legendre transform 
(29). However, we pay special attention that this 
formula is not exact for any function s, because 
its spectrum of singularities ! ( )fL α  is not manda-
torily convex. Generally, it was proved in (Zhaf-
far, 1997) that Legendre transform (28) gives only 
upper bound of ! ( ).fL α

WTMM ALGORITHM FOR 
ESTIMATING MULTIFRACTAL 
SPECTRAL PARAMETERS

Algorithm of the method applied in the estimation 
of multifractal spectral parameters is presented 
below.

Step 1: With the aid of continuous dyadic wave-
let-transform of the mother wavelet ψ( ),t  
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WAVELET TRANSFORM 
MODULUS MAXIMA METHOD

The method of Wavelet Transform Modulus 
Maxima (WTMM) was been proposed for the 
estimation of multifractal spectrum parameters by 
Hwang and Mallat (1994). The WTMM method 
has a number of essential advantages: a capacity 
for the analysis of a wide class of singularities-not 
only signals, but also their derivatives-the smaller 
inaccuracy of scaling characteristics evaluation, 
and so forth. WTMM technique, which can be 
successfully applied in examination of non-
homogeneous structure of processes of a various 
nature, is based on the wavelet analysis named 
mathematically “microscope” in view of its ability 
to save good resolution on different scales.

Attractiveness of the given method consists in 
its possibility to analyze both singular measures, 
and singular functions. The method is a more 
general-purpose means of examining the multi-
scaling properties of objects in comparison with 
earlier developed approaches.

In spite of the fact that in WTMM at the in-
termediate stages the wavelet-transform is used, 
it represents a combination of two different theo-
ries namely – the wavelet theory and the theory 
of multifractals. For the analysis of the input 
signal s t( )  we execute n continuous wavelet-
transforms ( ,n log N= 2  where N – is length of 

the signal) with the mother wavelet ψ( )t  on a 
scale level (or octave) of j:

W u j s t t s t
t u

dt
s u j

j

j
( , ) ( ( ), ( )) ( ) ,

,
= =

−−

−∞

∞

∫
⎛

⎝
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⎞

⎠
⎟⎟⎟⎟ψ ψ2

2

2  

         (24)

As shown by Mallat (2005), if function s t( )  
is self-similar then its wavelet-transform W u j

s
( , )  

also has the property of self-similarity. The con-
cept of self-similarity in wavelet-transform pre-
supposes that the positions and magnitudes of its 
modulus-maxima are also self-similar.

S. Mallat in (Mallat, 2005) proved that the 
singularity of non-stationary signals (e.g. multi-
fractal signals) can be detected using WTMM 
global partition function. By employing WTMM 
in the computation of the global partition function, 
deviations engendered by the oscillation of 
wavelet-coefficients when q < 0  may be avoided. 
WTMM is a more accurate and correct approach 
to detecting the singularity of a signal. Hence, it 
is possible to measure the spectrum of the pecu-
liarities of a multifractal signal from local maxi-
ma of the wavelet-transform, using the global 
partition function introduced by Muzy et al. in 
(Muzy, Bacry, & Arneodo, 1994).

Let ψ be a wavelet with n zero moments. It is 
proven that if s has smooth Lipschitz points α

0
< n  

at point ν, then wavelet-transform Ws(u,j) has a 

Figure 4. Singularity spectrum of the multifractal process
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r e f e r e n c e  τ q q Dq( ) = −( )1  o n 

q
d
dq

D q D qq q

τ
α= + −( ) = ( )1 '  and supposing 

that q = 1,  we find that α( ) .1 1= D  Thus, 
D f1 1 1= ( ) = ( )α α( ) .  i.e. the informational di-
mension D

1
 lies on the curve f α( )  at the point, 

where α α= ( )f  and f ' ( ) .α 1 1( ) =  This gives 
us a graphic way to determine the informational 
dimension on the curve f α( )  (see Figure 2). Now 
let’s consider the case when q = 2.  We have 
D f2 2 2 2= ( ) = ( )α α( )  o r 
f Dα α( ) ,2 2 2 2( ) = ( )−  which corresponds with 
the geometric construction on the Figure 3. 

The multifractal dimension of the qth order is 
determined by Equation (23)

D
q

q q f qq = −
( )− ( )( )⎡

⎣⎢
⎤
⎦⎥

1
1
α α( )       (23)

Using numerical methods of estimating the 
scaling function we can find an analytic expression 
for the spectrum of singularities. For example, if 
the scaling function is described by the formula 

τ( )
! !

