IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 29, 2017, accepted December 27, 2017, date of publication January 10, 2018,

date of current version March 13, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2791344

A Suite of Object Oriented Cognitive

Complexity Metrics

SANJAY MISRA'2"", ADEWOLE ADEWUMI'
AND ROBERTAS DAMASEVICIUS*

I Covenant University, Ota 1023, Nigeria

2 Atilim University, 06830 Anakra, Turkey (on leave)

3Universidad de Alcala de Henares, 28871 Alcala de Henares, Spain
#Kauno Technologijos Universitetas, 51368 Kaunas, Lithuania

, LUIS FERNANDEZ-SANZ3,

Corresponding author: Adewole Adewumi (wole.adewumi@covenantuniversity.edu.ng)

This work was supported by Covenant University through the Centre for Research, Innovation and Discovery.

ABSTRACT Object orientation has gained a wide adoption in the software development community. To this
end, different metrics that can be utilized in measuring and improving the quality of object-oriented (OO)
software have been proposed, by providing insight into the maintainability and reliability of the system. Some
of these software metrics are based on cognitive weight and are referred to as cognitive complexity metrics.
It is our objective in this paper to present a suite of cognitive complexity metrics that can be used to evaluate
OO software projects. The present suite of metrics includes method complexity, message complexity,
attribute complexity, weighted class complexity, and code complexity. The metrics suite was evaluated
theoretically using measurement theory and Weyuker’s properties, practically using Kaner’s framework and

empirically using thirty projects.

INDEX TERMS Cognitive complexity, cognitive weights, empirical validation, software metrics.

I. INTRODUCTION

Object orientation is now a widely adopted approach in soft-
ware engineering because software built using this technique
is usually easier to maintain. Object-oriented (OO) software
development offers powerful features such as: dynamic bind-
ing, encapsulation, inheritance, interaction, polymorphism,
and reusability. Quite a number of metrics have been put
forth for evaluating OO software including: “Chidamber and
Kemerer (CK) metrics suite [1], MOOD metrics for OO
Design [2], design metrics for testing [3], product metrics
for object-oriented design [4], Lorenz and Kidd metrics [5],
Henderson—Seller et al. metrics [6], (slightly) modified CK
metrics [7], and size estimation of OO systems [8]”’. These
metrics often target specific phases of software development
such as design, implementation and testing. In addition, they
cover some features of OO languages as well as some quality
attributes, among which are: efficiency, correctness, integrity,
flexibility, maintainability, interoperability, reliability, porta-
bility, reusability, usability and testability [9]. Across the
aforementioned attributes, maintainability is considered as
the most essential attribute of software products [10]. In order
to predict critical information about the reliability and main-
tainability of software systems from automatic analysis of
source code, complexity metrics can be used [11].

Complexity metrics have a lot of potential uses which
include: provision of feedback during a software project to
help control the design activity, and provision of detailed
information about software modules to help pinpoint areas
of potential instability during testing and maintenance.
Cyclomatic complexity is the most widely used complexity
metric for computer software [12]. It is a software metric that
provides a quantitative measure of the logical complexity of
a program. The introduction of cognitive informatics to the
software engineering domain through the work of Wang [13]
has brought about the emergence of a new set of complexity
metrics referred to as cognitive complexity metrics. These
metrics introduce cognitive weights - which define the effort
required, relative time or extent of difficulty in comprehend-
ing software. In cognitive informatics, the functional com-
plexity of software in design and comprehension depends
on three key elements namely: its input, internal processing
and output [14]. Initially three basic control structures (BCS),
branch, iteration and sequence were identified [15]. However,
the work of Shao and Wang [14] modified these BCSs and
introduced what obtains in Table 1. These BCSs are the
fundamental logic building blocks of software.

The aim of this research is to validate the metrics suite
presented in a conference [16]. This includes theoretical

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

8782 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3556-9331
https://orcid.org/0000-0002-8115-8824

S. Misra et al.: Suite of Object Oriented Cognitive Complexity Metrics

IEEE Access

TABLE 1. BCSs with their respective cognitive weights (Wc).

Category BCSs Weight W,
Sequence Sequence (SEQ) 1
Branch If-then-else (ITE) 2

Case (CASE) 3
Iteration For-do (Ri) 3
Repeat-until (R0) 3
While-do (R1) 3
Embedded Component Function/Method call (FC) 2
Recursion (REC) 2
Concurrency Parallel (PAR) 4
Interrupt (INT) 4

and empirical validation as well as a robust compara-
tive study. The rest of this paper is structured as follows:
Section II presents existing cognitive complexity measures.
In Section III, the proposed metrics suite was explained
and demonstrated using an OO project. In Section IV,
a comprehensive validation of the proposed metrics suite
was conducted through theoretical and empirical validation.
A comparative study was also conducted. Section V con-
cludes the work while also pointing out areas of future
research.

Il. EXISTING COGNITIVE COMPLEXITY METRICS
This section reviews existing cognitive complexity metrics,
which include:

A. COGNITIVE FUNCTIONAL SIZE (CFS) OF SOFTWARE
The first cognitive complexity metric proposed was by Shao
and Wang [14] and is used to measure the cognitive func-
tional size (CFS) of software. The functional size of software
depends on its input, output and internal control flow and is
denoted by the formula:

CFS = (Ni + No) x W, ey

Where N;j is the number of program inputs, N, is the
number of program outputs and W, is the sum of the cognitive
weight of all basic control structures (BCSs).

Implementation of CFS is easy and technology indepen-
dent. It however excludes some essential details of cognitive
complexity such as information that is contained in the iden-
tifiers and operators. It also does not consider some unique
features of the object-oriented paradigm such as inheritance.

B. COGNITIVE INFORMATION COMPLEXITY

MEASURE (CICM)

It was put forth in [17] and is defined as, “‘the product
of weighted information count of software (WICS) and the
cognitive weight (Wc) of the BCS in the software i.e.

CICM = WICS*W, 2)

VOLUME 6, 2018

Where WICS is the sum of the weighted information count
(WICL) of every line of code (LOCs) of a given software
denoted as:

LOCS
WICS = Zk:l

WICL of software is a function of the identifiers and
operands per line of code as well as the number of lines of
code in that software. It is denoted as:

WICLy, 3)

WICLy = ICSy /[LOCs — k] “4)

Where LOCs is the number of lines in software and

ICSx is the information contained in a software program
for the kth line”.

Calculating this metric can be cumbersome especially
where the software contains several lines of code. In addition,
this metric does not take into consideration distinct features
of OO paradigm such as inheritance.

C. MODIFIED COGNITIVE COMPLEXITY

MEASURE (MCCM)

It was proposed in [18] and simplifies the complication asso-
ciated with CICM by taking into consideration all operators
and operands in a software program. The formula is given as:

MCCM = (Nj + Nip) x We ©)

Where Nj; is the total number of operators and

Nj, is the aggregate number of operands

W, is the aggregate of the cognitive weight of all basic
control structures (BCSs)

The drawback of this metric is that the values obtained
from its computation tend to be very large.

D. COGNITIVE PROGRAM COMPLEXITY

MEASURE (CPCM)

This metric was put forth on the premise that the cognitive
complexity of software is strongly affected by the total num-
ber of occurrences of input and output variables [19]. It is
denoted as:

CPCM = Sj0+ W, (6)
S0 = Ni +N, @)

Where N; is the total occurrence of input variables and

N, is the total occurrence of output variables

W, is the sum of the cognitive weight of all basic control
structures (BCSs)

However, the process of counting the number of inputs and
outputs has been criticized for being unclear and ambiguously
interpreted [20].

E. NEW COGNITIVE COMPLEXITY OF PROGRAM (NCCoP)

This measure was put forth in [20] to measure the cognitive
complexity of a program. It is based on data objects (consist-
ing of input and output), internal behaviour of the software,
the operands, and the individual weight of BCSs of every
line of code. This measure does not consider operators in its

8783

IEEE Access

S. Misra et al.: Suite of Object Oriented Cognitive Complexity Metrics

computation, which makes it unlike CICM and MCCM. The
measure is formulated as:

LOCS

LOCS
NCCoP = Zk:l Zv:l Ny, x We(k) (®)

Where, the first summation is the line of code from 1 to the
last LOC

Ny is the number of variables in a particular line of code

W, is the BCS weight

The drawback of this measure is that the process of count-
ing the number of variables per line of code is unclear and
ambiguously interpreted in [20].

F. INHERITANCE COMPLEXITY METRIC

This metric proposed in [21] can be used in evaluating the
design of OO code. According to the study, “it is based
on inheritance, which happens to be an important feature
of OO systems. The metrics is first interested in calculating
the complexity of methods by considering the corresponding
weights for each method of the class of the system denoted as:

me =" [TT,_, We kD] ©)

Where W, is the cognitive weight of the concerned BCS.
Thus, the method complexity of a software component is
defined as the sum of cognitive weights of its q linear blocks
composed of individual BCSs, since each block may consist
of m layers of nested BCSs and each layer with n linear BCSs.
Where methods in an OO code include recursive method
calls, each recursive method call is considered as a new
call and taken into account during the calculation of method
complexity.

