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Signals with an Additive 
Fractal Structure for 

Information Transmission

ABSTRACT

This chapter is devoted to a new class of wideband signals with an additive fractal structure. Properties 
and characteristics of the new type of signals are studied. It is shown that such signals possess a high 
level of an irregularity and unpredictability at simple technical implementation. It is shown that an 
incommensurability of frequencies of fundamental high-stable oscillations leads to the high level of an 
irregularity of such signals. For an estimation of a level of signal complexity, authors offer to use the 
fractal dimensionality of their temporal implementations calculated by means of creation of the structural 
function. Methods of modification of the signal spectrum with the additive fractal structure are offered, 
permitting to increase the efficiency of the frequency resource application. For reduction of the high 
low-frequency signal power the authors suggest using signals with the additive fractal structure, centered 
in a moving average window. Methods of masking of the voice messages by means of signals of a new 
type are offered. The results of a computer experiment of secretive sound transmission are described.

INTRODUCTION

In the present time there are some important 
problems of information transfer through radio 
channels – the electromagnetic compatibility, an 
increase of data capacity of carrier oscillations, 

the security and stealthiness of communication. 
One of the methods of solution of the mentioned 
problems is based on the reduction of the power 
spectral density of the message under transmission, 
at the expense of the extension of its frequency 
band. Thus in classical methods of the spectrum 
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extension (Ipatov, 2007), the sophisticated modu-
lation of clean waves (CW) is used that leads to 
serious complication of transmitters and receivers.

Without application of technology of the 
spectrum extension the specified problems can be 
solved using non-sinusoidal waves, but the wide-
band carrier signals. Nowadays there is a tendency 
to use signals on the basis of a dynamic chaos 
(Pecora & Carroll, 1990, pp.821-824; Cuomo & 
Oppenheim, 1993, pp.65-68; Kuznetsov, 2000) as 
carrier oscillations. However, application of cha-
otic signals in communication systems (Dedieu, 
Kennedy, & Hasler, 1993, pp.634-642; Kapranov 
& Morozov, 1998, pp.66-71; Murali & Leung & 
Yu, 2003, pp.432-441; Yang, 2004, pp.81-130) has 
revealed two large lacks. Firstly, the complex non-
linear mechanisms of dynamic chaos formation are 
rather sensitive to inevitable, even insignificant, 
mismatches of parameters on the reception and 
transmission ends that lead to the impossibility 
of correlative processing of chaotic signals in the 
receiver. Secondly, it is impossible to change the 
structure of the chaotic carrier spectrum for adap-
tation to a spectrum of the message or to interfer-
ence in the communication channel – the chaos 
characteristics are completely predetermined by 
a structure of the forming dynamic system and a 
choice of its parameters. Signals with the fractal 
structure are an alternative of chaotic oscillations. 
Fractal signals are as irregular as chaotic signals, 
but can give benefits on reproducibility and flex-
ibility of characteristic change.

The subject of this chapter is a research and 
performance evaluation of wideband signal ap-
plication with an additive fractal structure for the 
stealthiness transmission of analog voice mes-
sages. At first, we select the type of fractal func-
tions for the simplest generation of signals with 
fractal structure on their basis, and the properties 
of these functions are researched. Further, from 
mathematical record of fractal functions, we turn 
to their engineering interpretation for radio signal 
generation. Shortcomings of fractal radio signals 
come to light. For the elimination of these lacks 

we enter signals with the modified fractal struc-
ture. In the last paragraph methods of information 
transmission by means of new fractal signals are 
offered, and the computer experiment of secured 
voice message transmission is carried out.

MAIN CHARACTERISTICS OF 
FRACTAL FUNCTIONS WITH 
AN ADDITIVE STRUCTURE

Signals with a fractal structure can be divided into 
some types according to methods of their formation 
in the transmitter: signals with additive (Wornell, 
1996, Falconer, 1997) and multiplicative (Bolotov 
& Tkach, 2006, pp.91-98) structure, signals on the 
basis of iterative fractal functions (Kravchenko, 
Perez-Meana, & Ponomaryov, 2009) (functions 
of Cantor, Bolzano, Bezikovich, etc.), solution 
of nonlinear dynamic systems in the reverse time 
(Tomashevsky & Kapranov, 2006). The main lack 
of almost all fractal signals is the impossibility of 
their generation in the form of self-oscillations in 
devices with the simple structure. However, fractal 
functions with an additive structure and signals on 
their basis, which are a sum of stable sinusoidal 
oscillations with incommensurable frequencies, 
can be obtained without the expensive equipment. 
Except fractal properties and simple generation 
methods, signals with an additive fractal structure 
demonstrate a high level of reproducibility. These 
properties can be used for secured telecommuni-
cations, therefore, the research of such signals is 
urgent and this chapter is devoted only to them.