,q a a q a
q

a
q

a qi
i

i

=− + − + =
=
∑0 1 2

2

3

3

0

3

2 3

then in the quadratic approximation the spectrum 
of singularities (Figure 4) is as follows: 

f a
a

a
( )

( )
,α

α
= −

−
0

1
2

22
where the boundaries of 

the interval satisfy the equation :

αmin,max ,= ±a a a1 2 02  or q a
a± = ±

* .2 0

2

This situation is qualitatively reflected in 
Figure 4. Also shown are the boundaries of the 
interval ( , ),α αmin max  in which the function f(α) 

is set. It is necessary to specify that the conversion 
of the function f ( )α  to zero in this range (as 
shown in the figure) does not always occur and 
in some other cases f ( )α  in one of these points 
(or in both) may differ from zero. A prerequisite, 
however, is the conversion of the derivative ! !’( )!f α
to infinity at these two points.

Figure 2. Finding the information dimension 
D f1 1 1= ( ) = ( )α α( )

Figure 3. Geometric definition of the correlation 
dimension D

2
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p Ni ≈ ( )1 / ).ε  As a result, we have the follow-
ing important inequality for the function f α( ).  
For all possible values of α

f α α( )≤         (17)

With equality iff the fractal is completely 
homogeneous in which case f Dα α( ) = = .

Researches reported in the literature have 
shown that the multifractal spectre of real data 
fG α( )  is difficult to calculate directly (Sheluhin, 
Smolskiy, & Osin, 2007). It can however be eas-
ily calculated by means of the Legendre transfor-
mation, giving the Legendre’s spectrum fL α( ).  
fL α( )  is the same as fG α( )  provided that τ q( )  
exists and is differentiable for all valid values of 
q. The following expressions define the Legen-
d r e  t r a n s fo r m a t i o n  f ro m  va r i a b l e s 
q q to f, , :τ α α( ){ } ( ){ }
τ α αq q q f q( ) = ( )− ( )( )²       (18)

α
τ

=
d
dq

        (19)

f q
d
dq

α
τ
τ( ) = −        (20)

where τ q( )  is the scaling index or the scaling 
function. 

The inverse Legendre transformation is defined 
by the following formulas:

q
df
d

=
α

        (21)

τ α
α

q
df
d

f( ) = !–        (22)

For a homogeneous fractal D D constq = = .  
Which is the reason why α τ= =d dq D/ ,  and 
f q q qD D q Dα α τ( ) = − ( ) = − −( ) =1 . In this 
case, plot of the function f α( )  on the plane 
α α, f ( ){ }  consists of one point only (i.e. D D, ).{ }  

The authors consider more interesting cases 
when the graph of the function f α( )  consists not 
of discrete points, but represents a continuous 
line. Since f q' ,α( ) =  then for q = 0  the de-
rivative of the function turns to zero. This means 
that at some point α α

0
0= ( )  the function f α( )  

has a maximum (keeping in mind that the function 
f α( )  is convex). The function’s value at the 
maximum f Dα0 0( ) = ,  i.e. the maximum value 
of f α( ),  is equal to the Hausdorff dimension of 
the multifractal D0 (see Figure 1).

Now consider the case when q = 1.  As 
τ( ) ,1 0=  then α α( ) ( ) .1 1= ( )f  On the other 
hand, the derivative of the function f α( )  at this 
point equals 1: f ' ( ) .α 1 1( ) =  Differentiating the 

Figure 1. Function maximum is equal to the fractal 
dimension of D0
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Service (DoS) and different types of unauthorized 
network sniffing. DoS attacks also incorporate 
Distributed DoS attacks (DDoS) which entail 
the enslavement of a number of host computers 
for the purposes of unleashing attack on a single 
victim. Various anomalous network sniffings 
are indicative of hacker events as well as acts 
of harmful programs (worms). Suffice it to note 
here that network traffic with different types of 
attack differed significantly in comparison with 
the normal scenario. This difference affected the 
throughput at both the packet and bit level as well 
as the connection usage and consequently the vol-
ume of transmitted data. The change in network 
traffic characteristic can be observed visually. 
But a visual observation alone cannot suffice, 
since the manner in which the changes occur and 
their representations in the form of mathematical 
models are problems that must be studied with the 
instrumentation of mathematical tools. 

In considering the features of WTMM method 
used for the detection of anomalies in the traffic 
with DoS attacks, n = =log ,2 72 700 16  con-
tinuous wavelet-transforms of the input realization 
was performed. The spectrograms for selected 
octaves are shown in Figure 6 (Sheluhin, Atayero, 
& Garmashev, 2011). 

