
135

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7

DOI: 10.4018/978-1-4666-2208-1.ch007

Validating the INTERPRETOR
Software Architecture for

the Interpretation of Large
and Noisy Data Sets

ABSTRACT

In this chapter, the authors validate INTERPRETOR software architecture as a dataflow model of com-
putation for filtering, abstracting, and interpreting large and noisy datasets with two detailed empirical
studies from the authors’ former research endeavours. Also discussed are five further recent and distinct
systems that can be tailored or adapted to use the software architecture. The detailed case studies pre-
sented are from two disparate domains that include intensive care unit data and building sensor data.
By performing pattern mining on five further systems in the way the authors have suggested herein, they
argue that INTERPRETOR software architecture has been validated.

INTRODUCTION

In many domains there is a need to interpret high
frequency noisy data. Interpretation of such data
may typically involve pre-processing of the data
to remove noise. Rather than reasoning on a point-
to-point basis which is computationally expensive,
this filtered data would be processed to derive
abstractions which would be interpreted and the

results reported. Such a common approach lends
itself to the development of a software architecture.

Software architectures involve the descrip-
tion of elements from which systems are built,
interactions among those elements, patterns that
guide their composition, and constraints on these
patterns. In general, a particular system is defined
in terms of a collection of components and inter-
actions among these components. Such a system

Apkar Salatian
American University of Nigeria, Nigeria

136

Validating the INTERPRETOR Software Architecture for the Interpretation of Large and Noisy Data Sets

may in turn be used as a (composite) element in a
larger system design. Software architectures can
act as a model of computation for data flows in a
system. Indeed, a good software architecture will
involve reuse of established engineering knowl-
edge (Shaw & Garlan, 1996).

In this paper we will describe and validate the
INTERPRETOR software architecture for inter-
preting large and noisy data sets. INTEREPRE-
TOR was inspired by the software architecture
of ASSOCIATE (Salatian & Oriogun, 2011) for
interpreting Intensive Care Unit monitor data and
ABSTRACTOR (Salatian, 2010) for interpreting
building sensor data - both systems have common
features which facilitates a generic architecture.
INTERPRETOR consists of 3 consecutive
processes: Filter which takes the original data
and removes noise; Abstraction, which derives
abstractions from the filtered data; and Interpre-
tation, which takes the abstractions and provides
an interpretation of the original data.

THE INTERPRETOR SOFTWARE
ARCHITECTURE

Figure 1 shows the Context Diagram of the INTER-
PRETOR system. The INTERPRETOR system
takes high frequency noisy data and other relevant
data to assist in interpretation from various input
sources and presents to various output sources an
interpretation of the original data.

Figure 2 shows the data flow in the INTER-
PRETOR system of Figure 1. Data is initially
filtered to get rid of noise; rather than reasoning
on a point to point basis, the resulting data stream
is then converted by a second process into abstrac-
tions – this is a form of data compression. A third

process to provide an assessment of the original
data interprets these abstractions.

We, therefore, derive the overall software ar-
chitecture of the INTERPRETOR System in form
of a Structure Chart as shown in Figure 3.

It can be seen that INTEREPRETOR is a data
flow architecture and model of computation. The
architecture is decomposed into three processes,
which can be changed or replaced independently
of the others - this makes INTERPRETOR a
loosely coupled system. Indeed, each process of
the INTERPRETOR performs one task or achieves
a single objective - this makes the INTERPRE-
TOR a highly cohesive system. INTERPRETOR
can also be considered a pipe and filter architec-
tural style because it provides a structure for
systems that process a stream of data.

We hope to extend our INTERPRETOR design
architecture, such that we have a generic design
pattern for voluminous and high frequency noisy
data, whereby, the data is passed through three
consecutive processes: Filter Data which takes the
original data and removes outliers, inconsistencies
or noise; Abstraction which takes the filtered data
and abstracts features from the filtered data; and
Interpretation which uses the abstractions and
generates an interpretation of the original data.

APPLICATIONS OF THE
INTERPRETOR SOFTWARE
ARCHITECTURE

We will demonstrate the application of the IN-
TERPRETOR software architecture to two case
studies from the author’s research endeavours:
interpreting Intensive Care Unit (ICU) Monitor
Data and interpreting building monitor data.

