Radiation exposure to dwellers due to naturally occurring radionuclides found in selected commercial building materials sold in Nigeria

O. Maxwell a,*, O.O. Adewoyin a, E.S. Joel a, C.O. Ehi-Eromosele b, S.A. Akinwumi a, M.R. Usikalu a, C.P. Emenike c, Z. Embong d, M. Hassaina e

a Department of Physics, College of Science and Technology, Covenant University, P.M.B 1023, Ota, Ogun State, Nigeria
b Department of Chemistry, College of Science and Technology, Covenant University, P.M.B 1023, Ota, Ogun State, Nigeria
c Department of Civil Engineering, College of Engineering, Covenant University, P.M.B 1023, Ota, Ogun State, Nigeria
d Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, BatuPahat, Johor, Malaysia
e Department of Geology, University of Johannesburg Auckland Park 2006 Kingsway & University (APK campus) Johannesburg, South Africa

A R T I C L E I N F O

Article history:
Received 13 November 2017
Accepted 24 January 2018
Available online xxx

Keywords:
Radium equivalent
Gamma spectrometry
Radiological risks
Tiles
Marbles and sand

A B S T R A C T

The activity concentration of 226Ra, 232Th and 40K was measured in commonly building materials used in Nigeria from commercial supplier using High Purity Germanium Gamma (HPGe) detector. The mean activity concentrations in the samples were found to be 51.5 ± 9.3, 72.46 ± 17.65 and 217.05 ± 44.31 Bq kg$^{-1}$ for 226Ra, 232Th and 40K respectively. The highest radium equivalent (Ra_{eq}) of 273.9 Bq kg$^{-1}$ was noted in Perfect Superfix White Ceramic (Nigeria) but found to be < 370 Bq kg$^{-1}$ as the recommended dose limiting safe value for bulk media as presumed, the highest value of internal hazard index (H_{in}) and external hazard index (H_{ex}) of 0.894 and 0.744 respectively were also < 1. The absorbed dose rate (D_R) with a value of 122.52 nGy h$^{-1}$ noted in ceramic tile sample is higher than the weighted population world average value of 80 nGy h$^{-1}$ by a factor of 1.53. The highest annual effective dose rate (AEDR) of 0.601 mSv y$^{-1}$ reported in PNT ceramics but was found to be less than 1 mSv y$^{-1}$. The investigated materials have the values of H_{in}, H_{ex} and AEDR greater than 0.5 but less than 1, showing that the dose impact exceeds the exemption dose level of 0.3 mSv y$^{-1}$ for AEDR but complies to the upper limit of dose principle of 1 mSv y$^{-1}$.

© 2018 The Egyptian Society of Radiation Sciences and Applications. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

It is really of importance to understand better the risk accompanied with the exposure of a population to the radiations emitted from building materials (Joshua, Ademola, Akpanowo, Oyebanjo, & Olorode, 2009). This exposure occurs on a daily basis and the ability of the radionuclides to move rapidly in air allows them to be easily transmitted into the environment in which humans come in contact with (Gupta, & Chauhan, 2009). There are two major aspects of radionuclides that should be considered when describing the exposure of a population to the radiation they release; which are, their distribution among different rocks and their concentration. Also, the distribution of rocks can be classified into two major categories; the source rocks and their associated radionuclide escape and environmental migration processes. The concentration of these radionuclides depends on the rock geology; hence, igneous rocks will have a high concentration such as in granites (Ademola, 2009).

The major elements associated with the naturally occurring radioactive materials (NORM) are 238U, 232Th, and 40K (Kant, Upadhyay, Sonkawade, & Chakravarti, 2006). While the parent element 238U does not have adverse effect on the environment, the inhalation of its daughter element 226Rn is known to pose a risk of lung cancer. These three radioactive elements present themselves as the major contributors to radiation in the environment having several effects on the general public. It has been discovered that the general public spends 80% of their time indoors; this brings about a...
0.4 mSv exposure rate for an average individual indoors per year as estimated by (WHO, 2009). This indoor radiation exposure is due to the presence of these radioactive elements in the building materials. This research is based on analyzing two of the most common building materials prone to have radioactive elements in them, measuring their level of concentration and therefore the possible annual exposure rate of people around those materials.

220Rn, a daughter element gotten as a result of the decay chain of 238U has the strongest effect on humans as it poses a threat of lung cancer on victims that have prolonged exposure to it, it has also been seen to have effects on the skin causing skin cancer as well as the kidney and bone marrow (Sahu, Bhangare, Ajmal, & Pandit, 2016). Due to its high level of transmission, food and water can also be contaminated thereby having effects on the stomachs and other internal organs of victims after injection of those contaminated foods (Kendall & Smith, 2002).