The spectrograms clearly reveal a frequency-
time localization of all the features of the signal. 
For example, the abnormal spike in the region of 
n = 6104·  s (Figure 6 a, b, c) manifests as abrupt 
disturbances in the spectrogram, this is evidently 
absent in the same region of Figure 5a. 

It is appreciable at decomposition levels ap-
proximately from 1 to 11 (Figure 6a). As the mother 
wavelet scale becomes more than anomaly time 
period, it ceases to be fixed on the spectrogram. 
The mother wavelet scale at 16th level of decom-
position (Figure 6c) is proportionate to all length 
of the implementation, therefore actually any 
time-and-frequency singularities is not watched. 
Therefore, spectrogram analysis suggests that 
some features of the signal can manifest themselves 

at some level of decomposition, but not at other 
levels, therefore to identify all the features of the 
signal it is analyzed on all octaves.

Figures 7a through 7d show the partition func-
tions S q j W u j

P
S p

q
, ,( ) = ( )∑  for an octave j=16 

are represented.
Partition functions for implementations with 

anomalies and without have considerable differ-
ences. Figure 7b and 7d, show that the statistical 
sum at q < 0  is characterized by the presence of 
specific peaks, at q > 0,  the partition function is 
much more smooth. To analyze differences, we 
consider partition functions for the positive and 
negative values q  separately (Figure 8a, 8b). 

Figure 8a shows that though differences are 
available, they are insignificant and cannot serve 
as criteria for anomalous activity determination. 
It is possible to tell that partition functions at 

Figure 5. Implementation of network traffic: a) 
network without anomaly and b) network with 
abnormal activity
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Figure 6. Spectrograms of wavelet-transform: at the left - for network without attacks, at the right – for 
network with anomalies and rejections a) octave j=11, b) j=13, c)j=15
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q > 0  responsible more likely for similarity, than 
for differences of two implementations. It is nec-
essary to remind that the left “wing” of the mul-
tifractal spectrum function f ( )α  corresponds to 
values α! ! .atq > 0  Furthermore, it will be shown 
that similarity of some implementations is exhib-
ited in this part of a singularities spectrum. Now 
we consider a partition function for values q < 0  
(Figure 8b). 

On this figure differences are accurately vis-
ible. They are characterized by distinction of 
values and position of peaks (maximas) of a par-
tition function on an axis of scales. Thus, presence 

of peaks at a partition function at q > 0  at some 
decomposition scale level j speaks about presence 
on its high-frequency local maximas. Presence of 
peaks at q < 0  talks about the accumulations of 
low-amplitude local maximas, which in turn 
speaks about local singularities of a signal de-
composition on the given octave. It is possible to 
make a conclusion that various values and posi-
tions of peaks on decomposition scale axis indicate 
various frequency characteristics of a signal on 
the same octave that speaks about their principle 
distinction.

Figure 7. Partition function for j=16: a, b) implementation without anomalies, c-d) with anomalies
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Figure 8. a) Partition functions at q> 0, j=16: on top implementation without anomalies, from below - 
with anomalies; b) partition functions at q <0, j=16: on top implementation without anomalies, from 
below - with anomalies
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On Figure 9-a-d results of the scaling function 
τ q j,( )  evaluation are shown.

Figures 9а through 9f show that also, as well 
as in case of a partition function, there are distinc-
tions in ! ,! ,τ q j( )  and are exhibited in slope of 
functions. Figure 9e and 9f of scaling functions 
illustrate the typical nonlinearity and convexity. 
The multifractal spectrum, which as it is shown 
in Figure 10, estimated from τ q j,( )  by means of 
Legendre transform (28) characterizes essential 
differences of two implementations. 

On Figure 10 results of singularity spectrum 
evaluations are shown.

Figures 10а through 10d clearly show that 
increasing scale decomposition levels involved in 
the analysis, computation of the spectral maximum 
(Hausdorff dimension) and its sampling interval, 
each previous spectrum seems embedded in the 
next, (i.e. the spectrum gets more accurate from 
one octave to the next). This suggests that the 
higher the level of decomposition, the more fea-
tures the signal spectrum depicts. Figure 11 
clearly illustrates that the spectra of realizations 
with and without anomalies are different for each 
scaling decomposition level j. From octave to 
octave spectra of normal and attacked network 
have practically the same Hausdorff dimension, 
due to the fact that the analyzed the realizations 
are of equal length. However, other dimensions 
are significantly different. Particularly large dif-
ferences are manifested towards the right wing of 
the spectrum for q < 0.  It is seen that due to the 
fact that the sequences have the same length, 
Hausdorff dimension of the multifractal 
f Dα0 0( ) = !remains virtually constant (maxima 
of the functions are the same). But its information 
dimension D

1
 and correlation dimension D

2
 

differ. The boundaries α αmin max, in which the 
function f α( )  is given also differs. Thus, the 
differences in the characteristics of traffic with 
and without anomalies are clearly reflected in the 
plots of their singularity spectra, which can be 

found using the WTMM method. Formalizing 
how spectra differ from each other, these dimen-
sions can be compared as well as the function 
generation intervals. We find the Hausdorff di-
mension D0,  the information dimension D1,  
correlation dimension D

2
 and the intervals that 

characterize the “width” of the Legendre spectrum 
for each of the realizations on each decomposition 
octave. A comparison of these parameters is sum-
marized in Table 1. 