Figure 1. Context diagram of the INTERPRETOR system

137

Validating the INTERPRETOR Software Architecture for the Interpretation of Large and Noisy Data Sets

Case Study 1: Interpreting
ICU Monitor Data

The ICU bedside monitors confront the medical
staff with large amounts of continuous noisy
data - this is emphasised when there are many
cardiovascular parameters such as the heart rate
and blood pressure being recorded simultaneously.
The frequency of the data can be higher than 1
value every second which creates information
overload for medical staff who need to interpret
the data to evaluate the state of the patient.

A system called ASSOCIATE (Salatian, 2003)
has been developed using the INTERPRETOR
software architecture to interpret the ICU monitor
data. We shall describe how ASSOCIATE imple-
mented each of the modules of the INTERPRE-
TOR software architecture.

Filter Module

Filtering is the process of removing certain noise
like clinically insignificant events from the physi-
ological parameters. Clinically insignificant events
which cannot be removed at this stage will be dealt
with by the Interpretation process.

After various investigations of filtering tech-
niques, a median filter was chosen. The median
filter involves a moving window which is centred
on a point xn and if the window is of size 2k+1 the
window contains the points xn-k to xn+k. By always
choosing the median value in the window as the
filtered value, it will remove transient features
lasting shorter than k without distortion of the
base line signal; features lasting more than that
will remain. A summary of the algorithm for ap-
plying the median filter to our physiological data
is shown in Figure 4.

Figure 2. Data flow diagram of the INTERPRETOR system

Figure 3. Overall software architecture of the INTERPRETOR system

139

Validating the INTERPRETOR Software Architecture for the Interpretation of Large and Noisy Data Sets

cal. Temporal knowledge allows temporal reason-
ing; interval-based and point-based reasoning.
Interval-based temporal reasoning is achieved
using the still_developing and together functions.
Given a clinical condition which is described in
terms of overlapping intervals, the still_developing
function operates on the uncertain period between
the hypothesised state and the confirmed state of
the clinical condition. Here the still_developing
function is satisfied if there is the correct temporal
progression from the hypothesised state to the
confirmed state. Similarly the together function
operates on overlapping temporal intervals which
make up clinically insignificant events. Here the
together function is satisfied if the overall changes

in all the individual parameters that make up the
event all share a common time interval. Though
defined differently, the together and still_devel-
oping functions take into account the expected
changes of the individual parameters that make
up specific events do not occur at exactly the
same time.

Point-based temporal reasoning is used to
determine the outcome of therapy. It is known
that clinicians expect changes in parameters to be
achieved by a lower and upper temporal bound rep-
resented as time points in the future. ASSOCIATE
expresses point based temporal reasoning within
temporal intervals. When therapy is administered
at a specific point in time, we compare a (future)

Figure 5. Algorithm for abstraction module

Figure 6. Possible templates for clinical conditions, insignificant events, and therapies

138

Validating the INTERPRETOR Software Architecture for the Interpretation of Large and Noisy Data Sets

Abstraction Module

Given continuous data (up to one value every
second), it is computationally expensive to reason
with each data value on a point-to-point basis - this
data needs to be reduced by performing abstrac-
tion. Abstraction is the classification of filtered
data generated by the filtering process into tem-
poral intervals (trends) in which data is steady,
increasing and decreasing. One must decide the
beginning and end of an interval since they are
not known in advance.

Our algorithm for identifying trends involves
following two consecutive sub processes called
temporal interpolation and temporal inferencing.
Temporal interpolation takes the cleaned data
and generates simple intervals between consecu-
tive data point. Temporal inferencing takes these
simple intervals and tries to generate trends -
this is achieved using 4 variables: diff which is
the variance allowed to derive steady trends, g1
and g2 which are gradient values used to derive
increasing and decreasing trends and dur which
is used to merge 3 intervals based on the dura-
tion of the middle interval. Temporal Inferencing
rules to merge 2 meeting intervals (ΔH2) and 3
meeting intervals (ΔH3) use the 4 variables to try
to merge intervals into larger intervals until no
more merging can take place. The algorithm for
abstraction is summarised in Figure 5. For further
discussion of the algorithm the reader is advised
to read (Salatian & Hunter, 1999).

Interpretation Module

Interpretation is based on defining a trend template
for each event we wish to identify - examples of
trend templates are shown in Figure 6. A trend
template will specify criteria, which apply both
within intervals and between intervals. The two
relationships of interest between intervals are:
meeting where the end time of one interval matches
the start time of the other; and overlapping where
there exists a time that is common to both intervals.

