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Validating the INTERPRETOR 
Software Architecture for 

the Interpretation of Large 
and Noisy Data Sets

ABSTRACT

In this chapter, the authors validate INTERPRETOR software architecture as a dataflow model of com-
putation for filtering, abstracting, and interpreting large and noisy datasets with two detailed empirical 
studies from the authors’ former research endeavours. Also discussed are five further recent and distinct 
systems that can be tailored or adapted to use the software architecture. The detailed case studies pre-
sented are from two disparate domains that include intensive care unit data and building sensor data. 
By performing pattern mining on five further systems in the way the authors have suggested herein, they 
argue that INTERPRETOR software architecture has been validated.

INTRODUCTION

In many domains there is a need to interpret high 
frequency noisy data. Interpretation of such data 
may typically involve pre-processing of the data 
to remove noise. Rather than reasoning on a point-
to-point basis which is computationally expensive, 
this filtered data would be processed to derive 
abstractions which would be interpreted and the 

results reported. Such a common approach lends 
itself to the development of a software architecture.

Software architectures involve the descrip-
tion of elements from which systems are built, 
interactions among those elements, patterns that 
guide their composition, and constraints on these 
patterns. In general, a particular system is defined 
in terms of a collection of components and inter-
actions among these components. Such a system 
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may in turn be used as a (composite) element in a 
larger system design. Software architectures can 
act as a model of computation for data flows in a 
system. Indeed, a good software architecture will 
involve reuse of established engineering knowl-
edge (Shaw & Garlan, 1996).

In this paper we will describe and validate the 
INTERPRETOR software architecture for inter-
preting large and noisy data sets. INTEREPRE-
TOR was inspired by the software architecture 
of ASSOCIATE (Salatian & Oriogun, 2011) for 
interpreting Intensive Care Unit monitor data and 
ABSTRACTOR (Salatian, 2010) for interpreting 
building sensor data - both systems have common 
features which facilitates a generic architecture. 
INTERPRETOR consists of 3 consecutive 
processes: Filter which takes the original data 
and removes noise; Abstraction, which derives 
abstractions from the filtered data; and Interpre-
tation, which takes the abstractions and provides 
an interpretation of the original data.

THE INTERPRETOR SOFTWARE 
ARCHITECTURE

Figure 1 shows the Context Diagram of the INTER-
PRETOR system. The INTERPRETOR system 
takes high frequency noisy data and other relevant 
data to assist in interpretation from various input 
sources and presents to various output sources an 
interpretation of the original data.

Figure 2 shows the data flow in the INTER-
PRETOR system of Figure 1. Data is initially 
filtered to get rid of noise; rather than reasoning 
on a point to point basis, the resulting data stream 
is then converted by a second process into abstrac-
tions – this is a form of data compression. A third 

process to provide an assessment of the original 
data interprets these abstractions.

We, therefore, derive the overall software ar-
chitecture of the INTERPRETOR System in form 
of a Structure Chart as shown in Figure 3.

It can be seen that INTEREPRETOR is a data 
flow architecture and model of computation. The 
architecture is decomposed into three processes, 
which can be changed or replaced independently 
of the others - this makes INTERPRETOR a 
loosely coupled system. Indeed, each process of 
the INTERPRETOR performs one task or achieves 
a single objective - this makes the INTERPRE-
TOR a highly cohesive system. INTERPRETOR 
can also be considered a pipe and filter architec-
tural style because it provides a structure for 
systems that process a stream of data.

We hope to extend our INTERPRETOR design 
architecture, such that we have a generic design 
pattern for voluminous and high frequency noisy 
data, whereby, the data is passed through three 
consecutive processes: Filter Data which takes the 
original data and removes outliers, inconsistencies 
or noise; Abstraction which takes the filtered data 
and abstracts features from the filtered data; and 
Interpretation which uses the abstractions and 
generates an interpretation of the original data.

APPLICATIONS OF THE 
INTERPRETOR SOFTWARE 
ARCHITECTURE

We will demonstrate the application of the IN-
TERPRETOR software architecture to two case 
studies from the author’s research endeavours: 
interpreting Intensive Care Unit (ICU) Monitor 
Data and interpreting building monitor data.