On determination (for example Wornell 
(1996)), any fractal function should satisfy the 
following scaling equation:

f x f x( ) = ( )1

µ
λ          (1)

Usually (Falconer, 1997, Bolotov & Tkach, 
2006, pp.91-98, Kravchenko & Perez-Meana & 
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Ponomaryov, 2009, Tomashevsky & Kapranov, 
2006, Gluzman & Sornette, 2002) for (1) exami-
nation one can search the solution in the form of 
the infinite additive power series:

f x g x
k

k

k
( ) = ⎡

⎣⎢
⎤
⎦⎥

=

∞

∑ 1

1 µ
λ .

It is possible to select any function as g(x), 
however, from the engineering point of view, the 
simplest way is to form the harmonic oscillations 
g(x)=sin(x). For the first time, a scale-invariant 
function with such a basis was offered by Weier-
strass (Du Bois & Reymond, 1875, pp.21-37) at 
the end of the 19th Century.

Falkoner (1997) investigated the Weierstrass 
function having selected μ=λ(2-D),

W t tD k k

k
( ) = ( )−( )

=

∞

∑λ λ2

1

sin ,         (2)

and he has proved that at 1<D<2, λ>1 the value 
of parameter D numerically corresponds to box 
dimension of the W(t) graph. Here we obtain:

Ak
D k= −( )λ 2 , ν λ π

k
k= 2

are the amplitude and the frequency of the k-th 
component of the function accordingly.

The fractal function (2) possesses the follow-
ing characteristics:

Nondifferentiability: The nonregular 
character of behavior of the temporal im-
plementation does not change at reduction 
of its scale,
Fractal dimension of graphs of tempo-
ral implementations: The higher dimen-
sion leads to the higher amplitude of fast-
changing components (Figure 1(a)),
Scale invariance: The function completely 
repeats itself on small and big time scales 
(Figure 1(b)),
A spectrum decaying in inverse proportion 
to frequency (Figure 2).

From Expression (2) it is observable that with 
increasing of fractal dimension D the high-fre-
quency amplitudes of spectral components in-

Figure 1. (а) Change of a type of temporal implementation depending on its fractal dimension and (b) 
an illustration of self-similarity of graphs of Weierstrass function at λ=1.2
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crease as well. In a limit at D → 2  amplitudes of 
all spectral components are identical (Figure 2).

It is easy to prove the scale invariance of the 
Weierstrass function (see Box 1).

That is, on an abscissa axis the scale factor is 
equal to λ, and on an axis of ordinates - λ(2-D). The 
Weierstrass function repeats itself on time intervals 
t0λn d t d (t0+Δt)λn, (Figure 1 (b)), where n=0…f 
- a scaling coefficient.

When one speaks about an ergodicity of the 
temporal process, he implies that its statistical 
characteristics on the big interval of observation 
NT are equal to averaged characteristics on several 
implementations N in a short interval of time T. It 
means that the equality (for example, concerning 
assembly average) should be satisfied:

1 1 1
1

0 01NT
x t dt

N T
x t dt

NT

n

T

n

N

( , ) ( , )ϕ ϕ∫ ∫∑=
=

     (3)

where φn is a statistically distributed phase of the 
process x(t).

According to (3), the assembly average (mx) 
of 10 temporal implementations of a signal with 
an additive fractal structure in the time interval 
Тс differs from the mx temporal implementation 
in the time interval 10Тс by ε=0.00001, which is 
an accuracy from which a series is considered to 
be ergodic.

For the quantitative estimation of a level of 
proximity of researched signals W(t) to stochastic 
processes with the normal distribution law we 
use the fitting criterion of Kolmogorov q (Iglin, 
2006). This criterion is based on a comparison of 
histograms of two processes.

Define a significance threshold q=0.2 and 
write down in one table all values of reference 
frequencies at which threshold excess is observed.

From Table 1 we can see that at certain values 
of the reference frequency by means of the Weier-
strass function it is possible to simulate processes 
with the normal distribution law.

From the analysis it follows that application 
of the Weierstrass function as a fractal signal is 

Figure 2. Spectrum plots of Weierstrass function (2) at λ=1.2

Box 1.  

W t t tD k k
k

k

D k k
k

k
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∞
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1
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⎧
⎨
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∞∞
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that gives 
W(λt)= λ(2-D)W(t).
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complicated by two essential lacks following from 
its self-similarity and non-differentiability:

1.  The complete series (2) occupies unfairly 
big frequency range.

2.  The high non-uniformity distribution of 
energy on frequencies is observed. For 
example, for a signal on Figure 2 in initial 
area of frequencies from 0 to 25 Hz, occupy-
ing a small part from the general band, are 
concentrated 87% of all energy of a signal.