The algorithm for interpretation involves ap-
plying the templates to the temporal intervals.
Clinically insignificant event and clinical condi-
tion templates initially have the status absent and
therapy templates initially have the status working.
The reasoning engine assesses the status of the
templates (i.e hypothesised or confirmed) by
evaluating the expressions located in the Hypoth-
esiseConditions and ConfirmConditions slots with
the data. Actions to be performed when the tem-
plates are hypothesised or confirmed are pro-
vided in the HypothesiseActions and ConfirmAc-
tions slots. If we have a template which has a
hypothesised status over a number of adjacent
segments which are subsequently confirmed then
in retrospect we change these hypothesised states
to confirmed. This is a way of confirming our
initial beliefs. All segments with clinically sig-
nificant templates that have confirmed states
represent the interpretation.

Trend templates encompass three types of
knowledge: temporal, differential and taxonomi-

Figure 4. Algorithm for filter data module

140

Validating the INTERPRETOR Software Architecture for the Interpretation of Large and Noisy Data Sets

interval which contains the therapy’s temporal
bound (lower and upper) with the interval which
contained the time of administration. We are
interested in whether parameters have increased,
decreased or remained the same in the future after
the time of administration.

Since several clinical conditions may be
described by the same patterns, differential
knowledge can be used to eliminate possibilities
and hence prevent unnecessary reasoning. Infor-
mation such as the patient record which contains
the patient’s history can be used as differential
knowledge.

Also within the trend templates there is
taxonomical knowledge – since several clinical
conditions have similar attributes, this enables
us to represent them as a hierarchy of classes and
subclasses. Such a representation allows more
abstract clinical conditions to be identified – if a
specific instance of a clinical conditions cannot be
identified then the more general class of clinical
condition to which it belongs is more likely to
describe the data. For further discussion of the
algorithm the reader is advised to read (Salatian,
2003).

Results

ASSOCIATE has been tested on three datasets
from an adult ICU and six datasets from a neonatal
ICU each set covering about 60 hours of data. The
data sets were taken in 1995 as part of a research
project and the results were validated by a consul-
tant aneasthetist and a consultant neonatologist.

Overall, ASSOCIATE has a false-positive
rate of 28.9% and a false-negative rate of 0.3% in
identifying clinically insignificant events, a false-
positive rate of 10.7% and a false-negative rate
of 0.15% in identifying clinical conditions and a
false-positive rate of 0% and a false-negative rate
of 87.9% in determining the outcome of therapy.
Since all have a true positive rate, which is higher
than its false positive rate, ASSOCIATE can be
seen as a conservative system (Fawcett, 2003).

As an example, consider a three day data set
taken from an ICU from from 00:01 on 22 April
1995 to 23:59 on 24 April 1995; the frequency
of the signal is one data item per minute. The
expert or the tester had no prior knowledge of
events that occurred within this data set. Figure
7 depicts the physiological data from ICU patient
monitors and Figure 8 depicts a graphical sum-
mary of the temporal intervals generated for each
parameter by the Abstraction Module. Note that
in the graphs HR represents the Heart Rate, BP
represents the Blood Pressure, PO represents the
Partial Pressure of Oxygen and TCO represents
the Partial Pressure of Carbon Dioxide.

All clinically insignificant events were cor-
rectly identified and removed.

For the clinical condition interpretation, the
expert agrees that ASSOCIATE identified all 11
episodes of respiratory problems in the data. Of
2 of these episodes, namely those identified from
11:44 on 23/04/95 to 12:04 on 23/04/95 and from
13:57 on 23/04/95 to 14:32 on 23/04/95 may have
been pneumothoraxes. However, ASSOCIATE
incorrectly identifies respiratory problems on 5
occasions. ASSOCIATE also incorrectly identifies
a pulmonary haemorrhage and a pneumothorax at
the same time, though the expert agrees that there
is a respiratory problem at this time. ASSOCI-
ATE also identified 3 separate episodes of shock
of which the expert agreed with 2 of them. The
expert also agrees in ASSOCIATE’s identifica-
tions of episodes of tachycardia and hypercarbia.
However, a few of the episodes of hypoxaemia were
incorrectly identified due to noisy data. Indeed,
the expert agreed that ASSOCIATE recognised
all clinical conditions in the data set i.e no clinical
conditions were missed.