Figure 1. Context diagram of the INTERPRETOR system
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Case Study 1: Interpreting 
ICU Monitor Data

The ICU bedside monitors confront the medical 
staff with large amounts of continuous noisy 
data - this is emphasised when there are many 
cardiovascular parameters such as the heart rate 
and blood pressure being recorded simultaneously. 
The frequency of the data can be higher than 1 
value every second which creates information 
overload for medical staff who need to interpret 
the data to evaluate the state of the patient.

A system called ASSOCIATE (Salatian, 2003) 
has been developed using the INTERPRETOR 
software architecture to interpret the ICU monitor 
data. We shall describe how ASSOCIATE imple-
mented each of the modules of the INTERPRE-
TOR software architecture.

Filter Module

Filtering is the process of removing certain noise 
like clinically insignificant events from the physi-
ological parameters. Clinically insignificant events 
which cannot be removed at this stage will be dealt 
with by the Interpretation process.

After various investigations of filtering tech-
niques, a median filter was chosen. The median 
filter involves a moving window which is centred 
on a point xn and if the window is of size 2k+1 the 
window contains the points xn-k to xn+k. By always 
choosing the median value in the window as the 
filtered value, it will remove transient features 
lasting shorter than k without distortion of the 
base line signal; features lasting more than that 
will remain. A summary of the algorithm for ap-
plying the median filter to our physiological data 
is shown in Figure 4.

Figure 2. Data flow diagram of the INTERPRETOR system

Figure 3. Overall software architecture of the INTERPRETOR system
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cal. Temporal knowledge allows temporal reason-
ing; interval-based and point-based reasoning. 
Interval-based temporal reasoning is achieved 
using the still_developing and together functions. 
Given a clinical condition which is described in 
terms of overlapping intervals, the still_developing 
function operates on the uncertain period between 
the hypothesised state and the confirmed state of 
the clinical condition. Here the still_developing 
function is satisfied if there is the correct temporal 
progression from the hypothesised state to the 
confirmed state. Similarly the together function 
operates on overlapping temporal intervals which 
make up clinically insignificant events. Here the 
together function is satisfied if the overall changes 

in all the individual parameters that make up the 
event all share a common time interval. Though 
defined differently, the together and still_devel-
oping functions take into account the expected 
changes of the individual parameters that make 
up specific events do not occur at exactly the 
same time.

Point-based temporal reasoning is used to 
determine the outcome of therapy. It is known 
that clinicians expect changes in parameters to be 
achieved by a lower and upper temporal bound rep-
resented as time points in the future. ASSOCIATE 
expresses point based temporal reasoning within 
temporal intervals. When therapy is administered 
at a specific point in time, we compare a (future) 

Figure 5. Algorithm for abstraction module

Figure 6. Possible templates for clinical conditions, insignificant events, and therapies
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Abstraction Module

Given continuous data (up to one value every 
second), it is computationally expensive to reason 
with each data value on a point-to-point basis - this 
data needs to be reduced by performing abstrac-
tion. Abstraction is the classification of filtered 
data generated by the filtering process into tem-
poral intervals (trends) in which data is steady, 
increasing and decreasing. One must decide the 
beginning and end of an interval since they are 
not known in advance.

Our algorithm for identifying trends involves 
following two consecutive sub processes called 
temporal interpolation and temporal inferencing. 
Temporal interpolation takes the cleaned data 
and generates simple intervals between consecu-
tive data point. Temporal inferencing takes these 
simple intervals and tries to generate trends - 
this is achieved using 4 variables: diff which is 
the variance allowed to derive steady trends, g1 
and g2 which are gradient values used to derive 
increasing and decreasing trends and dur which 
is used to merge 3 intervals based on the dura-
tion of the middle interval. Temporal Inferencing 
rules to merge 2 meeting intervals (ΔH2) and 3 
meeting intervals (ΔH3) use the 4 variables to try 
to merge intervals into larger intervals until no 
more merging can take place. The algorithm for 
abstraction is summarised in Figure 5. For further 
discussion of the algorithm the reader is advised 
to read (Salatian & Hunter, 1999).

Interpretation Module

Interpretation is based on defining a trend template 
for each event we wish to identify - examples of 
trend templates are shown in Figure 6. A trend 
template will specify criteria, which apply both 
within intervals and between intervals. The two 
relationships of interest between intervals are: 
meeting where the end time of one interval matches 
the start time of the other; and overlapping where 
there exists a time that is common to both intervals.