In following sections of this chapter the meth-
ods of elimination of these lacks are offered.

INCOMMENSURABILITY 
OF FREQUENCIES OF THE 
WEIERSTRASS ROW AS 
THE PRINCIPAL REASON OF 
AN IRREGULARITY OF ITS 
TEMPORAL IMPLEMENTATIONS

The important characteristic feature of the Weier-
strass series (2) is that its components represent the 
sinusoidal functions with cyclic frequency λk. With 
k growth, cyclic frequencies of a series increase 
under the geometrical progression law (Figure 
2), i.e. have the exponential growth. Moreover, 
frequencies of the Weierstrass series will be in 
an integer ratio extremely rarely (Kapranov & 
Khandurin, 2011, pp.23-26), only at certain values 
λ. It is an essential difference of the Weierstrass 
series from a Fourier series:

f t k tD k

k
( ) = ⋅( )−( )

=

∞

∑ω ω2

1

sin ,

in which all harmonics consist in an arithmetical 
progression with respect to ωk and (Figure 4) are 
multiple to the fundamental frequency.

It is clear that a ratio of frequencies of sinu-
soidal components of an additive series gives a 
periodicity of the function, and their exponential 
growth leads to a self-similarity. It is necessary 
to be very accurate during the selection of the λ 
value of the reference frequency. This parameter 
is responsible for incommensurability and for 
complexity (the absence of a regularity and peri-
odicity, predictability, recurrence). At that, the 
incommensurability can be full or partial. At any 
values of parameter λ ≥ 2  some periodicity is 
noticeable in behavior of the W(t) function. It is 
important to mark the fact that if λ is an integer 
then the function (2) becomes completely peri-
odical. This results from the fact that all frequen-
cies of the Weierstrass series become multiple to 

Table 1. Values of the reference frequencies for which the fitting criterion of Kolmogorov is more than 0.1 

Figure 3. Comparison of the normalized histo-
grams of distribution of a signal on the basis of 
the Weierstrass series W(t) on an observation 
interval Tc (black trace) and on an interval 10Tc 
(gray background). Parameters: D=1.9, λ=1.21
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each other, the inherent incommensurability of 
frequencies disappears.

The forbidden values of the reference frequency 
are such values of λF for which there is a ratio 
condition (or commensurabilities) of two or more 
frequencies of the Weierstrass row W(t),

mλF = λF
n

where n=1,2,3 …, m=1,2,3, … are integer num-
bers. From here we receive expression:

λF
n
m=

−( )1           (4)

at m=1 or n=1 we have λF=1, and at n=2 we 
have λF=m.

If a condition (4) is true, then the values of 
non-equidistant frequencies of the Weierstrass 
series can be obtained at an additive combination 

of several equidistant frequency grids. Number 
of such grids equals to (n-1) and among themselves 
their frequencies are not intersected (Figure 5). 
For example, at 11 members of the series w(t) and 
λF=1, we have a composition of two equidistant 
grids (with a number of frequencies 6 and 5, ac-
cordingly), and at λ

F
= 23  the number of such 

grids becomes three.
On the Figure 5 it can be seen that 12 members 

of the Weierstrass series with non-equidistant 
frequencies can be obtained by summation of 
three series with 8th equidistant frequencies in 
everyone (at given parameters).

If the condition (4) is not fulfilled, a Weierstrass 
series with non-equidistant frequencies cannot be 
made by an additive combination of series with 
equidistant frequencies. That is, if the reference 
frequency of the Weierstrass row does not con-
cern the forbidden frequencies λF, all frequencies 

Figure 4. Comparison of additive series of Weierstrass (gray) and Fourier (black) at D=1.9, λ=ω=1.7. 
Normalized (а) temporal implementations, (b) spectrum plots.

Figure 5. Arrangement of frequencies on a geometrical and arithmetical progression. Parameters 
λ λ= =

R
23 .
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of such series have no general multiple and are 
completely incommensurable.

The best values for the reference frequency λ0 
need to be selected proceeding from a condition 
that they are located on the maximum distance 
from adjacent forbidden values λF. Thus, it is 
necessary to consider an accuracy ε from which 
we can set values λ0, i.e.:

λ
λ λ

0
01

2
( )

( ) ( )
,n

n nF=
+ +

at λ λ
εF n n( ) ( )
.

+ −
>

1

2
0         (5)

Proceeding from (5) we can calculate values 
for the best frequencies (Table 2).