For the therapy interpretation, 6 therapies were
administered. Of the 5 that worked ASSOCIATE
correctly identifies 2 of them as working. ASSOCI-
ATE correctly identifies the therapy that did not
work. The incorrect results were because of noisy
data and approximate times of administration.

141

Validating the INTERPRETOR Software Architecture for the Interpretation of Large and Noisy Data Sets

Case Study 2: Interpreting
Building Sensor Data

Building operators are confronted with large
volumes of continuous data from multiple envi-
ronmental sensors which require interpretation.
The ABSTRACTOR (Salatian & Taylor, 2008,
Salatian & Taylor, 2011) system used the IN-
TERPRETOR software architecture to summarise
historical building sensor data for interpretation
and building performance assessment. We shall
describe how ABSTRACTOR implemented each
of the modules of the INTERPRETOR software
architecture.

Filter Module

Initially data needs to be filtered to get rid of non-
significant events in environmental monitoring
data. Due to the nature and frequency of the data,
an average filter was chosen. The algorithm for
the filter module is given in Figure 9

Abstraction Module

This module is exactly the same as the agglom-
erative approach used for case study 1 - for a
discussion of this algorithm applied to building
monitor data the reader is advised to read (Salatian
& Taylor, 2004)

Figure 7. Original physiological data from ICU patient monitor

145

Validating the INTERPRETOR Software Architecture for the Interpretation of Large and Noisy Data Sets

planning and Realization. Document planning
is responsible for selecting the ‘important’ data
points from the input data and to organize them
into a paragraph - this is a form of filtering. Micro
planning is responsible for lexical selection and
ellipsis - this is a form of abstraction of the filtered
data. Realization is essentially responsible for
ordering of the phrases in the output and also to
perform punctuation tasks - this is analogous to
the Interpretation module of the INTERPRETOR
software architecture.

A similar approach is taken by (Turner et
al, 2008) to generate textual summaries of geo-
referenced data based on spatial reference frames.
From the initial data basic events are generated
(filtered out) by a data analysis process which is
then abstracted into higher-level concepts. The
final stage is to interpret these messages in sen-
tence form for textual summarization.

(Sun et al, 2005) extract extra knowledge
from click-through data of a Web search engine
to improve web-page summarization. Among
the 3,074,678 Web pages crawled, the authors
removed those which belong to ‘World’ and
‘Regional’ categories, as many of them are not in
English - this filtering resulted in 1,125,207 Web
pages, 260,763 of which are clicked by Web users
using 1,586,472 different queries. Three human
evaluators were employed to summarize (abstract)
these pages. Each evaluator was requested to
extract the sentences which he/she deemed to
be the most important ones for a Web page. An
interpretation of the precision of the query terms
was finally reported.

(Knox et al, 2010) presented a case-based
reasoning approach to activity recognition in a
smart home setting. An analysis was performed
on scalability with respect to case storage, and an
ontology-based approach was proposed for case
base maintenance - this could also lend itself
to the INTERPRETOR software architecture.
Firstly to create a cut-down (filtered) case base
a reduction was made by firstly using a simple

statistical technique, and then by semantically
linking the case solutions with corresponding
case features - this could be considered a form
of abstraction. The case solutions were analysed
and some had their accuracy reduced while others
had theirs increased - this is considered a form of
interpretation. The analysis was then reported in
the form of graph.

CONCLUSION

The interpretation of large and noisy data is
non-trivial - one approach is to have a software
architecture which can be tailored and applied
to different domains which have the same issues
associated with the interpretation of data.

We have shown that research into trying to
interpret large and noisy datasets do not actually
follow any particular software architecture or
framework - they just tell us about the ‘tactics’
they have employed in order to process such data.
By conducting a detailed empirical study of the
author’s former research endeavours and pattern
mining five further systems, we believe that we
have successfully argued that our INTERPRETOR
software architecture allows systems to be adapted
at a much higher level of abstraction to facilitate
the interpretation of large and noisy data leaving
the tactics to the individual modules.

Our future work will be towards developing a
generic software tool for this software architecture,
which should lend itself for reuse.