The algorithm for interpretation involves ap-
plying the templates to the temporal intervals. 
Clinically insignificant event and clinical condi-
tion templates initially have the status absent and 
therapy templates initially have the status working. 
The reasoning engine assesses the status of the 
templates (i.e hypothesised or confirmed) by 
evaluating the expressions located in the Hypoth-
esiseConditions and ConfirmConditions slots with 
the data. Actions to be performed when the tem-
plates are hypothesised or confirmed are pro-
vided in the HypothesiseActions and ConfirmAc-
tions slots. If we have a template which has a 
hypothesised status over a number of adjacent 
segments which are subsequently confirmed then 
in retrospect we change these hypothesised states 
to confirmed. This is a way of confirming our 
initial beliefs. All segments with clinically sig-
nificant templates that have confirmed states 
represent the interpretation.

Trend templates encompass three types of 
knowledge: temporal, differential and taxonomi-

Figure 4. Algorithm for filter data module
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interval which contains the therapy’s temporal 
bound (lower and upper) with the interval which 
contained the time of administration. We are 
interested in whether parameters have increased, 
decreased or remained the same in the future after 
the time of administration.

Since several clinical conditions may be 
described by the same patterns, differential 
knowledge can be used to eliminate possibilities 
and hence prevent unnecessary reasoning. Infor-
mation such as the patient record which contains 
the patient’s history can be used as differential 
knowledge.

Also within the trend templates there is 
taxonomical knowledge – since several clinical 
conditions have similar attributes, this enables 
us to represent them as a hierarchy of classes and 
subclasses. Such a representation allows more 
abstract clinical conditions to be identified – if a 
specific instance of a clinical conditions cannot be 
identified then the more general class of clinical 
condition to which it belongs is more likely to 
describe the data. For further discussion of the 
algorithm the reader is advised to read (Salatian, 
2003).

Results

ASSOCIATE has been tested on three datasets 
from an adult ICU and six datasets from a neonatal 
ICU each set covering about 60 hours of data. The 
data sets were taken in 1995 as part of a research 
project and the results were validated by a consul-
tant aneasthetist and a consultant neonatologist.

Overall, ASSOCIATE has a false-positive 
rate of 28.9% and a false-negative rate of 0.3% in 
identifying clinically insignificant events, a false-
positive rate of 10.7% and a false-negative rate 
of 0.15% in identifying clinical conditions and a 
false-positive rate of 0% and a false-negative rate 
of 87.9% in determining the outcome of therapy. 
Since all have a true positive rate, which is higher 
than its false positive rate, ASSOCIATE can be 
seen as a conservative system (Fawcett, 2003).

As an example, consider a three day data set 
taken from an ICU from from 00:01 on 22 April 
1995 to 23:59 on 24 April 1995; the frequency 
of the signal is one data item per minute. The 
expert or the tester had no prior knowledge of 
events that occurred within this data set. Figure 
7 depicts the physiological data from ICU patient 
monitors and Figure 8 depicts a graphical sum-
mary of the temporal intervals generated for each 
parameter by the Abstraction Module. Note that 
in the graphs HR represents the Heart Rate, BP 
represents the Blood Pressure, PO represents the 
Partial Pressure of Oxygen and TCO represents 
the Partial Pressure of Carbon Dioxide.

All clinically insignificant events were cor-
rectly identified and removed.

For the clinical condition interpretation, the 
expert agrees that ASSOCIATE identified all 11 
episodes of respiratory problems in the data. Of 
2 of these episodes, namely those identified from 
11:44 on 23/04/95 to 12:04 on 23/04/95 and from 
13:57 on 23/04/95 to 14:32 on 23/04/95 may have 
been pneumothoraxes. However, ASSOCIATE 
incorrectly identifies respiratory problems on 5 
occasions. ASSOCIATE also incorrectly identifies 
a pulmonary haemorrhage and a pneumothorax at 
the same time, though the expert agrees that there 
is a respiratory problem at this time. ASSOCI-
ATE also identified 3 separate episodes of shock 
of which the expert agreed with 2 of them. The 
expert also agrees in ASSOCIATE’s identifica-
tions of episodes of tachycardia and hypercarbia. 
However, a few of the episodes of hypoxaemia were 
incorrectly identified due to noisy data. Indeed, 
the expert agreed that ASSOCIATE recognised 
all clinical conditions in the data set i.e no clinical 
conditions were missed.