At an increase of the frequency accuracy ε, 
the number of the best values λ0 dramatically 
increases – the more accuracy, the better incom-
mensurability.

Proceeding from the calculated values of the 
forbidden and best frequencies, it is possible to 
select values λ under specific engineering tasks. 
For example, temporal implementations W(t) with 
rather small number of members equal 4 show 
such behavior:

If beat arises between all four frequencies, 
the full periodicity of temporal implemen-
tations is observed,
If beat arises between two frequencies 
from four, the signal is quasi-periodical,
If beat between series components’ misses, 
the period of signal repetition is defined by 
a level of accuracy of signal’s frequencies.

Thus, at already 4 members, but with well-
selected value of λ, we obtain the very complicated 
signal. If the full incommensurability of frequen-
cies is not important, such signal can be formed 
by means of an additive combination of several 
equidistant grids of frequencies.

TRUNCATION OF THE FREQUENCY 
BAND OCCUPIED BY SIGNALS WITH 
AN ADDITIVE FRACTAL STRUCTURE

To generate a radio signal on the basis of the 
Weierstrass function (2) it is necessary to pass 
from its mathematical note to technical interpre-
tation. In other words, it is necessary to truncate 
a Weierstrass’s series as in practice we have a 
possibility to form the restricted number of its 
members only. It can be done by different methods 
proceeding from the set of upper fH

kH= λ π2  
and lower fL

kL= λ π2  boundaries of the se-
lected frequency range:

w t tD k k

k k

k

L

H

( ) sin ,= ( )−( )

=
∑ λ λ2         (6)

where numbers of the first and last component of 
a truncated series kH>kL>1. If we have selected a 
number of members of a series (6) Δk=kH-kL, then 
the parameter λ turns out equal to λ = f fH L

k∆ .  
On the other hand, having selected a specific 
value of λ, we can find the required number of 
series members ∆k f fH L= −( )ln .λ

The relation f fH L
k= λ∆  defines a frequen-

cy band occupied by a signal. The bandwidth 
essentially depends on the parameter λ. So at 50 
members of a series of Weierstrass and λ =1.2 
the relation accepts the great value f fH L ≈ 7583 7, .  
At insignificant magnification λ λ⇒ = 1 3.  the 
ratio increases by two orders f fH L ≈ 383022 5, .

A truncated row of Weierstrass (6) possesses 
fractal properties only in a certain scale range. 
Besides, at passage from a complete Weierstrass 
series to the truncated one, there is the smooth-
ing of its temporal implementation, i.e. a loss of 
complexity, the scale invariance and the dimen-
sionality of the signal. At usage of fractal signals 
in secure communication systems, it is especially 
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important to generate their as much as possible 
irregular and complex on the given interval of 
observation. Therefore, it is necessary to define a 
minimal number of members of a truncated series 
of Weierstrass w(t), at which losses in complexity 
would be minimal.

For an estimation of complexity of full (2) 
and truncated (6) signals, the numerical general-
purpose measure is necessary. To use fractal 
dimension of oscilloscope patterns of these 
signals is expediently (Kapranov & Khandurin, 
2011, pp.23-26) as such a measure. The method 
of calculation of the fractal dimension of temporal 
implementations of signals by means of creation of 
their structural functions (Korolenko & Maganova 
& Mesniankin, 2004) is convenient:

S
K n

f fn k n k
k

K n

=
−

−+
=

−

∑1

1

,

where fk is the analyzed function, time t is con-
nected with an index k=1,2,3,…,K by a ratio t = 

kΔt, Δt is – the time slot between signal samples 
corresponds to the sampling rate.

Calculations of dimension Dcalc show (Figures 
6 and 7) that at number of members of truncated 
series (6) smaller than 10 and at the value of the ref-
erence frequency λ=1.2, the calculated dimension 
of the temporal implementation is almost equal 
to 1, at a magnification of a number of members 
of a series the dimension linearly increases and 
at kH>55 is equal to theoretical dimension Dcalc 
=D=1.6.

At a specific value of λ, the calculated dimen-
sion corresponds to theoretical dimension at a 
certain number of series members. For example, 
at λ =1.2 for achievement of the given dimension 
D it is necessary to take 55 members of a series 
minimum (Figure 7), and at λ =1.7 we need only 
21 (Figure 7). However, if it is necessary to gen-
erate a signal on the basis of a truncated series of 
Weierstrass with the actual dimension of the 
temporal implementation equal to Dcalc = 1.5, 
application 10 members of this series only is pos-
sible to set D=1.8 (Figure 7).