REFERENCES

DeCoste, D. (1991). Dynamic across-time mea-
surement interpretation. Artificial Intelligence, 51,
273–341. doi:10.1016/0004-3702(91)90113-X.

Fawcett, T. (2003). ROC graphs: Notes and prac-
tical considerations for data mining researchers.
Palo Alto, CA: HP Labs.

144

Validating the INTERPRETOR Software Architecture for the Interpretation of Large and Noisy Data Sets

VALIDATION OF THE INTERPRETOR
SOFTWARE ARCHITECTURE

By performing pattern mining in the form of tai-
loring and adapting different systems to perform
filtering, abstraction and interpretation we will
now further validate the INTERPRETOR software
architecture.

BT-45 (Portet et al, 2009) generates natural
language textual summaries of continuous physi-
ological signals and discrete events from a Neona-
tal Intensive Care Unit. BT-45 could be adapted
to use the INTERPRETOR software architecture.
The first stage of BT-45 is Signal Analysis, which
extracts the main features of the physiological time
series - this fulfils the role of the Filter module
of INTERPRETOR. BT-45 then performs Data
Interpretation, which performs some temporal and

logical reasoning to infer more abstract medical
observations and relations from the signal features
which can considered the Abstraction module
of INTERPRETOR. The next stages of BT-45
are Document Planning which selects the most
important events from earlier stages and groups
them into a tree of linked events then Microplan-
ning and Realisation which translates this tree
into coherent text for reporting - collectively they
could be considered the Interpretation module of
INTERPRETOR.

Sumtime-Mousam (Sripada et al, 2003) is a
text generator that produces textual marine weather
forecasts for offshore oilrig applications. It uses
a subset of the processes of BT-45 and also fol-
lows the INTERPRETOR software architecture.
The architecture of SUMTIME-MOUSAM fol-
lows 3 processes: Document planning, Micro

Figure 11. Output of ABSTRACTOR

143

Validating the INTERPRETOR Software Architecture for the Interpretation of Large and Noisy Data Sets

Interpretation Module

Given overlapping trends it is proposed, in the
spirit of (DeCoste, 1991) they are split into global
segments. A change in the direction of change of
one (or more) channels or a change in the rate of
change of one (or more) channels contributes to
a split in the trends creating a global segment. A
global segment can be considered as being a set
of intervals - one for each channel.

The algorithm for interpretation involves ap-
plying rules to the global segments. Examples of
rules for identifying faults are shown in Figure
10 - here a fault is declared when the heat-flux
does not have the same trend as the difference in
internal and external temperature (t1-t0). If rules
are true over adjacent global segments then one
can determine when the fault started and ended.

Results

ABSTRACTOR has been tested on over eight
days (12179 minutes) worth of continuous data
(see Figure 11a). The data was the heat-flux into
a wall and the difference in internal and external
temperature (ti-t0) measurements; the sampling
frequency of the signals is one data item every
15 minutes. The expert or the tester had no prior
knowledge of events that occurred within this data

set. The application of the average filter (k=10
filter provides a running five and a quarter hour
running average) is shown in the middle graph
(b) and the intervals generated are shown in the
bottom graph (c).

Overall, ABSTRACTOR has a sensitivity of
56%, specificity of 64%, and predictive value of
43%, a false positive rate of 57% and a false
negative rate of 24%. These results mean that
when a fault is present ABSTRACTOR is detect-
ing it only 56% of the time but when there is no
fault it will correctly identify this 64% of the time.
Whilst it would seem that ABSTRACTOR is only
slightly better than tossing a coin to decide the
presence or absence of a fault it needs to be re-
membered that the actual fault conditions were
derived from an expert’s manual abstraction of
the raw data that is dependent on the expert’s at-
titude and experience. A direct comparison with
the raw data is meaningless because the data is at
intervals much shorter than the trends. If AB-
STRACTOR were to be incorporated in its pres-
ent state into a control system it would generate
a high number of false alarms (57%) but would
fail to detect a fault only 24% of the time. These
results are indicating that ABSTRACTOR is a
more liberal system than a random system (Faw-
cett, 2003).

Figure 10. Example of rules to apply to global segments

142

Validating the INTERPRETOR Software Architecture for the Interpretation of Large and Noisy Data Sets

Figure 8. Graphical summary generated by the abstraction module

Figure 9. Algorithm for filter data module

146

Validating the INTERPRETOR Software Architecture for the Interpretation of Large and Noisy Data Sets

Knox, S., Coyle, L., & Dobson, S. (2010). Using
ontologies in case-based activity recognition. In
Proceedings of 23rd Florida Artificial Intelligence
Research Society Conference. St. Pete, FL: AIRSC.