For the therapy interpretation, 6 therapies were 
administered. Of the 5 that worked ASSOCIATE 
correctly identifies 2 of them as working. ASSOCI-
ATE correctly identifies the therapy that did not 
work. The incorrect results were because of noisy 
data and approximate times of administration.
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Case Study 2: Interpreting 
Building Sensor Data

Building operators are confronted with large 
volumes of continuous data from multiple envi-
ronmental sensors which require interpretation. 
The ABSTRACTOR (Salatian & Taylor, 2008, 
Salatian & Taylor, 2011) system used the IN-
TERPRETOR software architecture to summarise 
historical building sensor data for interpretation 
and building performance assessment. We shall 
describe how ABSTRACTOR implemented each 
of the modules of the INTERPRETOR software 
architecture.

Filter Module

Initially data needs to be filtered to get rid of non-
significant events in environmental monitoring 
data. Due to the nature and frequency of the data, 
an average filter was chosen. The algorithm for 
the filter module is given in Figure 9

Abstraction Module

This module is exactly the same as the agglom-
erative approach used for case study 1 - for a 
discussion of this algorithm applied to building 
monitor data the reader is advised to read (Salatian 
& Taylor, 2004)

Figure 7. Original physiological data from ICU patient monitor
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planning and Realization. Document planning 
is responsible for selecting the ‘important’ data 
points from the input data and to organize them 
into a paragraph - this is a form of filtering. Micro 
planning is responsible for lexical selection and 
ellipsis - this is a form of abstraction of the filtered 
data. Realization is essentially responsible for 
ordering of the phrases in the output and also to 
perform punctuation tasks - this is analogous to 
the Interpretation module of the INTERPRETOR 
software architecture.

A similar approach is taken by (Turner et 
al, 2008) to generate textual summaries of geo-
referenced data based on spatial reference frames. 
From the initial data basic events are generated 
(filtered out) by a data analysis process which is 
then abstracted into higher-level concepts. The 
final stage is to interpret these messages in sen-
tence form for textual summarization.

(Sun et al, 2005) extract extra knowledge 
from click-through data of a Web search engine 
to improve web-page summarization. Among 
the 3,074,678 Web pages crawled, the authors 
removed those which belong to ‘World’ and 
‘Regional’ categories, as many of them are not in 
English - this filtering resulted in 1,125,207 Web 
pages, 260,763 of which are clicked by Web users 
using 1,586,472 different queries. Three human 
evaluators were employed to summarize (abstract) 
these pages. Each evaluator was requested to 
extract the sentences which he/she deemed to 
be the most important ones for a Web page. An 
interpretation of the precision of the query terms 
was finally reported.

(Knox et al, 2010) presented a case-based 
reasoning approach to activity recognition in a 
smart home setting. An analysis was performed 
on scalability with respect to case storage, and an 
ontology-based approach was proposed for case 
base maintenance - this could also lend itself 
to the INTERPRETOR software architecture. 
Firstly to create a cut-down (filtered) case base 
a reduction was made by firstly using a simple 

statistical technique, and then by semantically 
linking the case solutions with corresponding 
case features - this could be considered a form 
of abstraction. The case solutions were analysed 
and some had their accuracy reduced while others 
had theirs increased - this is considered a form of 
interpretation. The analysis was then reported in 
the form of graph.

CONCLUSION

The interpretation of large and noisy data is 
non-trivial - one approach is to have a software 
architecture which can be tailored and applied 
to different domains which have the same issues 
associated with the interpretation of data.

We have shown that research into trying to 
interpret large and noisy datasets do not actually 
follow any particular software architecture or 
framework - they just tell us about the ‘tactics’ 
they have employed in order to process such data. 
By conducting a detailed empirical study of the 
author’s former research endeavours and pattern 
mining five further systems, we believe that we 
have successfully argued that our INTERPRETOR 
software architecture allows systems to be adapted 
at a much higher level of abstraction to facilitate 
the interpretation of large and noisy data leaving 
the tactics to the individual modules.

Our future work will be towards developing a 
generic software tool for this software architecture, 
which should lend itself for reuse.
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VALIDATION OF THE INTERPRETOR 
SOFTWARE ARCHITECTURE

By performing pattern mining in the form of tai-
loring and adapting different systems to perform 
filtering, abstraction and interpretation we will 
now further validate the INTERPRETOR software 
architecture.