Figure 6. (a) Calculation of the signal dimension on the basis of a truncated series of Weierstrass 
depending on the number of members of a series for D=1.6, kL=1, (b) temporal implementations of a 
signal at kH=20, 30, 50
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THE FRACTAL SIGNAL ON THE 
BASIS OF WEIERSTRASS SERIES 
WITH A MODIFIED SPECTRUM

As it was shown above, the first lack of a signal on 
the basis of the truncated Weierstrass series (6) is 
the unfairly wide spectrum bandwidth. In the range 
of low frequencies its density is high, and in the 
range of high ones the spectrum is strongly rarefied 
(Figure 2). At that, the insignificant magnifica-
tion of the parameter λ leads to a sharp increase 
of the frequency band occupied by a signal at an 
invariable number of its spectral components.

Let us consider the simple method allowing 
considerably compression of a spectrum, having 
saved thus the main advantages of a fractal signal 
structure (unpredictability, functional dependence 
of dimension of the graph of function w(t) from 
parameter D), restriction of growth of the expo-
nent k value of parameter λ both in the allocation 
of amplitudes, and in the law of arrangement of 
frequencies (Kapranov & Khandurin, 2011, pp.23-
26). For this purpose we will enter new functional 
dependence with changeover

k m k→ χ( , ),           (7)

where χ(m,k) is some function restricted on top, 
m is a frequency compression parameter. As a 

result of changeover (7), the initial truncated series 
(6) saves the formal structure, but there is abso-
lutely other law of arrangement of amplitudes and 
frequencies Ak

D m kχ χλ= −( ) ( )2 , ,  ν λ πχ χ
k

m k= ( ), ,2  
than we get an expression:

w t tD m k m k

k k

k

χ
χ χλ λ( ) sin ., ,

min

max

= ( )−( ) ( ) ( )

=
∑ 2        (8)

For example, we will select next limiting 
function χ (m, k):

χ m k m th k m, .( ) = ⋅ ( )         (9)

From expression (9) it is clear that as mof, 
we obtain χ (m, k)ok.

In the Figure 8 characteristic of the relation 
of the upper frequency of a signal spectrum on 
the basis of the series (8) νχ

H to the upper signal 
frequency on the basis of the initial series (6) νH 
from compression parameter m is shown. It can be 
seen that parameter reduction m leads to essential 
compression of the frequency band occupied by a 
signal. As the law of compression (9) influences 
upon amplitudes of components of the series (8), 
then at a signal on its basis the law of spectrum 
recession is saved (Figure 8(b)).

Figure 7. Increment of the dimension Dcalc of temporal implementations of w(t) caused by the growth of 
the number of its members. Parameters: kmin=1, (a) λ=1.2, (b) λ=1.8.
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From Figure 9(a) it is clear that the original 
signal frequency compression (up to very small 
m) does not influence on unpredictability of its 
temporal implementation. It happens because 
spectral components of the modified series (8) 
still are not multiple to each other, that is remained 
incommensurable.

At a limit of m=0 dimension of temporal 
implementation aspires to a minimum (Figure 
9(b)). Comparing Figure 8(a) and Figure 9(b) we 
see that it is possible to allow frequency compres-
sion no more than 10 times at m=50 without re-
duction of the fractal dimension. The further re-
duction of the compression parameter m leads to 
dramatically reduction of the signal dimension at 
insignificant abbreviation of the frequency range. 
At technical implementation of the circuit, if it is 
not planned to use a dimension or self-similarity 
of a signal, it is possible to resolve the big level 
of compression.

THE FRACTAL SIGNAL ON 
THE BASIS OF THE ALIGNED 
WEIERSTRASS SERIES

The second lack of a concerned fractal signal is 
that the most part of its capacity is allocated far 
enough from assembly average. On other words, 
the mean value of the Weierstrass function 

strongly changes along an observation interval. 
In a signal constructed by the Weierstrass series 
with a truncated spectrum (6), more than 90% 
of capacity is allocated in less than 10% of the 
occupied frequency band, i.e. the frequency re-
source is spent too much ineffectively. To get rid 
of superfluous capacity and at the same time to 
extinguish spectral components of the Weierstrass 
series in the lower part of a spectrum, we will 
lead its centering concerning a current average.

For determination of the centered value of our 
series it is necessary to do the following operation:

wC(t,τ) = w(t) - M(t,τ),        (10)

where M(t,τ) is a current average from the Wei-
erstrass function in a window with width 
τ π λ= −2 k ZH  (Z=1…kH is a number of high-
frequency components of w (t), which are not 
subject to clearing), which is subtracted from an 
ordinary Weierstrass function (2). The current 
average from w(t) is equal (see Box 2).