Portet, F., Reiter, E., Gatt, A., Hunter, J. R. W.,
Sripada, S., Freer, Y., & Sykes, C. (2009). Au-
tomatic generation of textual summaries from
neonatal intensive care data. Artificial Intelligence,
173, 789–816. doi:10.1016/j.artint.2008.12.002.

Salatian, A. (2003). Interpreting historical ICU
data using associational and temporal reason-
ing. In Proceedings of 15th IEEE International
Conference on Tools with Artificial Intelligence.
Sacramento, CA: IEEE.

Salatian, A. (2010). A software architecture for
decision support of building sensor data. Inter-
national Journal of Smart Home, 4(4), 27–34.

Salatian, A., & Hunter, J. R. W. (1999). De-
riving trends in historical and real-time con-
tinuously sampled medical data. Journal of
Intelligent Information Systems, 13, 47–74.
doi:10.1023/A:1008706905683.

Salatian, A., & Oriogun, P. (2011b). A software
architecture for summarising and interpreting ICU
monitor data. International Journal of Software
Engineering, 4(1), 3–14.

Salatian, A., & Taylor, B. (2004). An agglom-
erative approach to creating models of building
monitoring data. In Proceedings of 8th IASTED
International Conference on Artificial Intelligence
and Soft Computing. Marbella, Spain: IASTED.

Salatian, A., & Taylor, B. (2008). ABSTRAC-
TOR: An agglomerative approach to interpreting
building monitoring data. Journal of Information
Technology in Construction, 13, 193–211.

Salatian, A., & Taylor, B. (2011). ABSTRACTOR:
An expert system for fault detection in buildings.
In Proceedings of 1st International Conference on
Intelligent Systems & Data Processing. Vallabh
Vidya Nagar, India: IEEE.

Shaw, M., & Garlan, D. (1996). Software archi-
tecture: Perspectives on an emerging discipline.
Englewood Cliffs, NJ: Prentice Hall.

Sripada, S., Reiter, E., & Davy, I. (2003). Sum-
Time-mousam: Configurable marine weather
forecast generator. Expert Update, 6(3), 4–10.

Sun, J.-T., Shen, D., Zeng, H.-J., Yang, Q., Lu,
Y., & Chen, Z. (2005). Web-page summarization
using clickthrough data. In Proceedings of 28th
Annual International ACM SIGIR Conference
on Research and Development in Information
Retrieval. ACM.

Turner, R., Sripada, S., Reiter, E., & Davy, I.
(2008). Using spatial reference frames to gener-
ate grounded textual summaries of georeferenced
data. In Proceedings of 5th International Natural
Language Generation Conference. Salt Fork,
OH: IEEE.

ADDITIONAL READING

Anthony, T., Babar, M. A., Gorton, I., & Han,
J. (2006). A survey of architecture design ratio-
nale. Journal of Systems and Software, 79(12),
1792–1804. doi:10.1016/j.jss.2006.04.029.

Anuj, S., Singhal, M., Gibson, T., Sivaramak-
rishnan, C., Waters, K., & Gorton, I. (2008). An
extensible, scalable architecture for managing
bioinformatics data and analyses. In Proceed-
ings of IEEE Fourth International Conference on
eScience ‘08. Indianapolis, IN: IEEE.

147

Validating the INTERPRETOR Software Architecture for the Interpretation of Large and Noisy Data Sets

Babar, M. A., & Gorton, I. (2009). Software
architecture reviews: The state of the practice.
IEEE Computer, 42(7), 26–32. doi:10.1109/
MC.2009.233.

Bass, L., Clements, P., & Kazman, R. (2003).
Software architecture in practice (2nd ed.). Read-
ing, MA: Addison-Wesley Professional.

Bosch, J. (2000). Design and use of software
architecture adopting and evolving a product-
line approach. Reading, MA: Addison-Wesley
Professional.

Bosch, J. (2004). Software architecture: The next
step. Lecture Notes in Computer Science, 3047,
194–199. doi:10.1007/978-3-540-24769-2_14.