This study is aimed at ascertaining the signature of each concentration of radionuclides (226Ra, 232Th and 40K) in different brands of building materials and their radiological health risks on dwellers in Nigeria.

2. Geologic materials used in the production of tile and marble ceramics

Tiles, marbles and some other building materials are one of the end products of some geologic materials. Geologic materials are natural materials such as sand and granite. Majority of the tiles used in Nigeria are imported and only few are manufactured locally. Raw materials for ceramic tiles include kaoline, plasticity clay, feldspar, and quartz. These materials are crushed into powder, press moulded, calcined at high temperature and finally turned into ceramic tile. A typical ceramic body basically has a tripartite composition, which includes: clay which is used as the body former, feldspar which is used as the flux and quartz which serves as the filler. The clay used can be a single clay type or a mixture of clays (e.g. china clay, ball clay, fire clay and clays such as montmorillonite and illite clay etc.) which has to be plastic or miscible with water to form a plastic body that will give the tile its shape. Flux can be feldspar or nepheline having alkali oxides like Na$_2$O, K$_2$O, CaO which aids in firing the tile (sintering and densification). The filler which can be quartz (SiO$_2$), alumina (Al$_2$O$_3$), or zirconia (ZrO$_2$) gives mechanical strength to the tile. Apart from these basic raw materials, some additives (plasticisers, binders) and other raw materials of magnesia bodies such as calcium can also be added. Tiles usually have glaze coating on top which is made of glass frits which are in turn prepared from wide varieties of oxides and also have colourants.

3. Materials and methods

3.1. Sample collection and preparation for gamma analysis

The building material samples used for this work were purchased from the Nigerian commercial markets and the river sand was scooped from a nearby river at Igboloe village in Ota, Ogun state, Nigeria. Initial labeling and cataloguing was done for easy identification. The ceramic tiles and the marbles were broken into smaller pieces so as to allow further processing. All the samples were crushed using the Pascal Engineering Lab milling machine to pulverizable size. After each tile sample was crushed, the crusher or lab milling machine was thoroughly cleaned with high pressure blower (Wolf from Kango Wolf power tools, made in London, type 8793 and serial no: 978A) before the next sample was crushed. This whole process was repeated until all the samples were completely crushed into powder. The pulverizer used is the disk ‘grinder/ pulverizer’ by Christy & Norris Limited. After each pulverizing process, the machine was cleaned properly and blown with high pressure blower to avoid cross contamination of the samples (Omeje, Wagiran, Joel, Adewooyin, & Kayode, 2016, Joel, Maxwell, Adewooyin, Cyril, & Saeed, 2017). A very fine power was achieved from the pulverized samples, but for homogeneity, a 250 µm sieve size was used and 1 kg of the sieved sample was weighed out. It was then placed in polythene nylon and labeled accordingly. High density polyethylene bottles (HDPE) were used to package the samples for radioactivity study. The bottles were washed with water and detergent and then rinsed six times with ordinary borehole water before making a final rinse with distilled water. The sieved samples of ceramic tiles, cement, river channel sand (sharp & plaster) and white cements (2 Nigerian made and 1 from UAE) that were contained in each bottle weighed 200 g; there was a total of 25 samples in all.

3.2. Gamma spectrometric analysis of the selected samples

Different brands of imported and locally produced ceramic tiles, marbles and cements used for building materials were purchased from different suppliers and were prepared according to IAEA TRS-295 (Holm & Ballestra, 1989). The samples were put in a plastic beaker container sealed for secular equilibrium. Analysis of the samples was conducted in Canada (Activation Laboratory Analysis System) using High-Resolution Germanium detector, Canberra Lynx™ Digital Signal Analyzer (DSA), a 32 K channel integrated signal analyzer and a top-opening lead shield (4” lead, copper/tin liner) to prevent high background counts with 50% relative efficiency and resolution of 2.1 keV at 1.33 MeV gamma energy of 60Co. The Genie-2K V3.2 software locates and analyzes the peaks, subtracts background, identifies the nuclides. The efficiency curves for this analysis were corrected for the attenuation and self-absorption effects of the emitted gamma photons. CAMET and IAEA standards (DL-1a, UTS-2, UTS-4, IAEA-372 and IAEA-447) were used for checking the efficiency calibration of the system. For the activity measurements, the samples were counted for 86,400 s with the background counts subtracted from the net count. The minimum detectable activity of the detector was determined with a confidence level of 95% (Currie, 1968). The uncertainty errors were estimated keeping into account the associated errors from gamma counting emission probability and efficiency calibration standard of the system. The progeny of radium, 214Bi and 214Pb emits gamma line 609 keV, 934 keV, 2204 keV, 2140 keV, 2380 keV and 2389 keV. The gamma line of 1461 keV 228Th and 1461 keV 228Act were detected, the estimated activity via its progeny 228Th and 228Act using 2614.53 keV, 232Th and 40K measured in building material samples.