Based on the obtained parametric values, a 
plot of the multifractal dimensions D as a function 
of octave j, can be drawn for comparing the two 
realizations (Figure 12). Analysis of the pre-
sented relationships shows that the differences 
between two realizations are manifested in their 
multifractal spectra, constructed using the devel-
oped software based on WTMM method, regard-
less of the amount of levels of scaling decompo-
sition (octave) j involved in the analysis. The 
characteristics of the spectrum at each level of 
decomposition can reveal the local features of the 
signal, allowing for their detection by means of 
analyzing the multifractal spectra of realizations 
for a given level of decomposition. 

Hausdorff dimension of the realization under 
comparison D0,  which determines the number of 
local maxima found for a given number of de-
composition levels differs most for small values 
of decomposition (octave) levels. Information 
dimension of realizations being compared D1,  
responsible for the difference in the left slopes of 
the multifractal spectrum differ by a small but 
constant value and is practically independent of 
the number of levels of decomposition. 

We safely conclude that the presence of diverse 
and continuous attacks and anomalous activity in 
a signal changes the self-similar nature of traffic 
a fact indicated by the difference in the informa-
tion dimensions D1.  Correlation dimension D

2
 

varies smoothly from octave to octave, displaying 
similar values at levels 9-11. It may be said that 
D

1
 characterizes local features of the signals over 
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time moment -t in the past until a moment in 
present t=0. The so-called workload process Q t( )  
is the total amount storable in buffer at the inter-
val ( ; ).−t 0

Let’s define current length of the queue buffer 
as Q t r( , )  which is the queue length in an equi-
librium state when the system has been running 
for a long time and initial queue length has no 
influence. If such state of system exists (i.e. the 
supposition of stationarity and ergodicity of 
workload process is valid) and the state of system 
stability also satisfied, then 

Q t r A t A s r t s
S t

; sup( ) = ( )− ( )− −( )( )
≤ ≤0

    (32)

Here A t A s( )− ( )( )−  is the value of workload, 
received for processing during time interval s t, ;⎡

⎣⎢
⎤
⎦⎥  

r t s( )− −  is the value of workload processed in 
the same time interval.

Input process A t( )  is considered a fractal 
process of the type given in (33)

A t t a Z t t( ) = + ( ) ∈ −∞ +∞( )λ λ² ² ² !!;!! !;!  
         (33)

where Z t( )−  is the normalized fractal Brownian 
motion,

H ∈ ⎡⎣⎢ −1 2 1/ ; )  is Hurst parameter of process 
Z t( );

λ > −0  is average input intensity; 

a > −0  is modification coefficient and 

r > −λ  is service rate. 

Equations system (32) and (33) are com-
pletely characterized by four parameters: 
λ!,! !,! ! ! .a H and r  The self-similarity of process 
Z t( ) allows for obtaining more exact ratios be-
tween network parameters - buffer length L, 
channel transmission capacity C and traffic pa-
rameters r, а and Н for boundary values from 
Equation (33). 

The analysis of queuing performance with fBm 
input traffic was presented for the first time by 
Norros (1994), where it was shown that the dis-
tribution of queue length can be approximated by 
Weibull distribution. In was particularly reported 
by Norros (1994) that the queue tail distribution 
in the case of a fBm input satisfies the equation:

log P Q L L r H H
H H H H> ≈ − −⎡⎣ ⎤⎦( ) ( )− − − −( ) ( )1

2
1

2 1 2 2 1 2

(34)

for sufficiently large values of L.