Buschmann, F., Henney, K., & Schmidt, D. C.
(2007). Pattern-oriented software architecture:
On patterns and pattern languages. New York:
John Wiley and Sons.

Buschmann, F., Meunier, R., Rohnert, H., &
Sommerlad, P. (1996). Pattern-oriented software
architecture: Vol. 1. A system of patterns. New
York: Wiley.

Clements, P., Garlan, D., Bass, L., Stafford, J., Iv-
ers, J., & Little, R. (2002). Documenting software
architectures: Views and beyond. Upper Saddle
River, NJ: Pearson Education.

Clements, P., Garlan, D., Little, R., Nord, R., &
Stafford, J. (2003). Documenting software ar-
chitectures: Views and beyond. In Proceedings
of 25th International Conference on Software
Engineering. Portland, OR: IEEE.

Clements, P., Kazman, R., & Klein, M. (2001).
Evaluating software architectures: Methods and
case studies. Reading, MA: Addison-Wesley
Professional.

Dobrica, L., & Niemelä, E. (2002). A survey
on sftware architecture analysis methods. IEEE
Transactions on Software Engineering, 29(7),
638–653. doi:10.1109/TSE.2002.1019479.

Eeles, P., & Cripps, P. (2009). The process of
software architecting. Reading, MA: Addison-
Wesley Professional.

Fairbanks, G. H. (2010). Just enough software
architecture: A risk-driven approach. New York:
Marshall & Brainerd.

Gorton, I. (2008). Software architecture challenges
for data intensive computing. In Proceedings of
7th Working IEEE / IFIP Conference on Software
Architecture. Vancouver, Canada: IEEE.

Gorton, I. (2011). Essential software architecture.
Berlin: Springer-Verlag. doi:10.1007/978-3-642-
19176-3.

Gorton, I., Cuesta, C. E., & Babar, M. A. (Eds.).
(2010). Proceedings of software architecture, 4th
European conference, ECSA 2010. Copenhagen,
Denmark: ECSA.

Hofmeister, C., Kruchten, P., Nord, R. L., Obbink,
H., Ran, A., & America, P. (2005). Generalizing
a model of software architecture design from
five industrial approaches. In Proceedings of
5th Working IEEE/IFIP Conference on Software
Architecture. Pittsburgh, PA: IEEE.

Hofmeister, C., Nord, R. L., & Soni, D. (1999).
Applied software architecture. Reading, MA:
Addison Wesley.

Jansen, A., & Bosch, J. (2005). Software architec-
ture as a set of architectural design decisions. In
Proceedings of 5th Working IEEE/IFIP Confer-
ence on Software Architecture. Pittsburgh, PA:
IEEE.

Kamal, A. W., & Avgeriou, P. (2010). Mining rela-
tionships between the participants of architectural
patterns. In Proceedings of 4th European Confer-
ence on Software. Copenhagen, Denmark: IEEE.

148

Validating the INTERPRETOR Software Architecture for the Interpretation of Large and Noisy Data Sets

Knodel, J., Lindvall, M., & Muthig, D. (2005).
Static evaluation of software architectures-A
short summary. In Proceedings of 5th Working
IEEE/IFIP Conference on Software Architecture.
Pittsburgh, PA: IEEE.

Qian, K., Fu, X., Tao, L., & Xu, C. W. (2009).
Software architecture and design illuminated. New
York: Jones and Bartlett Publishers.

Schmidt, D. C., Stal, M., Rohnert, H., & Bus-
chmann, F. (2000). Pattern-oriented software
architecture: Vol. 2. Patterns for concurrent and
networked objects. New York: Wiley.

Taylor, R. N., Medvidovic, N., & Dashofy, E.
M. (2009). Software architecture: Foundations,
theory, and practice. New York: Wiley.

KEY TERMS AND DEFINITIONS

Abstraction: This is the process of identifying
features such as trends in the data.

Filter: This is the process identifying and
retaining or removing outliers, inconsistencies
or noise from the data.

Interpretation: An explanation of the data.
Pattern Mining: This is the process of finding

or matching systems to a particular architecture
or framework.

Software Architecture: This is the structure
of a system, which comprises software elements
and the relationships among them.

Temporal Inferencing: The process of using
rules to merge consecutive intervals into larger
intervals.

Temporal Interpolation: The process of
creating an interval between 2 consecutive points.