The second stage of the metric calculates the complexity
of each class. MC gives the complexity of a single method
and so if there are several methods in a class then complexity
of an individual class is calculated by the summation of the
weights of all methods and is denoted as:

ClassComplexity(CC) = Z;—l MC, (10)

Where s is the number of methods in a class.

The third stage of this metric calculates the complexity of
the entire code by identifying the existing relations between
classes. For a system containing more than one class and the
classes are in the same level then their weights are added.
If however they are children of a class then their weights are
multiplied due to the inheritance property. For a system where
there are m levels of depth in the OO code and level j has
n classes then the cognitive code complexity (CCC) of the
system is given by:

cee =TT, [22, cci] (11

If there are more than one class hierarchies in a project,
then the CCCs of each hierarchy are added to calculate
the complexity of the whole system. The class complexity
unit (CCU) of a class is defined as the cognitive weight of the
simplest software component (single class, single method and

8784

linear structure) and is used as the basic unit for complexity”.
Among the aforementioned existing metrics, this metric is the
first to factor in inheritance in computing complexity of OO
systems.

G. SOFTWARE METRIC FOR PYTHON (SMPy)

This metric was proposed in [22] and computes the com-
plexity of python (or any other OO programming language)
code. According to the study, “it is computed by summing
up factors that affect complexity in OO code which include
complexity due to inheritance, complexity of distinct classes,
global complexity and complexity due to coupling between
classes. This is denoted as:

SMPy = Clclass + CDclass + Cglobal + Ccoupling (12)

Where Clclass is the complexity due to inheritance
CDclass is the complexity of distinct class
Cglobal is the global complexity
Ccoupling is the complexity due to coupling between
classes
Before calculating Clclass and CDclass however, the com-
plexity of a class (Cclass) is first determined and is formu-
lated as:
Cclass = weight(attributes)
+ weight(variables)
+ weight(structures)
+ weight(objects) — weight(cohesion) (13)
Where:
weight (attributes) and weight (variables) is defined as:

weight(attributes) = 4 x AND + MND (14)

weight(variables) = 4 x AND + MND (15)

AND is the number of Arbitrarily Named Distinct
Variables/Attributes

MND is the number of Meaningfully Named Distinct

Variables/Attributes
weight (structures) is defined as:

weight(structures) = weight (BCS) (16)
weight of objects is defined as:
weight(objects) = 2 a7

This is because creating an object is similar to calling a
function [22]
weight of cohesion is defined as:

weight(cohesion) = MA/AM (18)

MA is the number of methods where attributes are used
AM is the number of attributes used inside methods
Cglobal is defined as:

Cglobal = weight(variables)
+ weight (structures) + weight(objects) (19)

VOLUME 6, 2018

S. Misra et al.: Suite of Object Oriented Cognitive Complexity Metrics

IEEE Access

In computing Clclass, if the classes are in the same level
in the class hierarchy then their weights are added. If they are
children of a class then their weights are multiplied due to
their inheritance property. If there are m levels of depth in the
0O code and level j has n classes then the complexity of the
system due to inheritance is given as:

m

n
Clclass = 1_[[Zk:l CclaSSjk] (20)
j=1
CDclass is defined as:
CDclass = Cclass(x) + Cclass(y) + . .. 21

Ccoupling is defined as
Ccoupling = 2°¢ (22)

Where c is the number of connections made from one
method to other method(s) in another class™.

This metric majorly considers inheritance and gives as
result, a single value, which represents the complexity of OO
code. With this metric also, it is possible to determine which
factor contributes the most to an OO code’s complexity.

Aside these aforementioned metrics, Crasso et al. [23]
presented a set of software metrics that measure software
cognitive complexity in Java-based OO projects. In the study,
an automatic tool for gathering the metrics was implemented
as an Eclipse plug-in. The proposed metrics were validated
both theoretically and empirically using ten OO projects and
the results showed that the metric could be considered in
real development scenarios. Also, Sheela and Aloysius [24]
presented a Cognitive Weighted Coupling on Attribute Ref-
erence (CWCo0AR) complexity metric that measures not only
the software structural complexity of aspect-oriented pro-
grams but also the cognitive complexity on the basis of type.
In other words, the metric measures aspect level complexity.
It was validated through a statistical analysis, case study and
comparative study. Aside these, there are some other recent
studies [25]-[29] which might not necessarily be classified
as cognitive complexity measures. These were found to focus
more on the cohesion feature of OO projects.

H. MOTIVATION AND DISCUSSION

The popular CK metric suite has not considered the complex-
ity of the internal architecture of methods, which represents
the cognitive complexity. All the metrics in CK metric suite
are very simple and do not care for the complexity inside
the program or called method. Several metrics have been
proposed and are still being proposed for different object
oriented features but:

1) No suite has been proposed after the CK metrics suite,

2) No metric suite using cognitive complexity is in
existence.

3) The existing cognitive complexity metrics shown in
previous sections only consider some specific attributes
of object-oriented programming.

VOLUME 6, 2018

By considering all these pitfalls the aim of this research is
as follows

1) To propose a suite of metrics which considers all-
important features of OO.

2) To perform a complete validation on real projects
which include
a. Theoretical validation, which proves the scientific
base of the proposed metrics
b. Empirical validation, which proves the practical
application of metric on real projects
c. Comparative study, which proves the worth of the
proposed metrics

Computer

-name: char
-producer: char

+getName(): char
+getProducer(): char

f

Software Hardware

~cversion: char -CPU: char

-csupportedOS: char ~RAM: int

+Software() -HD: int

+getVersion(): char -05: char
+isAppropriate(csupportedQS| +getCPU(): char

+getRAM(): int

+getHD(): int

+get0S(): char
+check_supported_SW(s: software): void

Desktop Notebook

-weight: float

+Notebook(cname: char, cproducer: char,
ccpu: char, cram: int, chd: int,

cos: char, weight: float)
+getWeight(): void

-pcease: char

+Desktop(cname: char, cproducer: char,
cepu: char, cram: int, chd: int,

cos: char, ccase: char)

+getCase(): char

FIGURE 1. Class diagram of an object-oriented project.

IIl. PROPOSED METRICS SUITE AND DEMONSTRATION
From the aforementioned motivation, in this present study,
a metric suite for evaluating the cognitive complexity of
0O projects is presented. The proposed metric suite is an
integration of metrics that cover the crucial features of OO.
The metrics are adapted in a manner that each covers a distinct
0O feature gleaned from existing literature. More specifi-
cally, we analysed the existing metrics, selected those with
distinct features, suggested modifications where necessary
and then presented in a suite. The suite consists of five met-
rics namely: Attribute Complexity (AC), Method Complexity
(MC), Class Complexity (CLC), Message complexity also
referred to as Coupling Weight for a Class (CWC) and Code
Complexity (CC). In this section, we explain and demonstrate
the computation of these metrics through an object-oriented
project whose class diagram is given in Fig. 1. The full code
is given in Appendix 1.

A. METHOD COMPLEXITY (MC)

The method complexity of a software component can be
defined as, ““the sum of cognitive weights of its q linear blocks
composed of individual BCSs, since each block may consist

8785

IEEE Access

S. Misra et al.: Suite of Object Oriented Cognitive Complexity Metrics

of m layers of nested BCSs, and each layer with n linear
BCSs. This is calculated by considering corresponding cog-
nitive weights of structures in a class’ method(s)”. In other
words, we associate a weight (number) with each method of
a class and then sum the weights of all the methods. A formal
representation of the complexity of a single method is given
as follows:

me=30 ([T, X, weg:kn] @3

W, is the cognitive weight of the concerned Basic Control
Structure (BCS) as given in Table 1. The unit of MC is taken
as Code Complexity Unit (CCU). The method complexity for
the sample project illustrated in Fig. 1 (full implementation is
found in the Appendix), is calculated as follows:

M CgetName =M CgetProducer
q m n ;
=3 (T, Yo weGik] =1
So, the method complexity for class COMPUTER is:

MCcoMPUTER = MCgetName + MCgetProducer
=14+1=2CCU

The method check_supported_sw() of the class HARD-
WARE shows a more detailed example:

Mccheck_supponed_sw =1+Q+7+2=12,

Where 1 is for sequence and 2 is for call to method is
Appropriate() in class SOFTWARE with an MC value of 7.
The last 2 in the calculation is for the IF statement (see
Appendix 1 for full source).

Here is the full computation of method complexity for all
classes in Fig. 1:

MCcomputer = MCgetName + MCgetProducer
=14+1=2CCU

MCHARDWARE = MCgeicpu + MCgeraM + MCgetnp

+ MCyet0s +MCcheck_supported_sw

I1+1+1+1+12=16CCU

MCsortwaRE = MCsoftware + MCgetVersion

+ MCisAppropriate
=44+14+7=12CCU
MCpgskTop = MCdesktop + MCgetCase =1+1=2CCU

MCnoteBOOK = MChotebook + MCgetWeight
=141=2CCU

B. MESSAGE COMPLEXITY (COUPLING WEIGHT FOR A
CLASS (CwCQ))

Two classes are coupled when there is a message call in one
class for the other class [16]. According to the study, “if there
are message calls for other classes, the total number of such
messages as well as the weight of the called methods is added.
In other words, complexities due to message calls are the sum

8786

of weights of call (which is 2 from Table 1) and the weight of
called methods represented formally as:

CWC = Z:’:l Q2+ MC)) (24)

Where, 2 is the weight of the message to an external
method and MC; is the weight of the called method. If there
are n numbers of external calls, then the CWC is calculated
as the sum of weights of all message calls.