As a result, it is obtained a current average of 
the function w(t),

M t t
k

k

D k k

k

,
sin( )

sin( ),τ
τλ

τλ
λ λ( ) =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−( )

=

∞

∑
2

2
2

1

(11)

Figure 8. (a) The level of frequency compression of a signal depending on m, (b) spectrum plots of 
signals on the basis of an initial series (6) and a series with frequency compression (8). Parameters for 
both series: D=1.8, λ=1.2 , kL=1, kH=50.
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Having substituted in (10) expressions for a 
truncated series w(t) (6) and its current average 
M(t) (11), we will obtain a note of the truncated 
aligned series of Weierstrass:

w t tC

k

k

D k k

k k

k

L

( , )
sin( )

sin( )τ
τλ

τλ
λ λ= −

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
−( )

=

1
2

2
2

HH

∑ ,  

         (12)

where the law of arrangement of amplitudes and 

frequencies is Ak
C

k

k

D k= −
( )⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

−( )1
2

2
2

sin
,

τλ

τλ
λ  

ν ν λ πk
C

k
k= = 2 .

Graphs in the Figure 10 visually show a con-
venience of usage of the aligned function wC(t,τ) 
instead of an original function of Weierstrass 

Figure 9. (a) Comparison of temporal implementations of signals on the basis of the initial truncated 
Weierstrass series (gray) and the series with modified spectrum (black) (m=40), (b) lowering of dimen-
sion of a series at frequency compression. Parameters of the series are similar to Figure 8.
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w(t,τ). If a dynamic range of an original function 
is wide (it is noticeable even on a small inter-
val of time of the observation presented on the 
Figure 10(a)) the range of change of the aligned 
function wC(t,τ) is reduced by the order. That is 
especially important at formation wideband car-
rying oscillations on the basis of fractal function 
for transmission of information signals.

In the Figure 10(b) a characteristic of the rela-
tion of energies (calculated under the formula 

E f t dtf

Tc

= ∫ ( ) ,2

0

 where Tc  is a duration of tem-

poral implementation) of signals on the basis of 
the aligned series (12) and the original series (6) 
from parameter Z defining a width of a window 
of selection of a current average. It is clear that 
energy of the aligned function decreases propor-
tionally to Z 3-D. So at the high dimension of 
temporal implementation Do2 characteristic 
assumed to be linear (in the Figure 10(b) it is 
shown by a gray dotted line) and energy of a 

signal will decay in direct ratio to a number of 
not aligned components of the series Z. But with 
reduction of D the scoring from aligning operation 
sharply increases, apparently in the Figure 10(b) 
even at great value Z=40 the energy of the aligned 
series for D=1.4 is reduced by five times in rela-
tion to the not aligned.

As to a level of complexity of the aligned 
function wС(t,τ) (the dimension of its temporal 
implementation), at correctly selected width of a 
window τ it is not much above, than complexity 
of an original function w(t). Principal differ-
ence is that oscillations wС(t,τ) does not contain 
slowly changing components as in its spectrum 
the low-frequency components are removed. Ap-
parently from Figure 10(c) at reduction Z, i.e. at 
reduction of width of a window of integration τ, 
the magnification of dimensionality of temporal 
implementation from set to maximum Dcalco2 is 
observed. On the graph it is possible to select the 
critical value Zcrit, which indicates that dimension 
of a signal is always equal 2.

Figure 10. (a) Temporal implementations of signals on the basis of series (6, 11, 12) at D=1.8, λ=1.2, 
Z=20, (b) reduction of energy and (c) magnification of dimensionality of temporal implementation of a 
signal on the basis of the aligned series (12) at reduction Z
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Comparing characteristics of the Figure 10(b) 
and the Figure 10(c) it is possible to draw an 
output that application of operation of an aligning 
to fractal signals with small dimension of tempo-
ral implementations D <1.5 leads to the strong 
reduction of their energy at dimension minor 
change.

Spectrum plots of signals (Figure 10(a)), are 
resulted on the Figure 11 at the same values of 
parameters, as on Figure 10(a). Daggers mark 
amplitudes of spectral components of an original 
function w(t), the circles − the aligned function 
wC(t,τ).

In Figure 11 we see the strong suppression of 
a spectrum of wC(t,τ) in the field of low frequen-
cies and its riches in the field of high frequencies. 
It is possible to tell that oscillations of the aligned 
function, which are exceeding frequency of the 
full clearing 1/τ = λkH - Z/2π, have some power 
growth.

Having eliminated limitation of fractal signals 
on the basis of the Weierstrass series, it is possible 
to pass to experiments on stealthiness transmission 
of voice messages.