Table 1. Characteristics of the multifractal spectrum: (Realizations without anomalies (N) and those 
with anomalies (A)) 

Par.
j = 7 j=8 j=9 j=10 j=11 j=12 j=13 j=14 j=15 j=16

N А N А N А N А N А N А N А N А N А N А

D0 0.370 0.458 0.513 0.577 0.630 0.666 0.723 0.727 0.773 0.771 0.807 0.806 0.835 0.833 0.856 0.854 0.872 0.874 0.893 0.892

D1 0.342 0.419 0.497 0.553 0.615 0.655 0.715 0.727 0.773 0.771 0.807 0.797 0.823 0.810 0.836 0.821 0.844 0.834 0.859 0.846

D2 0.959 0.876 0.641 0.576 0.430 0.420 0.348 0.343 0.332 0.344 0.308 0.368 0.383 0.488 0.495 0.564 0.587 0.673 0.682 0.780

αmin 0.572 0.478 0.458 0.364 0.352 0.330 0.268 0.290 0.206 0.242 0.158 0.210 0.146 0.184 0.146 0.158 0.136 0.162 0.150 0.184

αmax 0.712 0.768 0.654 0.706 0.648 0.680 0.714 0.698 0.766 0.764 0.794 0.822 0.884 0.944 0.988 1.028 1.076 1.122 1.156 1.204
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oriented on uncorrelated request flows in the 
conditions of the self-similar traffic yield exces-
sively optimistic results. After detection of fractal 
structure in the network traffic the analysis of 
queuing performance for the fractal traffic on an 
input within the limits of the classical theory of 
queues become problematic. The results of some 
important researches (Brichet, Roberts, Simonian, 
& Veitch, 1996; Giordano, O’Connell, Pagano, & 
Procissi, 1999; Lui, Nain, Towsley & Zhang, 1999; 
Norros, 1994) are published in the literature. The 
influence of fractality on research on creation of 
queues is an important problem. Some applications 
of network design, such as setting buffer size and 

traffic management are connected to this problem, 
which makes it extremely important.

MODEL OF QUEUING WITH 
TRAFFIC DESCRIBED BY FRACTAL 
BROWNIAN MOTION (FBM)

Let’s consider a simple model of queuing: queue 
of the separate server. It is considered in the con-
tinuous time, the serving principle is set to FIFO. 
We assume that queue has the infinite buffer and 
constant service rate r. Denote as A(t) a total 
amount of workload arriving to the queue from a 

Figure 12. Multifractal dimensions comparison of two realizations (circle– D0 , dots–D1, triangle–D2): 
blue–dimensions for network without attack; red–dimensions for network with attack
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buffer capacity. For the Markov traffic processed 
in such queue, distribution of tails is approximately 
exponential (Park & Willinger, 1999).

P Q B e asBB>{ } →∞−!~! !,! ! !η       (30)

where η > −0!  asymptotic decay rate.
Expression (30) is taken as a principle concept 

of effective transmission capacity, where access 
control or the arranged capacity of the service 
channel is based on a tails probability distribution 
of a random variables choice. Unlike (30) traffic 
flows with long-range dependence (in particular, 
the models based on fractal Brownian motion) lead 
to tail queue distribution that decays asymptoti-
cally with a Weibullian law, that is

P Q B e asBB>{ } →∞−!~! !,! !γ β       (31)

where γ  −  is a constant, and β = − ∈2 2 0 1H ( ; ].
Formulas 30 and 31 strongly differ. The first 

on comparing with the second gives rather opti-
mistic predictions. The question about, whether 

other traffic models lead to correct, in comparison 
with experimental data, prognoses of network 
productivity, till now remains open. The general 
analytical results of queuing performance, or in-
fluences of traffic self-similarity and long-range 
dependence on Quality of Service (QoS) do not 
exist at present. Only separate analytical results 
for special cases are known. At the same time the 
most effective method of an overall performance 
estimation of telecommunication networks re-
mains, obviously, simulation-modeling methods. 
From these positions problems of influence of a 
traffic self-similarity level on telecommunication 
systems efficiency will be considered in the fol-
lowing section.

THE MONOFRACTAL TRAFFIC

When designing any telecommunication network 
one has is faced with restrictions on transmission 
capacity of channels. In these conditions the 
estimation of effective band pass range becomes 
one of the key problems. Calculations on the 
basis of classical methods of queuing theorems 

Figure 11. Multifractal spectra in comparing, black - without anomalies, white - with anomalies
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the levels of decomposition and can thus be used 
to detect anomaly at a given level of decomposi-
tion.

The values of boundary parameters of the 
spectra αmin and αmax almost always show differ-
ent values for two realizations and can likewise 
serve as a reliable distinguishing characteristic of 
multifractal spectra and indicator of the presence 
of abnormal activity. 