In the class given in Fig. 1, the class (HARDWARE)
includes one external message call to the SOFTWARE class
through the isAppropriate() method. We can therefore cal-
culate the coupling weight of the class HARDWARE as the
weight of the called methods™. This gives:

n
CWC = E) 1(2-|—MC,-)=2~|-7=9CCU
i=

C. ATTRIBUTE COMPLEXITY (AC)

This reflects complexity due to data members (attributes).
To compute it, “‘the total number of attributes associated
with a class is assigned as the complexity due to data mem-
bers” [16]. It can be represented formally as:

AC = Z; 1 (25)

Where n is total number of attributes. Therefore, the values
of the AC metric for COMPUTER, HARDWARE, SOFT-
WARE, DESKTOP and NOTEBOOK are 2, 4, 2, 1, and 1
respectively.

D. CLASS COMPLEXITY (CLC)

The complexity of a class is a function of the data attributes
and the methods. CLC is computed by summing the attribute
complexity as well as the aggregate of all the method com-
plexities of a class represented formally as:

cLc=Ac+y" MG, (26)
,7:

Where, AC is the attribute complexity

MC is the method complexity

Method complexity has already been calculated in
section III.A. Therefore, CLC values for the class in Fig. 1 is
given thus:

CLCcomputER = 2+2=4CCU
CLCuarDWARE = 16 +4 =20 CCU
CLCsorTwaRE = 12 +2 =14 CCU
CLCpgskrop = 2+ 1 =3 CCU
CLCnotEBOOK = 2+ 1 =3 CCU

E. CODE COMPLEXITY (CC)

In order to calculate the complexity of entire OO software,
“there is need to consider not only the complexity of all the
classes, but also the relations among them. In this regard,
emphasis is on the inheritance property because classes can
either be parent or children classes of others. In the case of
a child class, it inherits the features from the parent class.

VOLUME 6, 2018

S. Misra et al.: Suite of Object Oriented Cognitive Complexity Metrics

IEEE Access

Therefore in calculating code complexity of entire OO soft-
ware program the following is proposed:

If the classes are of the same level then their weights are
added

If they are subclasses or children of their parent then their
weights are multiplied

If there are m levels of depth in the OO code and level j has
n classes then the code complexity is represented formally as:

cC = ﬁ [Zzzl CLcjk] 27)
j=1

The unit of CC is taken as 1 Code Complexity Unit
(CCU)”.
The code complexity value of the class in Fig. 1 is thus:

CC = CLCcowmpuTeR “(CLCHARDWARE *(CLCDESKTOP
+ CLCNoTEBOOK) + CLCSOFTWARE)
— 420G +3) + 14)
= 536 CCU

Apart from the five metrics proposed in this section,
we discuss and demonstrate five others that help to give
additional information regarding the projects. The additional
metrics are presented as follows:

F. AVERAGE METHOD COMPLEXITY (AMC)

As the name implies, this is used to calculate the aver-
age method complexity for any given class by summing
the method complexities and dividing by the total number of
methods in the class. It is represented formally as:

amc=3Y" MCy/n (28)
p:

Where, MC is the method complexity
n is the total number of methods in a class.
Thus

AMCcompuTer = 2/2 = 1CCU
AMChHARDWARE = 16/5 = 3.2CCU
AMCsortwaRe = 12/3 = 4CCU
AMCpgskrop = 2/2 = 1CCU
AMCnoteBOOK = 2/2 = 1CCU

G. AVERAGE METHOD COMPLEXITY PER CLASS (AMCC)
This gives us the overall idea of the method complexity of a
project by summing the AMC values of all classes that make
up a project and then dividing by the number of classes in the
project. It is represented formally as:

amcc =y " [AMC /m (29)
p:

Where m is total number of classes in a project

AMC is the average method complexity of a project

Thus AMCC for the example being considered is the sum-
mation of the average method complexity of class computer,

VOLUME 6, 2018

hardware, software, desktop and notebook calculated as
follows:

AMCC=(1+32+4+1+4+1)/5=2.04 CCU

H. AVERAGE CLASS COMPLEXITY (ACC)

This gives an idea of the class complexity of a project by
summing its CLC value and dividing by total number of
classes represented formally as:

acc=>3" CLC/m (30)
p:

Where, “CLC is the complexity of a class and m is the total
number of classes.

ACC=(4+20+14+3+3)/5=88CCU

i.e. the average class complexity of the sample project is
8.8 CCU™.

I. AVERAGE COUPLING FACTOR (ACF)
This computes the average coupling that takes place in an OO
project and is represented formally as:

ACF = Z’"_l CWC Jk G1)

Where, CWC is the Coupling Weight for a Class and k is
the number of messages to other classes.

ACF=9/1=09

The average coupling factor for the project depicted
in Fig. 1 is 9 given that there is only one method call to an
external class Software from class Hardware.

J. AVERAGE ATTRIBUTES PER CLASS (AAC)
This is represented formally as:

AAC = Z;”:l AC/m (32)

Where, AC is the attribute complexity and m is the total
number of classes.

AAC=Q+4+2+1+1)/5=2

i.e. the average number of attributes per class is 2.

IV. VALIDATION OF THE PROPOSED METRICS SUITE

The objective of this section is to validate the proposed
object oriented cognitive complexity metrics suite. Valida-
tion is a very crucial aspect of the metrics proposition pro-
cess and as such should be structured in a manner that
will be easy to follow by the reader. We have performed
a rigorous validation process for our proposed metrics. To
achieve this, we followed the guidelines for conducting and
reporting case studies in software engineering conducted by
Runeson and Host [30]; we evaluated our metrics theoret-
ically, which includes the validation through measurement
theory. The research questions (RQ) that this case study
answered are:

8787

IEEE Access

S. Misra et al.: Suite of Object Oriented Cognitive Complexity Metrics

RQ1I: Do the metrics in the proposed suite qualify as effec-
tive measures?

RQ2: What do the metrics mean when applied on real
projects?

RQ3: Can the proposed metric suite be used in place of the
CK metric suite?

A. THEORETICAL VALIDATION

In the field of theoretical validation, a number of researchers
have proposed different criteria [31]-[41], to which proposed
software measures should adhere. In this study, we evalu-
ate our metrics against Weyuker’s properties and measure-
ment theory as suggested in the framework proposed by
Misra et al. [42]. The goal of theoretical validation is to ensure
that our proposed metrics fulfill some basic requirements to
qualify as effective measures thereby answering RQ1.

1) THROUGH WEYUKER's PROPERTIES

Table 5 shows the result of applying our proposed metrics
suite as well as the CK metrics suite to thirty object-oriented
projects taken from the Web. The CK metrics suite consists
of six metrics namely: Response for a Class (RFC), Weighted
Methods per Class (WMC), Number of Children (NOC),
Depth of Inheritance Tree (DIT), Coupling Between Object
classes (CBO) and Lack of Cohesion in Methods (LCOM).
Table 5 is used extensively in this section for the purpose of
validating our proposed metrics suite.

Property 1: (3 P) (3 Q) (|P| # |Q|), where P and Q are
object-oriented projects. By observing Table 5, it is clear that
among the projects evaluated, there exist a large number of
projects that give different values based on each of our metric
computation. Hence, this property holds for all our measures.

Property 2: Let ¢ be a non-negative number then there are
only finitely many projects of complexity c. All projects have
finite number of classes. Cohesion and coupling also takes
place between finite numbers of classes. In addition, classes
inherit from a finite number of other classes. Thus, given
that a project contains a finite number of classes (attributes
and methods) with cohesion, coupling and inheritance taking
place between these finite number of classes then there are
only finitely many projects that will be equal to the measure
c. Our metrics thus holds for this property.

Property 3: There are distinct projects P and Q such that
|P| = |QJ. As can be observed in Table 5, Projects 18, 19 and
21 are distinct projects that have the same complexity value
for MC, CWC, AC, CLC, and CC metrics and thus satisfy
this property.

Property 4: (3 P) (3 Q) (P = Q&|P| # |Q|). Based on
this property, it should be possible for two similar projects to
have different complexity values based on MC, CWC, AC,
CLC, and CC metrics. It can be observed from Table 5 that
although project 6 and project 10 are similar, they possess
different complexity values for each of the proposed metric.
This can also be observed between project 2 and project 4 as
well as between project 23 and project 24. Thus, this property
holds for our metrics.

8788

TABLE 2. Metrics values of classes hardware and software.

Class MC | CWC | AC | CLC | CC
HARDWARE (P) 16 9 4 20 20
SOFTWARE (Q) 12 0 2 14 14
COMBINED (P;Q) | 28 9 6 34 34

Property 5: (VP) (VQ) (IP| < |P; Qand |Q| < |P; Q|). This
property states that, “the complexity values of two classes
P and Q should be less than or equal to the complexity
of the composition of the two classes. Considering classes
Hardware and Software in Appendix 1 representing P and Q
respectively. Let P;Q be a combination of both classes. As can
be observed from Table 2, all the five metrics satisfy this
property”’.