EXPERIMENTS ON TRANSMISSION 
OF THE VOICE SIGNALS BY MEANS 
OF FRACTAL SIGNALS ON THE 
BASIS OF WEIERSTRASS SERIES

In the present chapter we pose a task on secured 
transmission of the sound message masked by a 

fractal signal, by means of acoustic waves. For 
simplification of circuits of the receiver and the 
transmitter the voice should not be exposed to 
digitization. Masking and its removal should 
happen in real time. A level of stealthiness of 
transmission and quality of signal demodulation is 
defined as visually, by comparing of oscilloscope 
patterns of the initial message with demodulated 
one, and on hearing the results. The first method 
of cleaning up of the information message from 
the masking is based on precision of fractal signals 
on the basis of w(t).

The Coherent Elimination 
of the Masking Fractal 
Signal in the Receiver

Thanks to high reproducibility of fractal signals, it 
is possible to implement a communication system 
with fractal masking in the transmitter and the 
coherent elimination of this masking (Figure 12). 
Here voice message masking was led as a signal 
on the basis of a truncated Weierstrass series 
(6), and a signal on the basis of a series with the 
compressed spectrum (8).

In computational experiments the information 
voice message s(t) represents a remark “This in-
formation is confidential, absolutely confidential” 
duration 4.004sec and occupies the frequency 
band from fL=105Hz to fH=2000Hz, a sampling 
rate has been selected from the computer equal to 
fS=44100Hz. As masking oscillations, the signal 
on the basis of a truncated series of Weierstrass 

Figure 11. Spectrum plots of the aligned series of Weierstrass (parameters are similar to Figure 10) (a) 
Z=3, (b) Z=10
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(6), with parameters D=1.9, λ=1.15, kL=52, 
kH=71, thus the lower signal frequency fL=228Hz 
and upper fH=3246Hz has been used. Frequency 
bands of information and masking signals were 
commensurable and were superimposed that was 
saved and at frequency compression.

It has appeared that quality of masking and 
demodulation in the given circuit is very high, it 
has proved to be true in experiment at message 
listening in the communication channel and on a 
receiver output. In a vocal range of frequencies 
humans clearly distinguish the separate spectral 
components about accuracy to hertz, besides the 
human ear possesses high sensitivity, i.e. at signal 
power reduction in 1000 times it seems to us that 
power level has decreased only 30 times. How-
ever, if to mask the sound message a fractal signal 
on hearing it will cease to be recognized. Prob-
ably, it is connected to hearing aid singularities.

In the given circuit implementation of the unit 
of synchronization of the fractal generator in the 
receiver appears too difficult. For simplification 
of the receiver circuit the structure with incoher-
ent removal of a mask from a signal is offered.

Incoherent Elimination of a Masking 
Fractal Signal in the Receiver

In (Kapranov & Khandurin, 2009, pp.89-92) the 
system of secured communication FRAMASK 
with incoherent reception and information mes-
sage, masking by a fractal signal in the transmitter 
is offered. This system is similar on the structure 
to a communication system at chaotic masking 
(Murali, Leung, & Yu, 2003, pp.432-441), but 
in it fractal signals are used as difficult carrier 
oscillations (Figure 13) instead of chaotic. Win-
dow operation of the moving average is applied to 
support a secrecy of transmission on the transmit-
ting and receiving sides. Thanks to application of 
fractal maskers and the multistage moving average 
in the receiver for selection of the information 
message in this circuit, unlike the circuit with 
chaotic signals, the high secrecy of transmission 
of the message and high quality of demodulation 
can be reached, at information transfer through 
the communication channel with additive noises.

In the transmitter (Figure 13) the analog mes-
sage s(t) is additive combined with a masking 

Figure 12. (a) System of secure communication with fractal masking in the transmitter and the coherent 
reception. Temporal implementations: (b) the sound message s(t), (c) the disguised message r(t), (d) 
messages on a receiver output e(t).
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fractal signal on the basis of w(t), processed by 
centering operation. On the reception side there 
is a multistage operation of the moving average, 
permitting at the expense of ergodicity of the 
aligned series to remove masking and to get rid 
of noise.

As a result, temporal implementation of a 
signal on an output of the incoherent receiver 
(Figure 13) is strongly distorted, however, at hear-
ing the voice message is quite legible.

Low quality of separation of information from 
masking oscillations in the considered circuit 
(Figure 13) is caused by necessity of the strong 
level reduction of the sound message for secure 
transmission at communication channel, but this 
reduction degrades a quality of separation of the 
initial message from masker. To refine the qual-
ity of demodulation at high secrecy, the method 
of change of the circuit on Figure 13 consisting 
of two stages is developed. The first stage is an 
adaptation of a spectrum of a fractal signal to 

a spectrum of the message for improving of its 
masking properties.