ESTIMATION OF THE IMPACT OF 
TRAFFIC MULTIFRACTALITY ON 
QUEUING PERFORMANCE IN 
TELECOMMUNICATION NETWORKS

Results of numerous researches show that mea-
surements of queuing performance of a fractal 
traffic can essentially differ that are predicted 
by appropriate systems with traditional traffic 
patterns. It is interesting in this context the dis-
tribution tails behavior of queue of length Q in a 
stable condition for one server with infinite queue 

Figure 10. Dependence of a multifractal spectrum on an amount of scale levels involved in the analysis 
j, j=0…16. a, b) for a network without anomalies, c, d) - for a network with anomalies
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Figure 9. Functions τ(q, j): for scale levels j=0 …16 a-d) at the left - for a network without attacks, on the 
right - for a network with anomalies; e)-for an octave 13 in comparing; f)-for an octave 15 in comparing
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to the right by k scale units from origin of the 

coordinate system; D t d tj
k

n

j k j k

j

( ) = ( )−
=

−

∑
0

2 10 /

, ,²ψ  

j - s c a l e  o r d e r  d e t a i l e d  f u n c t i o n ; 
d X tj k j k, ,

,=< ( ) >−ψ  wavelet coefficient of 
scale j, equals scalar product of initial series X t( )  
and wavelet of scale j, shifted to the right by k 
scale units from origin of the coordinate system.

The resultant discrete wavelet transform pres-
ents a series X of size n on scale j, derived by the 
m e a n s  o f  wave l e t  c o e f f i c i e n t s  s e t 
d j k k nX j( , ), , , , ,= …1 2  where nj

jn= −2  and n – 

accessible number of wavelet coefficients in octave 
j.

Phase 2: Definition of qth  logarithmic order 
diagram of the qth  moment of octave j:

µ j q n d j kj
k

n

X

qj

, / ,( ) = ( )
=
∑1
1

      (37)

The sum in expression (37) is taken of points 
in space, where the wavelet transform modulus 
can take maximum values (i.e. on local maxima 

Figure 17. Results of multifractal analysis of sampled data: a) decomposition function µ j q, ;( ) b) func-
tion τ q( ); c) dependence log ;2 c q( ) d) multifractal spectra f ( )α at q > 0
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wavelet analysis, we represent the time series 
X t( )  as follows:

X t X t D tJ
j

J

j( ) = ( )+ ( )
=
∑

1

where X t S tJ
k

n

J k J k

J

( ) = ( )−
=

−

∑
0

2 10 /

, ,²ϕ  initial ap-

proximation function, conforms to scale J (J ≤ 
Jmax);
S X tJ k j k, ,

,=< ( ) >−ϕ  scale coefficient, 
equals to scalar product of initial series X t( )  and 
scaling function with “roughest” scale J, shifted 

Table 2. Approximation coefficients 

Function τ q( ) Function log2 c q( )

a
0

a
1

a
2

a
3

c
0

c
1

c
2

c
3

-0.8260 0.4249 -0.0296 0.0012 11.8325 3.9479 0.3873 -0.0160 

Figure 16. Traffic data for analysis
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only determined form of scaling function τ
0
q( )  

and moment coefficient c q( ) could provide a 
final result. The reason for this consists in the 
definition of multifractal process class, that doesn’t 
impose any restrictions on functions c q( ) and 
τ

0
q( )  (except that τ

0
q( )  is a convex function). 

Investigation of queuing performance systems 
with summarized multifractal traffic shows that 
it can provide some similarity with monofractal 
inbound process generalized results. Equation 
(36) shows that the queue distribution character-
istic in case of multifractal traffic input is com-
pletely characterized by the scaling function τ

0
q( )  

and scale coefficient c q( ) of the input traffic.

ESTIMATION METHODOLOGY FOR 
FUNCTIONS c q( ) AND τ0 q( )!IN THE 
CASE OF ARBITRARY 
MULTIFRACTAL INBOUND 
PROCESS

Phase 1: High definition measurement of inbound 
entry process X t( ).  Assume that inbound 
process shows multifractal scaling proper-
ties. Then scaling function τ q( ) and function 
c q( )  can be estimated on the basis of re-
corded data for a number of possible param-
eters q > 0.  It is important to note the role 
of function c q( ) as the quantitative coeffi-
cient of multifractal process, whose import 
is sometimes underestimated in researches 
on the evaluation of the multifractal proper-
ties of high-speed network traffic. Scaling 
function τ q( ) determines the multiscaling 
quality of traffic only and does not suffice 
for multifractal model description neither 
does it suffice for the analysis of queuing 
performance models with multifractal in-

bound processes. Scaling behavior can be 
examined by means of wavelet representation 
methods.

Advantages of wavelet analysis follow from the 
fact that function of the basal wavelet itself shows 
a scaling property and consequently composes an 
optimal coordinate system, where it is possible 
to observe the scaling phenomenon. It likewise 
provides a stable scale behavior, detection and 
accurate measurement of parameters that describe 
this scaling behavior. 