Property 6: (3 P) (3 Q) @R) (IP| = [Q]) & (IP;R| #
|Q; R|). This property asserts that, we can find two classes
of equal MC, CWC, AC, CLC, and CC values which when
separately combined with a third class yields a class of dif-
ferent MC, CWC, AC, CLC, and CC values. In validating
our measures against property 5 of Weyuker’s properties,
we found out that for any two classes P and Q to have the same
complexity values; they must have similar structures (that
is, they must be composed in a similar manner). Therefore,
combining each of these (P, Q) with another class (R) will also
produce similar complexity values for each of our measures.
Therefore, our measures do not satisfy this property.

Property 7: There are projects P and Q such that Q is
formed by permuting the order of the statements of P, and
(IP| # |1QJ). Changing the order of the statements (methods
in particular) in a class without changing the functionality of
the class will not change its complexity value. Therefore, our
measures do not satisfy this property.

Property 8: If P is renaming of Q, then |P| = |Q|. Renam-
ing of a project does not change the value of our metrics. As a
consequence, this property is satisfied by all of our metrics.

Property 9: @P) 3Q) (1P| + Q| < [P; Q).

TABLE 3. Summary of evaluation of MC, CWC, AC, CLC and CC metrics
through Weyuker's properties.

Property | MC | CWC | AC | CLC | CC
1 v v v v v
2 v v v v v
3 v 4 4 v v
4 v v v v v
5 v v v v v
6 X X X X X
7 X X X X X
8 v 4 4 v v
9 v/ v v v v

From Table 2, it can be easily observed that our measures
do not satisfy the original Weyuker’s property. However,
the modified version of this property: (3 P) (3 Q) (|P| +
|Q| < |P; Q]) is more valuable in evaluating the complexity
metrics [38], [40]. Therefore if we refer to the same example
used in Property 5 and the metrics values for the classes given
in Table 2, it can be observed that all the metrics satisfy this
property. Table 3 gives a summary of the evaluation process

VOLUME 6, 2018

S. Misra et al.: Suite of Object Oriented Cognitive Complexity Metrics

IEEE Access

through Weyuker’s properties. The satisfied properties are
marked.

2) THROUGH MEASUREMENT THEORY

The research community has proposed diverse criteria to
which newly proposed measures should adhere. Most of the
propositions agree that newly proposed measures should at
least conform to some crucial requirements hinged on the
measurement theory perspective [43], [44]. Therefore, in this
section, we validate our proposed measures against measure-
ment theory using the Briand ef al. [33] framework. This
framework is reported to be more practical and often used by
researchers [45]. We begin our assessment by first providing
the basic definitions and desirable properties that make up the
framework.

Definition (Representation of Systems and Modules): “A
system S is represented as a pair <E, R>, where E represents
the set of elements of S, and R is a binary relation on E
(R € E x E) representing the relationships between S’s
elements” [33].

For our proposed complexity metrics suite, we take the
entities as classes — meaning E is a set of classes in S.
The binary relation on classes is chosen to be greater
than or equally complex.

Definition (Complexity): ““The complexity of a system S is
a function Complexity (S) that is characterized by the follow-
ing properties namely: non-negativity, null value, symmetry,
module monotonicity and disjoint module additive” [33].
We highlight these properties as follows in evaluating our
proposed measures:

Property Complexity 1 (Non-Negative): “The complexity
of a system S = <E, R> is non-negative if complexity (S) >
0 [33].

Proof: All the values obtained from each of our proposed
metrics are positive, this property is thus satisfied by all our
measures.

Property Complexity 2 (Null Value): “The complexity of
a system S = <E, R> is null if R is empty. This can be
formulated as:

R =) ==> complexity (S) = 0" [33].

Proof for MC Metric: If an OO code does not contain any
method, then it will have no complexity in terms of its method
hence this property is satisfied by MC metric.

Proof for CWC Metric: If coupling does not exist in any
given class the value of CWC will be zero as seen in Table 5
(value of metrics for PDB class) hence this property is satis-
fied by CWC metric.

Proof for AC Metric: If a given class contains no attributes
then naturally it will have no complexity value in terms of its
attribute hence this property is satisfied by AC metric.

Proof for CLC Metric: If a given class does not contain
any method then naturally the complexity value in terms of
weight (CLC) is zero and therefore this property is satisfied
by CLC metric.

Proof for CC Metric: If a given class contains no method
and attributes or inherits from a base class containing no

VOLUME 6, 2018

method nor attribute the resulting value for CC will be zero
hence this property is satisfied by CC metric.

Property Complexity 3 (Symmetry): ‘“The complexity of
a system S = <E, R> does not depend on the convention
chosen to represent the relationships between its elements.

(Let S = <E,R> and S™! = <E, R™!>) ==> Complex-
ity (S) = Complexity (S™1)” [33].

Proof: There is no effect on the complexity values of our
proposed metrics by changing the order or representation
because weights assigned to the method or class cannot
depend on the order or way of representation. Therefore, this
property is satisfied by all our complexity measures.

Property Complexity 4 (Module Monotonicity): *“The com-
plexity of a system S = <E, R> is no less than the sum of the
complexities of any two of its modules with no relationships
in common.

(Let S = <E, R> and for all m1 = <E;;, Ry;1> and m2
= <Em, Rpp>and ml1 Um2 C S and Ry N Ry = 0)
==> Complexity (S) > Complexity (m;) + Complexity
(m2)” [33].

Proof: For this property, if any class is partitioned into two
classes, the sum of the complexity values of its partitioned
classes will never be greater than the weights of the joined
class. This can be observed in Table 2 for all the proposed
measures. Therefore, this property holds for all our proposed
metrics.

Property Complexity 5 (Disjoint Module Additivity): “The
complexity of a system S = <E, R> composed of two
modules.

S=<E,R>and S = m; Ump, and m; N mp = @)
==> Complexity (S) = Complexity (m;) + Complexity
(m2)™ [33].

Proof: For the metric suite presented in this research, it can
be said that the complexity value of the class obtained by con-
catenating m; and m; is equal to the sum of their calculated
complexity values. If two independent classes are combined
into a single class then the weights of the individual classes
will be combined. Therefore, this property is also satisfied by
our proposed measures.

By fulfilling these properties, one may say that the pro-
posed complexity metric suite is on the ratio scale, which is
the most desirable property of complexity measures from the
point of view of measurement theory.

3) PRACTICAL VALIDATION WITH KANER’s FRAMEWORK
In addition to the theoretical validation using Weyukers’
properties and measurement theory, the framework given by
Kaner [31], Cherniavsky and Smith [43] can also be adopted
for evaluation of our metrics. This approach to metric valida-
tion is more practical than the formal approach of Weyukers’
properties and measurement theory. The framework is based
on providing answers to the following points:

Purpose of the Measures: The purpose of the measures is
to evaluate the complexity of object-oriented codes.

Scope of the Measure: Object-orientation is widely
adopted in the development of software - ranging from open

8789

IEEE Access

S. Misra et al.: Suite of Object Oriented Cognitive Complexity Metrics

source to proprietary software. Our measures can be used
within and across these projects.

Identified Attribute to Measure: The identified attributes
that our measures address are understandability and main-
tainability. These attributes determine the complexity of an
object-oriented code.

Natural Scale of the Attribute: The natural scales of the
attributes cannot be defined, since it is subjective and requires
the development of a common view about them.

Natural Variability of the Attribute: Natural variability of
the attributes can also not be defined because of their sub-
jective nature. It is possible that one can develop a sound
approach to handle such attribute, but it may not be complete
because other factors also exist that can affect the attribute’s
variability. In this respect, it is difficult to attain knowledge
about variability of the attribute.

Definition of Metric: The metrics suite has been formally
defined in Section III.

Measuring Instrument to Perform the Measurement:
We computed all the metrics manually — by hand. Further,
we aim at developing a tool /software for measuring the
proposed suite of metrics.

Natural Scale for the Metrics: The measures are on the
ratio scale as mentioned in Section IV, sub-section A and
number 2.

Relationship Between the Attribute and the Metric Value:
All the proposed metrics contribute to determining the overall
complexity of object-oriented code.

Natural Foreseeable Side Effects of Using the Instrument:
There are no side effects to using the instrument because once
we develop the complexity calculator, it would be very easy to
measure all the complexity measures without any extra effort
and additional workload of manpower. The only cost will be
the result of automation.

4) COMPARATIVE ANALYSIS AND CONCLUSION OF
THEORETICAL VALIDATION

It was needful to carry out the theoretical validation of our
proposed measures using more than one approach so that
the strengths of each could be brought to bear and also
complement each other. Weyuker’s properties for instance
offered us nine properties and our measures satisfied seven
out of the nine properties. These results were not convinc-
ing enough so we turned to the measurement theory, which
has been argued to be suitable replacement for Weyuker’s
properties [46]. Measurement theory has five properties all of
which were satisfied by our metrics suite. This shows that our
proposed measures are additive and on the ratio scale. Kaner’s
framework is a more practical approach to the validation of
the measures that involved asking practical questions to prove
the usefulness of the proposed measures.