4. Results and discussion

4.1. Activity concentrations of 238U, 232Th and 40K measured in building material samples

The activity concentrations of 226Ra, 232Th and 40K measured in the building material samples of different brands were found to be non-uniformly distributed as presented in Table 1.

4.1.1. Tiles

The activity concentrations of 226Ra varied from 25.5 ± 7.5 to
The mean values and Standard Deviation of the Activity Concentrations of 226Ra, 232Th and 40K (Bq kg$^{-1}$) for Different types of Building Materials.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Sample Origin</th>
<th>226Ra (Bq kg$^{-1}$)</th>
<th>232Th (Bq kg$^{-1}$)</th>
<th>40K (Bq kg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marble (India)</td>
<td>India</td>
<td>60.5 ± 3.5</td>
<td>59.5 ± 4.5</td>
<td>330 ± 10.5</td>
</tr>
<tr>
<td>Rose Marble (India)</td>
<td>India</td>
<td>55.5 ± 4.8</td>
<td>95.5 ± 6.9</td>
<td>140 ± 15.2</td>
</tr>
<tr>
<td>Royal Ceramics</td>
<td>Nigeria</td>
<td>58 ± 0.5</td>
<td>76 ± 6.2</td>
<td>630 ± 21.4</td>
</tr>
<tr>
<td>Goodwill Ceramics</td>
<td>Nigeria</td>
<td>53.5 ± 6.5</td>
<td>57 ± 6.5</td>
<td>240 ± 10.0</td>
</tr>
<tr>
<td>Royal Ceramics</td>
<td>Nigeria</td>
<td>40.5 ± 6.6</td>
<td>68 ± 6.5</td>
<td>380 ± 11.7</td>
</tr>
<tr>
<td>NISPRO</td>
<td>Nigeria</td>
<td>59.5 ± 2.5</td>
<td>78.5 ± 4</td>
<td>860 ± 16.4</td>
</tr>
<tr>
<td>Virony Glazed</td>
<td>China</td>
<td>30 ± 3.5</td>
<td>77 ± 3</td>
<td>290 ± 9.1</td>
</tr>
<tr>
<td>Time Ceramics</td>
<td>Nigeria</td>
<td>27 ± 7.5</td>
<td>96 ± 8.3</td>
<td>510 ± 13.6</td>
</tr>
<tr>
<td>Goodwill Vitrified</td>
<td>Nigeria</td>
<td>70.5 ± 2.6</td>
<td>81.5 ± 5.5</td>
<td>540 ± 14.3</td>
</tr>
<tr>
<td>PNT Vitrified Tiles</td>
<td>Nigeria</td>
<td>53 ± 3.5</td>
<td>67.5 ± 5.5</td>
<td>420 ± 12</td>
</tr>
<tr>
<td>PNT Ceramics</td>
<td>Nigeria</td>
<td>35.5 ± 7.4</td>
<td>67.5 ± 4.5</td>
<td>370 ± 10.5</td>
</tr>
<tr>
<td>IDDRIIS Floor Tiles (China)</td>
<td>China</td>
<td>65 ± 1.1</td>
<td>89.5 ± 4.3</td>
<td>740 ± 14.4</td>
</tr>
<tr>
<td>Royal Ceramics</td>
<td>Nigeria</td>
<td>60 ± 2</td>
<td>54 ± 2.5</td>
<td>240 ± 9.5</td>
</tr>
<tr>
<td>Golden Crown</td>
<td>Nigeria</td>
<td>37 ± 9.5</td>
<td>41 ± 4</td>
<td>390 ± 11.5</td>
</tr>
<tr>
<td>Puremie</td>
<td>India</td>
<td>51.5 ± 3.5</td>
<td>51 ± 2.5</td>
<td>820 ± 15.2</td>
</tr>
<tr>
<td>Virony Ceramics</td>
<td>India</td>
<td>81.5 ± 7.5</td>
<td>41.5 ± 8.5</td>
<td>570 ± 13.3</td>
</tr>
<tr>
<td>PNT</td>
<td>Nigeria</td>
<td>55.5 ± 8</td>
<td>95.5 ± 9.2</td>
<td>940 ± 19.2</td>
</tr>
<tr>
<td>Elephant Portland Cement</td>
<td>Nigeria</td>
<td>65 ± 8.5</td>
<td>73 ± 4</td>
<td>170 ± 8.2</td>
</tr>
<tr>
<td>Perfect Superfix White</td>
<td>Nigeria</td>
<td>38 ± 2.5</td>
<td>51 ± 9.6</td>
<td>360 ± 11</td>
</tr>
<tr>
<td>JK White Cement (UAE)</td>
<td>UAE</td>
<td>28 ± 1.5</td>
<td>101 ± 8</td>
<td>850 ± 15.4</td>
</tr>
<tr>
<td>Joy White Cement (Nigeria)</td>
<td>Nigeria</td>
<td>53.5 ± 7.5</td>
<td>92 ± 10</td>
<td>140 ± 7.9</td>
</tr>
<tr>
<td>IBETO Cement (Nigeria)</td>
<td>Nigeria</td>
<td>65 ± 7.5</td>
<td>71 ± 6</td>
<td>380 ± 10.4</td>
</tr>
<tr>
<td>Sharp Sand Igboiye village</td>
<td>Ota (Nigeria)</td>
<td>76.5 ± 2.5</td>
<td>87 ± 8.5</td>
<td>670 ± 13.6</td>
</tr>
<tr>
<td>Dangote Cement (Nigeria)</td>
<td>Nigeria</td>
<td>35.5 ± 7.5</td>
<td>68 ± 5.5</td>
<td>430 ± 12.5</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>51.5 ± 9.3</td>
<td>72.46 ± 17.65</td>
<td>217.05 ± 44.31</td>
</tr>
</tbody>
</table>