BT-45 (Portet et al, 2009) generates natural 
language textual summaries of continuous physi-
ological signals and discrete events from a Neona-
tal Intensive Care Unit. BT-45 could be adapted 
to use the INTERPRETOR software architecture. 
The first stage of BT-45 is Signal Analysis, which 
extracts the main features of the physiological time 
series - this fulfils the role of the Filter module 
of INTERPRETOR. BT-45 then performs Data 
Interpretation, which performs some temporal and 

logical reasoning to infer more abstract medical 
observations and relations from the signal features 
which can considered the Abstraction module 
of INTERPRETOR. The next stages of BT-45 
are Document Planning which selects the most 
important events from earlier stages and groups 
them into a tree of linked events then Microplan-
ning and Realisation which translates this tree 
into coherent text for reporting - collectively they 
could be considered the Interpretation module of 
INTERPRETOR.

Sumtime-Mousam (Sripada et al, 2003) is a 
text generator that produces textual marine weather 
forecasts for offshore oilrig applications. It uses 
a subset of the processes of BT-45 and also fol-
lows the INTERPRETOR software architecture. 
The architecture of SUMTIME-MOUSAM fol-
lows 3 processes: Document planning, Micro 

Figure 11. Output of ABSTRACTOR
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Interpretation Module

Given overlapping trends it is proposed, in the 
spirit of (DeCoste, 1991) they are split into global 
segments. A change in the direction of change of 
one (or more) channels or a change in the rate of 
change of one (or more) channels contributes to 
a split in the trends creating a global segment. A 
global segment can be considered as being a set 
of intervals - one for each channel.

The algorithm for interpretation involves ap-
plying rules to the global segments. Examples of 
rules for identifying faults are shown in Figure 
10 - here a fault is declared when the heat-flux 
does not have the same trend as the difference in 
internal and external temperature (t1-t0). If rules 
are true over adjacent global segments then one 
can determine when the fault started and ended.

Results

ABSTRACTOR has been tested on over eight 
days (12179 minutes) worth of continuous data 
(see Figure 11a). The data was the heat-flux into 
a wall and the difference in internal and external 
temperature (ti-t0) measurements; the sampling 
frequency of the signals is one data item every 
15 minutes. The expert or the tester had no prior 
knowledge of events that occurred within this data 

set. The application of the average filter (k=10 
filter provides a running five and a quarter hour 
running average) is shown in the middle graph 
(b) and the intervals generated are shown in the 
bottom graph (c).

Overall, ABSTRACTOR has a sensitivity of 
56%, specificity of 64%, and predictive value of 
43%, a false positive rate of 57% and a false 
negative rate of 24%. These results mean that 
when a fault is present ABSTRACTOR is detect-
ing it only 56% of the time but when there is no 
fault it will correctly identify this 64% of the time. 
Whilst it would seem that ABSTRACTOR is only 
slightly better than tossing a coin to decide the 
presence or absence of a fault it needs to be re-
membered that the actual fault conditions were 
derived from an expert’s manual abstraction of 
the raw data that is dependent on the expert’s at-
titude and experience. A direct comparison with 
the raw data is meaningless because the data is at 
intervals much shorter than the trends. If AB-
STRACTOR were to be incorporated in its pres-
ent state into a control system it would generate 
a high number of false alarms (57%) but would 
fail to detect a fault only 24% of the time. These 
results are indicating that ABSTRACTOR is a 
more liberal system than a random system (Faw-
cett, 2003).

Figure 10. Example of rules to apply to global segments
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Figure 8. Graphical summary generated by the abstraction module

Figure 9. Algorithm for filter data module
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KEY TERMS AND DEFINITIONS

Abstraction: This is the process of identifying 
features such as trends in the data.

Filter: This is the process identifying and 
retaining or removing outliers, inconsistencies 
or noise from the data.

Interpretation: An explanation of the data.
Pattern Mining: This is the process of finding 

or matching systems to a particular architecture 
or framework.

Software Architecture: This is the structure 
of a system, which comprises software elements 
and the relationships among them.

Temporal Inferencing: The process of using 
rules to merge consecutive intervals into larger 
intervals.

Temporal Interpolation: The process of 
creating an interval between 2 consecutive points.