B. EMPIRICAL VALIDATION

In the previous sections, we demonstrated how our metrics
suite could be applied to a simple OO project as illustrated
in Fig. 1. We have also conducted theoretical and practical

8790

validation. However, the true worth of a metrics suite is best
proved when applied on real projects. The goal of this section
therefore is to answer RQ2 that states thus: What do the
metrics mean when applied on real projects?

1) CASE SELECTION
There are several real projects that are adopting object orien-
tation. It is important however that selection be made from
those whose source files can be easily accessed. Therefore,
in this study, we chose thirty projects from the Web as
depicted in Table 4.

2) DATA COLLECTION AND ANALYSIS PROCEDURE

Thirty projects were taken from the Web as earlier mentioned
and the specific references are given in Table 4. Microsoft
Excel was used to automate the analysis procedure and the
results are as given in Table 5.

3) EMPIRICAL VALIDATION RESULTS

AND INTERPRETATIONS

The results of evaluating the 30 projects using our cognitive
complexity measures are shown in Table 5. From the columns
labelled Classes and Methods in Table 5 we observe that it is
possible to have projects with same number of classes and
methods as seen in project 2, 4 , 6 and 10 as well as projects
18 - 21. It can also be observed that the CLC metric value for
a project is equivalent to the sum of the MC and AC metric
values.

Lower MC values means lower complexity and increased
understandability of code. The factor that affects this is the
use of conditional (e.g. if-then statements) and iterative state-
ments (such as for or while statements) in methods. For
instance, projects 18, 19 and 21 (Table 5) have the lowest
MC value due to the fact that conditional statements and
iterative statements are absent in the methods that make up the
project. On the other hand, project 30, that has the highest MC
value, uses conditional and iterative statements repeatedly in
its methods. In addition, it can be observed that projects with
up to eight methods will usually have high values for MC
metric.

Lower values for CWC means there are less message calls
in one class to another within a project, which reduces com-
plexity and improves code understandability. From Table 5
we observe that project 7 has a CWC value of 0 meaning no
message calls between classes and thus is easier to understand
compared to project 8 that has a CWC value of 116 or project
27 with a CWC value of 366.

AC metric is simply a count of the number of attributes
that can be found in a project. It however plays a vital role
in helping to determine the value of CLC (i.e. the summation
of AC + MC). Since CLC is the result of summing AC with
MC, then it means that the higher the MC value of a project,
the higher its CLC value as well (see Table 5).

CC metric gives the overall complexity of OO project by
considering the inheritance property alongside the CLC value
(refer to section III, sub-section E). Projects with lower CC

VOLUME 6, 2018

S. Misra et al.: Suite of Object Oriented Cognitive Complexity Metrics

IEEE Access

TABLE 4. Projects used and their references.

Project Name Reference
1 maze_runner.py http://programarcadegames.com/python_examples/f.php?file=maze runner.py
2 bounce_ball with_paddle.py http://ProgramArcadeGames.com/python_examples/en/python_examples.zip
3 breakout simple.py http://ProgramArcadeGames.com/python_examples/en/python_examples.zip
4 bullets.py http://programarcadegames.com/python_examples/show _file.php?file=bullets.py
5 game_class_example.py http://programarcadegames.com/python_examples/show_file.php?file=game class example.py
6 move_with_walls_example.py http://programarcadegames.com/python_examples/f.php?file=move with _walls_example.py
7 platform_jumper.py http://programarcadegames.com/python_examples/f.php?file=platform jumper.py
8 platform_moving.py http://programarcadegames.com/python_examples/f.php?file=platform moving.py
9 platform_scroller.py http://programarcadegames.com/python_examples/f.php?file=platform_scroller.py
10 sprite_circle_movement.py http://programarcadegames.com/python_examples/show_file.php?file=sprite circle_movement.py
11 joystick calls.py http://programarcadegames.com/python_examples/show _file.php?file=joystick calls.py
12 move_sprite_game_controller.py http://programarcadegames.com/python_examples/show_file.php?file=move_sprite _game_controller.py
13 move_sprite_keyboard jump.py http://programarcadegames.com/python_examples/show _file.php?file=move sprite keyboard jump.py
14 move_sprite_keyboard smooth.py | http://programarcadegames.com/python _examples/show_file.php?file=move sprite keyboard smooth.py
15 move_sprite_mouse.py http://programarcadegames.com/python _examples/show_file.php?file=move sprite _mouse.py
16 move_sprites_bounce.py http://programarcadegames.com/python_examples/show_file.php?file=moving_sprites bounce.py
17 Sprite_collect_blocks_levels.py http://programarcadegames.com/python_examples/show_file.php?file=sprite_collect blocks levels.py
18 Sprite_collect_blocks.py http://programarcadegames.com/python_examples/show_file.php?file=sprite collect blocks.py
19 Sprite_collect_circle.py http://programarcadegames.com/python_examples/show_file.php?file=sprite_collect_circle.py
20 Sprite_collect_graphic.py http://programarcadegames.com/python_examples/show_file.php?file=sprite collect graphic.py
21 Spritesheet_functions.py http://ProgramArcadeGames.com/python_examples/en/python_examples.zip
22 Pong.py http://programarcadegames.com/python_examples/show _file.php?file=pong.py
23 Snake.py http://programarcadegames.com/python_examples/show _file.php?file=snake.py
24 tdemo_minimal_hanoi.py http://svn.python.org/projects/python/trunk/Demo/turtle/tdemo_minimal hanoi.py
25 bpnn.py http://arctrix.com/nas/python/bpnn.py
26 tictactoe.py https://gist.github.com/mawuli/5608979
27 player skeleton2.py http://www.blog.pythonlibrary.org/wp-content/uploads/2010/04/Music_Player.zip
28 player skeleton.py http://www.blog.pythonlibrary.org/wp-content/uploads/2010/04/Music_Player.zip
29 calc.py https://www.dropbox.com/s/2ss74kds98orack/calc.py
30 battleship.py https://code.google.com/p/cs188/source/browse/trunk/src/ScracthFolder/battleship.py?r=114&spec=svn1 14

values are less complex, easier to understand and maintain
compared to those with higher values. Projects 18, 19 and 21
(Table 5) all have the lowest CC value of 2. This is influ-
enced by several factors namely: low method complexity,
low attribute complexity which both impact on its CLC. The
depth of the inheritance tree is also small. On the other hand,
project 8 that has the highest CC value has a high method
complexity and CLC value.

C. COMPARATIVE STUDY

The goal of this section is to answer RQ3 that states thus: Can
the proposed metric suite be used in place of the CK metric
suite?

1) CASE SELECTION

Validation is not complete without being able to compare our
proposed metrics suite with an existing one that is well known
and adopted by the research community. For this reason,
we selected CK metrics suite, a widely adopted and used
one.

2) DATA COLLECTION AND ANALYSIS PROCEDURE

In order to perform proper comparison between our proposed
metric suite and the CK metric suite, we applied the CK met-
rics suite in evaluating the projects we selected in section IV,
sub-section B and number 1 as shown in Table 5.

VOLUME 6, 2018

3) COMPARATIVE STUDY RESULTS

The results of the comparison we carried out between our
proposed metrics suite and the Chidamber & Kemerer (CK)
metrics suite are discussed in this section. In Table 4, it is
observed that WMC value derives from the number of meth-
ods within a project. This is the case for RFC as well and
the greater the values of WMC and RFC for a project, the
greater the complexity and fault-proneness of that project.
It is observed from Table 5 that the highest value for DIT
is 2, which is observed in only four of the projects evaluated
(i.e. projects 1, 7, 8, and 17). Projects 25, 26, 29 and 30 have
a value of 0 while the other projects have DIT values of 1.
This means that overall the projects are well designed. The
maximum NOC value in Table 5 is 3, which is observed
in projects 1 and 8. Project 9 has a NOC value of 2 and
Projects 7 and 17 have a value of 1. All the other projects
have NOC values of 0 meaning that they are of the same
complexity. This is not the case when compared to the results
from our metric suite. The LCOM value for the projects in
Table 5 gives 0 in all cases meaning all the projects are all of
the same complexity, this is also not the case when compared
with our proposed metrics. The highest CBO value in Table 5
is 3 and is found in projects 1 and 8. Only projects 7 and
17 have a value of 1 while the rest have a value of zero.
The higher the CBO value of a project, the greater its fault-
proneness. Table 6 summarizes the differences between the
CK metric suite and our proposed metric suite.

8791

IEEE Access

S. Misra et al.: Suite of Object Oriented Cognitive Complexity Metrics

TABLE 5. Values of the metrics on ten projects using proposed metric suite and CK metric suite.