81.5 ± 7.5 Bq kg$^{-1}$ with the lowest value of 27 ± 7.5 Bq kg$^{-1}$ reported in Time ceramic tile, whereas the highest value of 81.5 ± 7.5 Bq kg$^{-1}$ was noted in virony ceramic tile. For 232Th, the activity concentrations varies from 41.5 ± 8.5 to 96 ± 8.3 Bq kg$^{-1}$ with the highest value of 96 ± 8.3 Bq kg$^{-1}$ noted in virony ceramic tile whereas a lower value of 41.5 ± 8.5 Bq kg$^{-1}$ was observed in virony ceramics. The activity concentration of 40K measured in the samples varies from 240 ± 9.5 Bq kg$^{-1}$ to 940 ± 19.2 Bq kg$^{-1}$ with the highest value of 940 ± 19.2 Bq kg$^{-1}$ noted in PNT ceramic tiles whereas the lowest value of 240 ± 9.5 Bq kg$^{-1}$ was recorded in royal ceramic tiles.

4.1.4. Sand

A measured radioactivity level in sharp sand collected from Igboiye village in Ota, Ogun state, Nigeria where commercial sands are sourced was found to have activity values of 76.5 ± 1.5 Bq kg$^{-1}$, 87 ± 8.5 Bq kg$^{-1}$ and 670 ± 13.6 Bq kg$^{-1}$ for 226Ra, 232Th and 40K respectively.

4.2. Comparison of activity concentrations of 226Ra, 232Th and 40K in the present building material samples and values reported in other countries

In this present study, comparison of the activity concentrations measured in building materials and others reported elsewhere are presented in Table 2. In contrast, it can be observed that the concentration of both tiles and marbles are closer to other country’s reports for 226Ra, 232Th and 40K radionuclides such as the values which were reported by [3] to be: 52 ± 2 to 131 ± 4, 59 ± 1 to 127 ± 2, and 491 ± 2 to 979 ± 16 for 226Ra, 232Th and 40K respectively and by EU members Commission (2000) to be: 0 to 1000, 1 to 258, and 0 to 3200 in similar manner. Comparing the concentration values of cements under this study with other values obtained in other countries in Table 2, it can be observed that they are in good agreements and within range. For sand used in this present study, some values are distinctly lower than the values of 226Ra, 232Th and 40K radionuclides obtained in this study except for 40K that two values are far higher by factors of 1.18 and 1.50 respectively for sands obtained from China and South Korea.