We execute the wavelet decomposition of a 
sequential sample given by 

X t x t x t x tN( ) ( ) ( ) … ( ){ }−: , , ,0 1 1  

of size n n NJmax
0 02= ≤( )!,! ,  to a scale varying 

detail function. Here J Nmax = −log2  maximal 
number of decomposition scales, log2 N −  inte-
ger part of log .2 N  

Scale index value !j = 0  conforms to a maxi-
mum resolution case i.e. the most exact approxi-
mation achievable. It equals the original series 
X t( )  consisting of n

0
 samples. Conversion to 

coarser resolution occurs with increase in 
j j Jmax! ! ! ! ! .!0< ≤( ) In accordance with the rules of 

Figure 15. Estimation of functionsτ(q) and с(q)
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а and H. It is visible however, that when the buf-
fer is small, requirements of the channel depend 
less on Н than when the buffer is large. The ob-
servable outcome illustrates a well-established 
fact, that for short-range dependent traffic it is 
very difficult to fill big buffer sizes.

The obtained results show that queue distribu-
tion with fBm on an input has much smaller decay 
than in an exponential case. However, this ap-
proach is based on the Gaussian property of input 
process and cannot be spread to other processes 
with scale properties. There are only some ana-
lytical results for queuing performance for cases 
when the traffic has more complicated scale be-
havior. For example, there is a result when the 
input traffic is asymptotically self-similar and is 
described by the Pareto distribution, and for the 
case when Levi’s distribution is used to describe 
the traffic. 

TRAFFIC MULTIFRACTAL 
INFLUENCE ESTIMATION ON 
QUEUING PERFORMANCE

Queuing performance formulas in cases of Gauss-
ian inbound processes lead to results that conform 
to the theory. For the generalized multifractal 
traffic a new practical method is proposed for 
queuing performance estimation.

APPROXIMATION OF QUEUE’S 
TAIL PROBABILITY

Researchers in (Dang, 2002) showed that prob-
abilities of queue tail distribution asymptotes for 
queue construction model with single server and 
generalized multifractal inbound process are ap-
proximated correctly with Equation 36 (see Box 1).

As previously noted, scaling functions τ q( )  
and c q( ) are functions, which determine the 
multifractal inbound process. Considering Equa-
tion (36) it is evident it has an exact form, and 

Figure 14. Transmission capacity of the channel as function of а at r = 2 Mbit\s and fixed; a) for L = 
100Кbytes, b) for L = 1 MB
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On Figure 13 dependencies of a queue tail 
approximation on a queue size L in log-log scale 
are presented at fixed Н and r.

log

log

P Q L f L

L r H HH H H H

> = =

− −

⎡
⎣

⎤
⎦( ) ( )

( )
⎡

⎣
⎢
⎢

⎤

⎦

− − − −( ) ( )1

2
12 1 2 2 1 2² ⎥⎥

⎥!

Observable linearity of the graph illustrates 
probability decay under the Weibull law.

Supposing that the probability P Q L>( ) = ε  
and ρ = r C/  it is possible to solve (34) wrt C 
and to discover that QoS is roughly reached, when 
Equation (35) holds

C r k H a L r
H

H H H H= + − ⋅ ⋅ ⋅ ⋅( ){ } − −( )2
1

1 2 1 1 2ln
/

/ / /ε  
         (35)

where k H H HH H( ) = ⋅ −( ) −1
1

For practical applications of Equation (35) as 
the formula determining the size of a channel, 
considering its sensitivity to а and Н becomes 
something of interest. On Figure 14 channels 
characteristics with various values of а and Н at 
r Mb s= = −2 10 3/ ,ε  and for two buffer sizes 
L KBand MB= 100 1! ! .  Certainly, the same res-
ervation as well as in the previous figure should 
be done at strict independence of modification of 

Figure 13. Dependence of queue tail approximation on a queue size L at a) r = 1 and fixed H, b) r = 5 
and fixed H
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for sufficiently large values of L, where τ τ0 1q q( ) = ( )+ .  
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of modulus). Calculations of decomposition func-
tion (Renуi’s function) allow for a trace of the 
scaling for large ( )q > 0  and small ( )q < 0  fluc-
tuations. 