Proposed Metric Suite CK Metric Suite
Project | Classes | Methods | MC | CWC | AC | CLC | CC WMC | RFC | DIT | NOC | LCOM | CBO
1 6 119 | 22 4 123 548 8 8 2 3 0 3
2 3 5 66 32 6 72 72 5 5 1 0 0 0
3 3 6 77 45 6 77 77 6 6 1 0 0 0
4 3 5 29 26 0 29 29 5 5 1 0 0 0
5 3 9 176 | 78 5 181 181 9 9 1 0 0 0
6 2 4 46 12 0 46 46 4 4 1 0 0 0
7 4 12 119 | 0 5 124 1041 | 12 12 2 1 0 1
8 6 15 261 | 116 15 274 4983 | 15 15 2 3 0 3
9 5 14 191 | 68 5 196 3030 | 14 14 1 2 0 0
10 2 4 32 22 0 32 32 4 4 1 0 0 0
11 1 1 11 8 0 11 11 1 1 1 0 0 0
12 1 5 19 9 0 19 19 2 5 1 0 0 0
13 1 2 34 26 2 36 36 2 2 1 0 0 0
14 1 2 14 8 0 14 14 2 2 1 0 0 0
15 1 3 18 8 2 20 20 3 3 1 0 0 0
16 1 2 16 8 2 18 18 2 2 1 0 0 0
17 2 3 25 10 6 31 108 3 3 2 1 0 1
18 1 1 9 8 0 9 9 1 1 1 0 0 0
19 1 1 9 8 0 9 9 1 1 1 0 0 0
20 1 1 13 12 0 13 13 1 1 1 0 0 0
21 1 1 9 8 0 9 9 1 1 1 0 0 0
22 1 2 10 8 1 11 11 2 2 1 0 0 0
23 2 6 89 54 6 95 95 6 6 1 0 0 0
24 2 6 56 34 0 56 56 6 6 1 0 0 0
25 1 10 293 | 48 0 293 293 10 10 0 0 0 0
26 1 16 359 | 48 0 359 359 16 16 0 0 0 0
27 2 16 414 | 366 0 414 414 16 16 1 0 0 0
28 2 9 270 | 263 1 271 271 9 9 1 0 0 0
29 1 9 123 | 75 6 129 129 9 9 0 0 0 0
30 6 25 427 | 109 10 | 437 437 25 25 0 0 0 0

Table 6 compares our proposed metric suite with the CK
metric suite along seven criteria namely: ability to determine
method complexity; ability to determine overall complexity
of projects; inheritance; coupling; cohesion; metric intercon-
nectedness with the suite and numeric size of metric values.
Overall, our metrics are able to differentiate one project
from another in terms of complexity compared to the CK
metric suite. The proposed metric suite also gives valuable
insight into the design quality of OO projects. High CC
values indicate that understandability and maintainability of
the code is weak. Ultimately, it helps the software developer
for better design. For example, the developer, who can satisfy
the user requirements through the usage of a lesser number of
message calls to other classes, lesser number of inheritance
classes, lesser number of branching and looping primitives,
is assumed to be more skillful.

D. LIMITATIONS OF THE METRIC SUITE AND

THREATS TO VALIDITY

In any proposal, a good metric suite should consider not only
the outer structure of OO system (such as number of methods,
classes, subclasses and relations between them), but also the
internal structure of the method. Although we have compared
our proposed metric suite with the CK metric suite, it is
important to mention the drawbacks of the proposed metric
suite as given below:

8792

1) LIMITATIONS OF THE METRIC SUITE

(i) The proposed metric suite gives a general idea of the
complexity of the OO projects thus making it impossible to
identify the underlying source of complexity. For instance,
in the CK metric suite it is easy to understand the inheritance
levels using DIT but in the proposed metric suite it is consid-
ered in the calculation of the code complexity.

(ii) The proposed metric suite gives the complexity value in
numerical terms, which are generally high for large programs
in comparison to the CK metric suite and high complexity
values are not desirable.

(iii) It is difficult to assign the upper and lower boundaries
for the complexity values.

2) THREATS TO VALIDITY
The main threats to the validity of this study are discussed as
follows:

Internal Validity: This aspect of validity is of concern when
causal relations are examined and this is not the case in this
study.

External Validity: This relates to our ability to generalize
the results of this study to industry practice. Although the
projects used in this study can be classified as small projects,
we believe that the interpretation for these also holds for
larger projects.

VOLUME 6, 2018

S. Misra et al.: Suite of Object Oriented Cognitive Complexity Metrics

IEEE Access

TABLE 6. Proposed metric suite vs. CK metric suite.

Criteria

Proposed Metric Suite

CK Metric Suite

Ability to determine method
complexity

Uses MC metric which is mostly able to
differentiate one project’s complexity from the
other

Uses WMC metric whose value is also able to
differentiate the complexity of one project from the
other

Ability to determine overall
complexity of project

CC metric caters for this

No metric is defined for this

CC considers class inheritance when being
calculated for a project and the value is also able

DIT metric only shows the level of inheritance and
is not able to show the difference in complexity of
one class from the other due to inheritance. NOC

Inheritance . . L . metric is also unable to differentiate a number of
to clearly differentiate one project’s complexity . . o
projects from the other (as seen in Table IV) since it
from the other .
does not consider internal factors such as control
flow complexity.
CWC metric is able to differentiate most of the CB.O metric ShOW.S similar values for a nurpber of
Couplin rojects in Table IV in terms of complexity due projects explored in Table IV. As a result, it is
ping projects prexity unable to clearly differentiate the complexities of
to coupling .
such projects
LCOM metric is defined to, “measure the number of
pairs of member functions without shared instance
variables minus number of pairs of member
Cohesion No metric is defined for this functions with shared instance variables”. However,

the values for all the projects in Table IV are all zero
and so this metric is not able to differentiate the
complexity of one project from the other.

Metric interconnectedness with the
suite

Four of the metrics in this suite are
interdependent. For instance, the value of CC is
determined by CLC whose value is in turn
determined by AC and MC metrics.

The metrics in CK metric suite are independent of
each other

Numeric size of metric values

Values here tend to be large because the metrics
here usually consider internal factors that affect
code complexity such as control flow complexity

The values here tend to be smaller because internal
factors such as control flow complexity are not
considered.

Construct Validity: The complexity values measuring dif-
ferent object-oriented features of our project are represented
numerically. To the uninformed this may seem unclear but
higher numerical values indicate higher degree of complexity.

Reliability: This is the extent to which the projects studied
and the analysis procedure is dependent on the authors of this
paper. During the analysis of the projects, we analysed only
the focus of the metrics, that is, the methods and attributes we
did not analyse the main program. As a result of the repre-
sentation of class and method complexities of a project with
numbers by our complexity measures, we discovered from
this study that although the numeric values obtained by our
complexity measures are always positive, it is difficult to set
upper boundaries for each of our complexity measures. This
is especially challenging as the size of the project increases.

V. CONCLUSION AND FUTURE WORKS

The proposed metrics suite can be employed in determin-
ing the complexity of OO projects. This is important since
increase in complexity tends to bring about corresponding
increase in effort required to maintain such projects. We have
not only demonstrated each metric but have also gone ahead
to validate them using theoretical and empirical means. For
theoretical validation, we began by evaluating each metric
based on Weyuker’s properties. The results show that our
metrics satisfy seven out of the nine properties. It has been
argued that it is not compulsory for a measure to satisfy
all of these properties to qualify as a good measure [47].
Moving on we compared each against measurement theory

VOLUME 6, 2018

using the framework provided by Briand et al. [33]. From
here, we discovered that each of our proposed metric satisfied
the five properties of the framework placing all the metrics in
the suite on the ratio scale — which is desired in every good
measure. To provide a practical perspective to the metrics
suite, we have adopted Kaner’s framework in validating the
practicality of each of the measures. Our metrics suite thus
offers the following features:

1) Each of the metrics is language independent as
observed in our study. We used a C+-+ project to
demonstrate how each metric work and we used Python
projects to empirically validate the metrics suite.

2) It can be used to evaluate design efficiency of an OO
project. “A low complexity value is an indication of
better design that in turn impacts positively on main-
tainability efforts™ [48].

3) CWC metric can be used as component level design
metric.

4) CC metric calculates the cognitive complexity of OO
programs. ‘“‘Low cognitive complexity is an indicator
of good design” [49].

5) The metrics suite measures the important concepts
of OO programs such as inheritance and coupling
while also evaluating the complexity of the structure of
methods.

6) All the metrics in the suite are on the ratio scale,
a fundamental requirement for a good measure from
the perspective of measurement theory.

8793

IEEE Access

S. Misra et al.: Suite of Object Oriented Cognitive Complexity Metrics

For future work, we aim to apply the metric suite for bigger
projects from the industry and in different environments.
Also, assignments of the upper and lower boundaries of the
complexity values for our metrics will be done. Furthermore,
the proposed metrics suite will be studied in the light of
making improvements to the remaining features of object-
oriented code. In addition, an automated tool will also be
developed for computing the metrics in the suite.

APPENDIX
This appendix contains the implementation of the classes
used in demonstration of the metrics.