4.2.1. Determination of the radiological parameters

4.2.1.1. Radium equivalent activity (R_{eq}). The level of radionuclides from 226Ra, 232Th and 40K in the analyzed building materials is non-uniformly distributed. The R_{eq} activity of the measured radionuclides is used to compare the activity of each of 226Ra, 232Th and 40K contents in the building materials. R_{eq} with unit as Bq kg$^{-1}$ was calculated using Equation (1).

$$R_{eq} = C_{Ra} + 1.43C_{Th} + 0.077C_{K}$$ (1)
where C_{Ra}, C_{Th} and C_K are the specific activities of 226Ra, 232Th and 40K measured in Bqkg$^{-1}$ respectively. This radium equivalent activity defines the weighted sum of the individual activities of 226Ra, 232Th and 40K with the idea that for 226Ra, Ra_{eq} is 10 Bq kg$^{-1}$, for 232Th, Ra_{eq} is 7 Bq kg$^{-1}$ and for 40K, Ra_{eq} is 130 Bq kg$^{-1}$. The same external and internal gamma dose rate is produced from the radium equivalent activity. The maximum value of Ra_{eq} in building materials must be less than 370 Bq kg$^{-1}$ as recommended by ICRP. This amount is equivalent to 1.5 mGy hr$^{-1}$ (UNSCEAR, 1988; Krieger, 1981). The radium equivalent activity values obtained from this present study varies from 115.66 to 273.9 Bqkg$^{-1}$ with the highest value of 237.9 Bqkg$^{-1}$ reported in Perfect Superfix White Cement (Nigeria) whereas the lowest value of 115.66 Bqkg$^{-1}$ was noted in Royal Ceramics tile. It can be observed that none of the Ra_{eq} values in all the measured samples exceeds the recommended limit of 370 Bqkg$^{-1}$ by UNSCEAR (1988), as presented in Table 3.

4.2.1.2. Absorbed dose rate (D_a)

In this present study, the absorbed dose rates calculated from the obtained activity concentrations are presented in Table 3. The total air absorbed dose rate received in an open air 1 m above the ground due to gamma emission from the radionuclides of 218U, 232Th and 40K in Bqkg$^{-1}$ available in an environment is calculated using Equation (2) (Beck, 1980; UNSCEAR, 1988; Omeje et al., 2016; Joel et al., 2017).

$$D_a = \frac{0.462 C_{Ra} + 0.604 C_{Th} + 0.0417 C_K}{\text{activity concentration}} < 80 \text{nGy hr}^{-1}$$

Considering the absorbed dose rates presented in Table 3, it can be observed that the highest value of 122.52 nGy hr$^{-1}$ was reported in virony ceramic tiles whereas the lowest value of 53.50 nGy hr$^{-1}$ was noted in royal ceramics. Comparing the absorbed dose rate in this present study with the standard value of 80 nGy hr$^{-1}$ recommended by UNSCEAR (1988), the highest value obtained in this present study is higher by a factor of 1.5.

4.3. The external absorbed dose rate

Details of the estimated outdoor external absorbed doses due to the existence of 226Ra, 232Th, and 40K are presented in Table 3. The outdoor external absorbed dose rate (D_{ext}) at 1 m above the ground level is computed from the -radiation arising from 226Ra, 232Th, and 40K assumed to be uniformly dispersed in the ground.
been reported by Akinloye et al. (2012) that, ... 0.744 with highest value noted in Virony ceramics, whereas the lowest value reported in Portland elephant cement. This highest value from the present study is lower than the world’s average value of 0.7 mSv y\(^{-1}\) for 226Ra, 0.599 mSv y\(^{-1}\) for 232Th, and 0.0417 mSv y\(^{-1}\) for 40 K were employed for estimation of \(\text{D}_{\text{Ex}}\). The conversion factors have been considered from literature of Beck, 1980; Akinloye, Isola, & Oladapo, 2012; Avwiri, Nte, & Olanrewaju, 2011; Qureshi et al., 2014. It has been reported by Akinloye et al. (2012) that, \(^{137}\text{Cs}, \(^{90}\text{Sr}, \(^{87}\text{Rb}, \(^{138}\text{La}, \(^{176}\text{Lu},\) and \(^{235}\text{U}\) decay series have negligible contributions to the total dose emanating from the environment background.