A number of experiments on masking of the 
sound message by fractal signals with frequency 
compression of a type (8) have been fulfilled. 
Functional schemes of systems with such signals 
are similar to the system shown on Figure 12, but 
the generator of the fractal signal with a com-
pressed spectrum with parameters was used here: 
D=1.9, λ=1.15, kL=33, kH=52, thus, the lower 
signal frequency is fL=201Hz and upper fH=201Hz. 
The signal spectrum is compressed under the law 

χ( , ) ,maxk m mk k k= − ( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2 3
4

 where m=1.6. 

It has been obtained that quality of masking of 
information for a signal on the basis of wχ(t) is 
better, than for a signal on the basis of an original 
series w(t) at the identical power level s(t). How-
ever. In this case, masking is too good, cleaning 
up of the message from a mask by its multistage 
window moving average appears to be impossible. 

Figure 13. (a) System of secure communication with fractal masking and window moving average in the 
transferring and receiving sides; temporal implementations: (b) the sound message s(t), (c) the disguised 
message r(t), (d) messages on a receiver output e(t)
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To define a presence of the secured message on 
an input and a demodulator output is not possible 
visually and during a hearing.

The second stage of modification of the original 
circuit (Figure 13(a)) consists in a failure from 
centering operation on the transmitting end (Figure 
14). In the circuit on Figure 14 the parameters of 
masker are following: D=1.9, λ=1.15, kL1 =52, 
kL2=62, kH=71, the frequency compression law 
at an open-ended key the lower signal frequency 
is fL1=228Hz, and at shorted fL2=923Hz and 
the upper frequency is fH =1796Hz. Signal de-
modulation was produced similarly as it is in the 
original circuit. At the appearance of the sound 
message on a transmitter input, the electronic key 
is shorted, thus, the generator of a fractal signal 
ceases to form those components of series wχ(t), 
which were superimposed with a spectrum of the 
appeared message. At such operation the secrecy 
of transmission of the message does not decrease, 
but quality of demodulation increases, temporal 
implementations are similar Figure 13(b)-(d).

Thus. In the given section two methods of 
transmission of the voice messages disguised by 
a fractal signal with additive structure from listen-
ing by the third party are developed. The first 
method is based on the coherent subtraction of 
masker from the accepted. Circuit implementation 
of the receiver in such a system is difficult – it is 
necessary to construct the generator of a fractal 
signal identical to the generator of the transmitter 

and to have the unit of its synchronization. How-
ever, in this case, there is a quasi-optimal reception 
of a signal, i.e. their full cleaning up from mask-
ing oscillations. The second method is based on 
incoherent processing of an accepted signal for 
removal from it the masking fractal oscillations 
and a white noise. The communication system 
constructed under such circuit possesses simple 
implementation of the receiver and does not con-
cede to coherent system on quality of extraction 
of information.

FUTURE RESEARCH DIRECTIONS

The developed methods of information transfer by 
means of signals with an additive fractal structure 
are based only on their high level of reproduc-
ibility and wideband. In the further publications 
we are going to make experiments on usage of 
self-similarity of these signals, for improvement 
of quality of demodulation on the receiving side. 
Also a perspective direction of research is the 
dimension modulation of temporal implementa-
tions of signals with an additive fractal structure.

A number of experiments on direct fractal 
information transmission by means of signals of 
a new type have been fulfilled. In such method of 
the transmission the binary information sequence 
is multiplied with carrying fractal oscillations, 
and in the receiver there is an energetic detection 

Figure 14. System of secure communication with fractal masking in the transmitter and the window 
moving average on the receiving side
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of the received wideband pulses. Researches in 
the given direction are perspective as such com-
munication systems correspond to the standard of 
communication IEEE 802.15.4а (UWB).

Besides, it is necessary to develop circuits of 
generators of offered signals.

CONCLUSION

As a result of this chapter, the following main 
conclusions are obtained:

Complex wideband signals with an addi-
tive fractal structure on the basis of a series 
of Weierstrass possess a number of singu-
larities (self-similarity, non-differentiabili-
ty and precision) and can be used in radio 
engineering applications.
Methods of modification of probed fractal 
signals for more effective expenditure by 
them of frequency-power resources are of-
fered. Therefore, have been entered into re-
viewing a fractal signal with a compressed 
spectrum and the aligned fractal signal. 
Conditions, at which there is no loss of 
complexity of original signals at passage 
to the modified, are found.
Experiments on reserved transmission of a 
voice message by means of fractal signals 
on a communication channel with a white 
noise are made. Two transmission schemes 
of the information by means of a new type 
of signals are developed.
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