#include <iostream.h>

#include <stdio.h>

#include <string.h>

class computer
{
public:
char * getName(){return name; };
char * getProducer() {return producer;};
protected:
char * name;
char * producer;
1
class software : public computer
{
public:
software::software(char * cname, char * cproducer, char
* cversion, char * csupportedOS[5]);
char * getVersion(){return version;};
short isAppropriate(char * COS);
protected:
char * version;
char * supportedOS[5];
|8
/IWS1=WS11+WS12=1+3=4 //WS2=1
/IWS3= WS31+(WS32*WS33)=1+3*2=7
software::software(char * cname, char * cproducer, char *
cversion,
char * csupportedOS[5]){
name= cname;
producer=cproducer;
version=cversion;
for (int i=0; i<5; i++)
supportedOS[i]=csupportedOS[i];
}
short software::isAppropriate(char * COS){
for (int i=0;i<5;i++) {
if (strcmp(COS,supportedOS[i])==0)
return true;

}

return false;

}

8794

class hardware : public computer
{
public:

char * getCPU(){return CPU;};

int getRAM(){return RAM;};

int getHD(){return HD;}

char * getOS(){return OS;};

void check_supported_sw(software * s);
protected:

char * CPU;
/IWH1=1
/IWH2=1
/IWH3=1
//WH4=1
//WH5=WHS51+WH52+WHS53 =1+9+2=12
int RAM;
int HD;
char * OS; };
void hardware::check_supported_sw(software *

s){//WH51=1(sequence)
short result=s->isAppropriate(OS);
/TWHS52=2(call)+7(weight of Called method(WS3))

if (result) /WH53=2 (if statement)
cout< <"This is an appropriate software for this
computer" << \n;

else

cout< <"This is NOT an appropriate software for this

computer" << \n;
}

class desktop : public hardware
{
public:
desktop(char * cname, char * cproducer, char * ccpu, int
cram, int chd, char * cos, char * ccase); //WD1=1
char * getCase(){return pccase;}; /WD1=1
protected:
char * pccase;
¥
desktop::desktop(char * cname, char * cproducer, char *
cepu, int
cram, int chd, char * cos, char * ccase){
name= cname;
producer=cproducer;
CPU=ccpu;
RAM=cram;
HD=chd;
OS=cos;
pccase=ccase; }
[CLASS NOTEBOOK /
class notebook : public hardware
{
public:
notebook(char * cname, char * cproducer, char * ccpu, int

VOLUME 6, 2018

S. Misra et al.: Suite of Object Oriented Cognitive Complexity Metrics

IEEE Access

cram, int chd, char * cos, float weight); /WNI1=1
float getWeight(){return weight;}; /WN2=1
protected:

n

}.

float weight;

b}

otebook::notebook(char * cname, char * cproducer, char

* ccpu, int
cram, int chd, char * cos, float cweight){

name=cname;
producer=cproducer;
CPU=ccpu;
RAM=cram;
HD=chd;

OS=cos;
weight=cweight; }

int main () {

char * supportedOS[5];

supportedOS[0]="MS Windows";
supportedOS[1]="Linux";

supportedOS[2]="";

supportedOS[3]="";

supportedOS[4]="";

software * swl = new software ("Rational", "IBM" ,

||7‘ 1 " s
supportedOS);

duo

desktop * ds1 = new desktop("Vaio", "Sony", "Intel core

"

1024, 120, "MS Vista"," All-in-One");

notebook * nbl = new notebook ("Pavillion", "HP",

"Intel core
duo”, 1024, 120, "Linux",2.5);

}

cout<<dsl->getCase()<< \n;
ds1->check_supported_sw(swl);
cout<<nbl->getHD()<< \n;

REFERENCES

(1]

[2]

[3]
[4]
[5]

[6]

[71

[8]

[9]

S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476-493, Jun. 1994.
R. Harrison, S. J. Counsell, and R. V. Nithi, “‘An evaluation of the MOOD
set of object-oriented software metrics,” IEEE Trans. Softw. Eng., vol. 24,
no. 6, pp. 491-496, Jun. 1998.

R. V. Binder, “Design for testability in object-oriented systems,” Comms.
ACM, vol. 37, no. 9, pp. 87-101, Sep. 1994.

S. Purao and V. Vaishnavi, “Product metrics for object-oriented systems,”
ACM Comput. Surveys, vol. 35, no. 2, pp. 191-221, Jun. 2003.

M. Lorenz and J. Kidd, Object-Oriented Software Metrics: A Practical
Guide. Upper Saddle River, NJ, USA: Prentice-Hall, 1994.

B. Henderson-Sellers, L. L. Constantine, and I. M. Graham, ‘“Coupling
and cohesion (towards a valid metrics suite for object-oriented analysis
and design),” Object Oriented Syst., vol. 3, no. 3, pp. 143-158, Sep. 1996.
V. R. Basili, L. C. Briand, and W. L. Melo, ““A validation of object-oriented
design metrics as quality indicators,” IEEE Trans. Softw. Eng., vol. 22,
no. 10, pp. 751-761, Oct. 1996.

G. Costagliola, F. Ferrucci, G. Tortora, and G. Vitiello, “Class point: An
approach for the size estimation of object-oriented systems,” IEEE Trans.
Softw. Eng., vol. 31, no. 1, pp. 52-74, Jan. 2005.

S. L. Pfleeger and J. M. Atlee, Software Engineering: Theory and Practice.
Chennai, India: Pearson Ed., 1998.

VOLUME 6, 2018

(10]
(11]
[12]
(13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

I. Sommerville, Software
Addison-Wesley, 2004.

T.J. McCabe and A. H. Watson, “Software complexity,” Crosstalk, vol. 7,
no. 12, pp. 5-9, 1994.

R. S. Pressman, Software Engineering: A Practitioner’s Approach.
New York, NY, USA: McGraw-Hill, 2005, pp. 649-672.

Y. Wang, “On the cognitive informatics foundations of software engineer-
ing,” in Proc. ICCI, 2004, pp. 22-31.

J. Shao and Y. Wang, “A new measure of software complexity based
on cognitive weights,” Electr. Comput. Eng., Can. J., vol. 28, no. 2,
pp. 69-74, Apr. 2003.

C. A. R. Hoare et al., “Laws of programming,” Comms ACM, vol. 30,
no. 8, pp. 672-686, Aug. 1987.

S. Misra, M. Koyuncu, M. Crasso, C. Mateos, and A. Zunino, “A suite of
cognitive complexity metrics,” In Computational Science and Its Applica-
tions, Heidelberg, Germany: Springer, 2012, pp. 234-247.

D. S. Kushwaha and A. K. Misra, “Robustness analysis of cognitive
information complexity measure using Weyuker properties,” ACM SIG
Soft. Eng. Notes, vol. 31, no. 1, pp. 1-6, 2006.

S. Misra, “Modified cognitive complexity measure,” in Computer
and Information Sciences. Heidelberg, Germany: Springer, 2006,
pp. 1050-1059.

S. Misra, “Cognitive program complexity measure,” in Proc. 6th IEEE Int.
Conf. Cognit. Inform., Aug. 2007, pp. 120-125.

A. K. Jakhar and K. Rajnish, “A new cognitive approach to measure
the complexity of software’s,” Int. J. Softw. Eng. Appl., vol. 8, no. 7,
pp. 185-198, 2014.

S. Misra, I. Akman, and M. Koyuncu, “An inheritance complexity metric
for object-oriented code: A cognitive approach,” Sadhana, vol. 36, no. 3,
pp. 317-337, Jun. 2011.

S. Misra and F. Cafer, “Estimating complexity of programs in Python
language,” Tehnicki Vjesnik, vol. 18, no. 1, pp. 23-32, Mar. 2011.

M. Crasso, C. Mateos, A. Zunino, S. Misra, and P. Polvorin, “Assessing
cognitive complexity in java-based object-oriented systems: Metrics and
tool support,” Comput. Inform., vol. 35, no. 3, pp. 497-527, 2016.

G. A. S. Sheela and A. Aloysius, “Design and analysis of aspect ori-
ented metric CWCOAR using cognitive approach,” in Proc. World Congr.
Comput. Commun. Technol. (WCCCT), 2017, pp. 195-197.

S. Husein and A. Oxley, “A coupling and cohesion metrics suite
for object-oriented software,” in Proc. Int. Conf. Comput. Technol.
Develop. (ICCTD), vol. 1. 2009, pp. 421-425.

S. Akbarinasaji et al., “A metric suite proposal for logical depen-
dency,” in Proc. IEEE/ACM 7th Int. Workshop Emerg. Trends Softw.
Metrics (WETSoM), May 2016, pp. 57-63.

M. Kaya and J. W. Fawcett, ‘A new cohesion metric and restructuring tech-
nique for object oriented paradigm,” in Proc. IEEE 36th Annu. Comput.
Softw. Appl. Conf. Workshops (COMPSACW), Jul. 2012, pp. 296-301.

M. Alzahrani and A. Melton, “Defining and validating a client-based
cohesion metric for object-oriented classes,” in Proc. IEEE 41st Annu.
Comput. Softw. Appl. Conf. (COMPSAC), vol. 1. Jul. 2017, pp. 91-96.

S. M. Ibrahim, S. A. Salem, M. A. Ismail, and M. Eladawy, “Novel sen-
sitive object-oriented cohesion metric,” in Proc. 22nd Int. Conf. Comput.
Theory Appl. (ICCTA), 2012, pp. 154-159.

P. Runeson and M. Host, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Softw. Eng., vol. 14,
no. 2, pp. 131-164, Apr. 2009.