We note once again that the sum of the second 
moments µ j q,( ) = 2  represents a variation of 
wavelet coefficients at their average value equal 
to zero. At q > 0  function µ j q,( )> 0  describes 
a scaling of large fluctuations and strong singu-
larities. At negative values of q, it is responsible 
for scaling of small fluctuations and weak features, 
thereby showing the sensitivity to different aspects 
of the dynamics underlying the investigated signal. 
Linearity of logarithmic diagrams at various orders 
of the moment q informs on the scaling property 
of the series, that is

log , log2 2 2µ τj q q j c q( ) = ( ) + ( )² log      (38)

where τ q( )  is a scaling function , and c q const( ) .=

The estimation method of τ(q) and с(q) for the 
fixed value q is illustrated on Figure 15 

This figure shows that the line slope charac-
terises the scaling function τ(q), and the cut piece 
on the axis of ordinates is log .2 c q( )  From Figure 
15 and expression (38) we have that:

τ
µ

q
j q

jj
( ) = ( )

→∞
lim
log ,2

2log
      (39)

Figure 18. Dependences lnP[Q>L] from lnL at r =2 and r = 5
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Function τ q( ) can be considered as a scale-
independent measure of a fractal signal. It is easy 
to connect it with Renуi’s dimensions, Hurst’s and 
Holder parameters. From expression (39) it is 

possible to calculate τ q( ) using linear approxima-
tion. Subsequently, a multifractal spectrum f ( )α  
can be found from the obtained value of τ q( ).  
The functions τ q( ) and log2 c q( )  found by nu-

Figure 19. Dependences lnP[Q>L] from q at r =2 and r = 5

Box 2.  
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multifractal traffic on an input of buffer device. 
It is shown that multifractal character of the traf-
fic has essential impact on queuing performance 
characteristics. The greatest influence is caused 
by a component of the multifractal traffic with 
moment coefficient q = 2.With increasing q its 
impact on quality of service decreases. In actual 
use, it is sufficient to restrict the values of 
q = 2 5!...! .
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merical estimation can be approximated by the 
following types of polynomials:

τ q a a q a q a q( ) = + + +0 1 2
2

3
3!       (40)

and

log2
2

3
3c q c cq cq c q( ) = + + +       (41)

Substituting into expression (36), we obtain 
formulas for estimating the probability of queue 
“tail” rejection with any kind of multifractal traffic 
on input (see Box 2).

NUMERICAL RESULTS

Consider the dataset taken from Internet traffic 
archive (MIT, 1999). The data structure is pre-
sented in Figure 16 

The raw data was sampled at 1s intervals. The 
preliminary analysis of these implementations 
reveals their scaling properties; therefore they 
have been used as input process for the analysis 
of queuing performance. A plot of decomposition 
function of an investigated trace depending on 
decomposition level on log-log graph is shown 
in Figure 17 for some values of the qth  order 
moment.

Nonlinear scaling function τ q( )  obtained 
according to the technique stated above is pre-
sented on Figure 17b, it reveals the scaling prop-
erty of this dataset. After applying the estimation 
method stated above, functions τ0 q( )!and 
log2 c q( ) have been calculated. The graph of 
function τ τ0 1q q( ) = ( )+ !is a convex curve; this 
speaks about the multifractal character of the 
investigated dataset. Parameters of a multifractal 
spectrum can be estimated from expression 

f atq!( )! ! ! ,α >0  and are presented on Figure 2c. 
Approximation coefficients of functions τ q( ) 
and log ,2 c q( )  corresponding to the resulting 
experimental data are presented in Table 2.

Substituting obtained values of approximation 
coefficients in expression (42), we obtain the 
analytical relationships illustrating efficiency of 
queue service in case of multifractal character of 
the processed traffic.

Figure 18 and 19 show the probability of ex-
ceeding the buffer length at an intensity of service 
r = 2  and r = 5  for the studied traffic with mo-
ment coefficient q taking values from 1 to 10. 
From these graphs it follows that the probability 
of dropping the “tail” for the traffic studied is 
much higher than the similar probability in the 
case of a fractional Brownian motion.

The conclusion, which follows from the pre-
sented relationships, is that the multifractal nature 
of traffic at the input buffer device has a signifi-
cant influence on the characteristics of queuing. 
The largest component of the influence of multi-
fractal traffic is observed for a moment coefficient 
value of q = 2,  with increasing q  its impact on 
quality of service decreases. In actual use, it is 
sufficient to restrict the values of q = 2 5!...! .

CONCLUSION

For detection of traffic anomalies in computer and 
telecommunication networks the method based 
on multifractal data analysis at network layer is 
proposed. As the informative indicator, the use 
of distinction of fractal dimensions on various 
parts of a given dataset is introduced, and also 
parameters of a singularity spectrum estimated 
by means of Legendre transform.

A new method based on usage of multifractal 
spectrum parameters is proposed for the estima-
tion of queuing performance for the generalized 
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