The \(\text{D}_{\text{Ex}}\) was estimated using Equation (3) as given by Usikalu and Akinymi (2007).

\[
\text{D}_{\text{Ex}} = 0.436\text{A}_{\text{Ra}} + 0.599\text{A}_{\text{Th}} + 0.0417\text{A}_{\text{K}} \text{ (nGy h}^{-1})
\]

The external absorbed dose from this present study varies from 53.50 to 122.52 nGy h\(^{-1}\). The average outdoor external absorbed dose due to the existence of 226Ra, 232Th, and 40 K in the samples is 84.5 nGy h\(^{-1}\). This value is higher than the world’s average value of 59 nGy h\(^{-1}\) by the factor of 1.4.

4.3.1. External hazard index

The gamma ray radiation hazards index due to the specified radionuclides were assessed by external radiation hazard and was calculated using Equation (4) according to UNSCEAR, 2000.

\[
\text{H}_{\text{ex}} = \frac{\text{A}_{\text{Ra}} \text{A}_{\text{Th}} \text{A}_{\text{K}}}{370} \text{ (H}_{\text{ex}} \text{ in } \text{nGy h}^{-1})
\]

where, \(\text{A}_{\text{Ra}}, \text{A}_{\text{Th}},\) and \(\text{A}_{\text{K}}\) are the average activity concentrations of 226Ra, 232Th and 40 K in Bq kg\(^{-1}\) respectively.

For the radiation hazard to be acceptable, it is recommended that the \(\text{H}_{\text{ex}}\) be less than unity. The estimated \(\text{H}_{\text{ex}}\) for all the samples varies from 0.386 to 0.744 with highest value noted in Virony ceramics, whereas the lowest value reported in Portland elephant cement. This highest value from the present study is lower than the recommended value of \(\leq 1\) according to UNSCEAR, 2000.

4.4. Annual effective dose equivalent (AEDE)

The indoors annual effective dose equivalent received by human is estimated from the indoor internal dose rate (\(\text{D}_{\text{In}}\), occupancy factor which is defined as the level of human occupancy in an area in proximity with radiation source; is given as 80% of 8760 h in a year, and the conversion factor of 0.7 Sv Gy\(^{-1}\) which is used to convert the absorbed doses in air to effective dose (UNSCEAR, 2000; Usikalu & Akinymi, 2007). The annual effective dose equivalent is estimated using Equation (5).

\[
\text{AEDE (mSv)} = \text{D}_{\text{In}} \text{ (nGy h}^{-1}) \times 8766 \text{ h} \times 0.8 \text{ (occupancy factor)} \times 0.7 \text{ Sv Gy}^{-1} \text{ (conversion factor)} \times 10^{-6}
\]

The value of the AEDE ranges from 0.262634 to 0.60 mSv y\(^{-1}\) with a mean value of 0.43 mSv y\(^{-1}\). The mean values from the samples is less than the world’s average value of 0.7 mSv y\(^{-1}\) by a factor 6.0. Details of all the samples are recorded in Table 4.

5. Conclusion

The building materials analyzed for this present study, both locally produced, imported and extensively used for building purposes for inhabitants in Nigeria indicates variations in radioactivity level. The mean activity concentration of 51.5 ± 9.3 BqKg\(^{-1}\) for 226Ra, 72.46 ± 17.65 BqKg\(^{-1}\) for 232Th and 217.05 ± 44.31 BqKg\(^{-1}\) for 40 K respectively were found in the samples. Considerably, higher activity concentrations were found in virony tiles, 60 × 60 mm and PNT ceramics with values of 81.5 ± 7.5 and 96 ± 8.3 for 226Ra and 232Th respectively but were found to be within the typical global range. The radium equivalent activity were found to be well below the recommended safe limit of 370 BqKg\(^{-1}\). All the hazard indexes were below the safe level of 1. The dose rate in few samples was higher with the mean value higher than the world average by a factor of 1.53. This present study indicates that most of the building materials do not pose significant radiation hazard and are safe for...
construction of dwellings, whereas DDRIS Floor Tiles (China) and PNT should be monitored for its natural radioactivity level when in use.

Acknowledgement

The authors would like to thank Covenant University management through Center for Research Innovation and Discovery research grant scheme with a No: CUCRID/VC/17/02/02-06-FS for their 100% financial support of this present study. The researchers appreciate Covenant University Ota for the grants given to embark on this research for the safety of our nation through Research Management Center Grant Scheme Number: CUCRID/VC/17/02/02-06-FS. Also, appreciation goes to Radiation Geophysics Research Group, Department of Physics, Covenant University Ota, for their scientific contribution to this work.

References