C. Kaner, “Software engineering metrics: What do they measure and how
do we know?” presented at the 10th Int. Softw. Metrics Symp., 2004.
[Online]. Available: http://www.kaner.com/pdfs/metrics2004.pdf

C. Kaner, ‘“Rethinking software metrics: Evaluating measurement
schemes,” Softw. Test. Quality Eng., vol. 2, no. 2, pp. 50-57, 2000.

L. C. Briand, S. Morasca, and V. R. Basily, “Property based software
engineering measurement,” IEEE Trans. Softw. Eng., vol. 22, no. 1,
pp. 68-86, Jan. 1996.

E. J. Weyuker, “Evaluating software complexity measures,” IEEE Trans.
Softw. Eng., vol. SE-14, no. 9, pp. 1357-1365, Sep. 1988.

N. Fenton, “New software quality metrics methodology standards fills
measurement needs,” IEEE Comput., vol. 26, no. 4, pp. 105-106,
Apr. 1993.

N. Fenton, “Software measurement: A necessary scientific basis,” IEEE
Trans. Softw. Eng., vol. 20, no. 3, pp. 199-206, Mar. 1994.

IEEE Standard for Software Quality Metrics Methodology, IEEE Stan-
dard 1061, 1998.

Engineering. Reading, MA, USA:

8795

IEEE Access

S. Misra et al.: Suite of Object Oriented Cognitive Complexity Metrics

[38] B. Kitchenham, S. L. Pfleeger, and N. Fenton, “Towards a framework
for software measurement validation,” IEEE Trans. Softw. Eng., vol. 21,
no. 12, pp. 929-944, Dec. 1995.

[39] M. Haug, E. W. Olsen, L. Consolini, L. Bergman, Eds., ““Software process
improvement: Metrics, measurement, and process modelling,” in Software
Best Practice, 4th ed. Heidelberg, Germany: Springer, 2011.

[40] H. Zuse, Software Complexity, New York, NY, USA: Walter de Cruyter,
1991.

[41] H.Zuse, “Properties of software measures,” Softw. Quality J., vol. 1, no. 4,
pp- 225-260, Dec. 1992.

[42] S. Misra, I. Akman, and R. Colomo-Palacios, ‘Framework for evaluation
and validation of software complexity measures,” IET Softw., vol. 6, no. 4,
pp. 323-334, Aug. 2012.

[43] J. C. Cherniavsky and C. H. Smith, “On Weyuker’s axioms for soft-
ware complexity measures,” [EEE Trans. Softw. Eng., vol. 17, no. 6,
pp. 636-638, Jun. 1991.

[44] S. Misra and I. Akman, “Applicability of Weyuker’s properties on OO
metrics: Some misunderstandings,” Comput. Sci. Inf. Syst., vol. 5, no. 1,
pp. 17-24, 2008.

[45] D. Abbot, “A design complexity metric for object-oriented development,”
M.S. thesis, Dept. Comput. Sci., Clemson Univ., Clemson, SC, USA, 1993.

[46] S. Misra, “Evaluation criteria for object-oriented metrics,” Acta Polytech.
Hungarica, vol. 8, no. 5, pp. 110-136, 2011.

[47] D. Baski and S. Misra, “Metrics suite for maintainability of eXtensible
Markup Language Web services,” IET Softw., vol. 5, no. 3, pp. 320-341,
Jun. 2011.

[48] C. Mateos, A. Zunino, S. Misra, D. Anabalon, and A. Flores, ‘“Migration
from COBOL to SOA: Measuring the impact on Web services interfaces
complexity,” in Proc. Int. Conf. Inf. Softw. Technol., 2017, pp. 266-279.

[49] S. Misra and A. Adewumi, “Object-oriented cognitive complexity mea-
sures: An analysis,” in Proc. Handbook Res. Innov. Syst. Softw. Eng., 2014,
pp. 150-169.

SANJAY MISRA has been a Full Professor of
computer engineering with Covenant University,
Nigeria, since 2010. He has 25 years of wide expe-
rience in academic administration and research in
various universities in Asia, Europe, and Africa.
He has authored over 300 papers and received
several awards for outstanding publications. His
current research covers the areas of (but are not
limited to): software engineering, project man-
agement, quality assurance, HCI, Al, cognitive
informatics, and web engineering. He is the most productive researcher in
Nigeria by SciVal (Scopus Analysis from 2012 to 2017). He has been a
founding chair of three annual international workshops: Software Engineer-
ing Process and Applications (Springer) since 2009, Tools and Techniques in
Software Development Process (IEEE) since 2009, Software Quality (IEEE
and LNCS) since 2009. He is a Series Editor of Advances in IT Personnel
and Project Management (IGI Global), a Chief Editor of the International
Journal of Physical Sciences (SCOPUS Indexed, last IF- .540), and Covenant
Journal of ICT. He has delivered over 80 keynote/invited speeches at several
international conferences and institutes in over 50 countries.

8796

ADEWOLE ADEWUMI received the B.S., M.S.,
and Ph.D. degrees in computer science from
Covenant University, Ota, Nigeria, in 2008, 2013,
and 2017 respectively. He has over seven years
experience in teaching and research. His research
interests include software metrics, open source
software evaluation, and selection using multi-
criteria decision-making methods.

LUIS FERNANDEZ-SANZ received the degree
in computing from the Polytechnic University of
Madrid, in 1989, and the Ph.D. degree in comput-
ing with a special award from the University of the
Basque Country, in 1997. He has held the position
of Vice-President of Council of European Profes-
sional Informatics Societies from 2011 to 2013 and
in 2016. He is currently an Associate Profes-
sor with the Department of Computer Science,
University of Alcald (UAH). With over 20 years
of research and teaching experience with UPM, Universidad Europea de
Madrid, and UAH, he has also been engaged in the management of the main
Spanish computing professionals association (ATI) as a Vice-President and
he is a Chairman of the ATI Software Quality Group. His general research
interests are software quality and engineering, accessibility, e-learning, and
ICT professionalism and education.

ROBERTAS DAMASEVICIUS received the Ph.D.
in informatics engineering from Kaunas Univer-
sity of Technology (KTU), Lithuania, in 2005.
He is currently a Professor and a Senior Researcher
with the Faculty of Informatics, KTU. He has
authored or co-authored over 100 papers in ref-
ereed international journals and conferences, and
a monograph (Springer). His research interests
include data mining and brain-computer inter-
faces. He is a member of the ACM, IEEE, and
DAAAM. He is involved in pre- and post-grad level teaching of several
courses, including bioinformatics, and human—computer interface design. He
is the Editor-in-Chief of the Information Technology and Control Journal,
and an Editorial Board member of several high-reputed journals, and orga-
nizes several conferences and workshops.

VOLUME 6, 2018

	INTRODUCTION
	EXISTING COGNITIVE COMPLEXITY METRICS
	COGNITIVE FUNCTIONAL SIZE (CFS) OF SOFTWARE
	COGNITIVE INFORMATION COMPLEXITY MEASURE (CICM)
	MODIFIED COGNITIVE COMPLEXITY MEASURE (MCCM)
	COGNITIVE PROGRAM COMPLEXITY MEASURE (CPCM)
	NEW COGNITIVE COMPLEXITY OF PROGRAM (NCCoP)
	INHERITANCE COMPLEXITY METRIC
	SOFTWARE METRIC FOR PYTHON (SMPy)
	MOTIVATION AND DISCUSSION

	PROPOSED METRICS SUITE AND DEMONSTRATION
	METHOD COMPLEXITY (MC)
	MESSAGE COMPLEXITY (COUPLING WEIGHT FOR A CLASS (CWC))
	ATTRIBUTE COMPLEXITY (AC)
	CLASS COMPLEXITY (CLC)
	CODE COMPLEXITY (CC)
	AVERAGE METHOD COMPLEXITY (AMC)
	AVERAGE METHOD COMPLEXITY PER CLASS (AMCC)
	AVERAGE CLASS COMPLEXITY (ACC)
	AVERAGE COUPLING FACTOR (ACF)
	AVERAGE ATTRIBUTES PER CLASS (AAC)

	VALIDATION OF THE PROPOSED METRICS SUITE
	THEORETICAL VALIDATION
	THROUGH WEYUKER's PROPERTIES
	THROUGH MEASUREMENT THEORY
	PRACTICAL VALIDATION WITH KANER's FRAMEWORK
	COMPARATIVE ANALYSIS AND CONCLUSION OF THEORETICAL VALIDATION

	EMPIRICAL VALIDATION
	CASE SELECTION
	DATA COLLECTION AND ANALYSIS PROCEDURE
	EMPIRICAL VALIDATION RESULTS AND INTERPRETATIONS

	COMPARATIVE STUDY
	CASE SELECTION
	DATA COLLECTION AND ANALYSIS PROCEDURE
	COMPARATIVE STUDY RESULTS

	LIMITATIONS OF THE METRIC SUITE AND THREATS TO VALIDITY
	LIMITATIONS OF THE METRIC SUITE
	THREATS TO VALIDITY

	CONCLUSION AND FUTURE WORKS
	REFERENCES
	Biographies
	SANJAY MISRA
	ADEWOLE ADEWUMI
	LUIS FERNANDEZ-SANZ
	ROBERTAS DAMASEVICIUS

