Parametric Investigation of Soil Susceptibility to Compaction Using Temperature Deviation Curves

Uno E Uno, Moses E Emetere, Adelabu, J. S.*

Department of Physics, Federal University of Technology Minna P.M.B 65, Minna.
* Department of Physics, University of Abuja, Nigeria.

Accepted 17th March, 2012

Abstract

Soil compaction can be explained using basic properties of soil. Cohesive soil sample were collected from five major region of the main site of investigation. Unlike other method of analyzing soil compaction, temperature deviation curves were used as the determinant for testing for compaction. It was discovered also that the temperature deviation curves can be used to find the annual amplitude of the surface soil temperatures. Soils in Abuja displayed some degree of compaction except for Gwagwalada that showed negligible compaction. Garki location produced the highest compaction at 14cm depth. The highest annual amplitude of the surface soil temperatures was noticed in Kuje and the lowest in Bwari.

Keywords: soil compaction, soil bulk density, temperature deviation curve, soil moisture, annual amplitude of the surface soil temperatures

Introduction

Soil compaction, though an old time discuss has attracted much publications from diverse discipline. Recently, researches are still ongoing in different discipline on same subject matter. Initially, the shovel was the first tool used to detect soil compaction, latter proctor methods, pocket penetrometer, cone penetrometer, motor-driven penetrometer, X-band microwave frequency, L-band radiometry⁵,⁷,⁹ e.t.c. Compacted soil has smaller pores and fewer natural channels, hence water infiltration is drastically reduced and this causes greater surface wetness, more run off, which in turn increases erosion, and longer drying time.² From past research work on soil compaction, some soil properties were used to measure the degree of compaction e.g soil moisture content, soil bulk density, soil temperature, soil compressibility, soil strength, penetration resistance, soil structure e.t.c.

The denser the soil, the greater the volume ratio of solid particles to air, and the larger the dielectric permittivity of dry soil,¹¹ moreso, it has been discovered that the bulk density of soil density affects the real and imaginary part of complex permittivity.⁹ Soil strength has been shown to increase as bulk density and water potential increases.⁵,⁶ Another soil properties discussed when investigating soil compaction is the moisture content, research has shown that as the moisture content increases, compactibility increases until the moisture content is approximately
It is assumed that \(T(z) - T_a = \Delta T \) can also be known as temperature deviation. Through calculation,
\[
\Delta T = A_0 e^{-\frac{z}{d}} \sin \left(\frac{-z}{\rho_b} \right)
\]
where \(\rho_z = \) soil particle density which is a approximately 2.66g cm\(^{-3}\) by latest research \(^{(9)}\), \(\rho_b = \) soil bulk density. Therefore,

3. Material and Method

The study area is Abuja, Federal Capital Territory (FCT), central part of Nigeria. The soil samples were collected from five Local Government Areas in Abuja i.e. Abaji, Bwari, Garki, Gwagwalada and Kuje local Government Areas which are good representation of federal capital territory, Abuja. The region of study is located between latitude 8o 24’N - 9o 20’N of the equator and between longitudes 7o 30’E - 8o 48’E of the Greenwich Meridian. The study was carried at 14cm soil depth. The subsoil were identified with particles 68.58% sand, 26.14% clay, 5.25% silt, 0.64% organic carbon, 1.10% organic matter. Ten PVC tubes, each of length 30cm and diameter 8.0cm had been drilled along the tubes at 2.0cm intervals. Holes through which thermometer could be inserted were drilled. One end of each tube was sealed with copper plate to prevent the soil sample from falling off. Varying known quantity of water (ranging from 0.5-2.0liters) was sprinkled evenly over equal quantities of well spread samples which were initially air-dried for six days. The samples were thoroughly mixed to ensure uniform moisture distribution. Small quantity of the soil sample was collected in a crucible for oven drying; this helped in the computation of moisture content of the soil. The rest of the samples were packed into PVC tubes, one was used for soil water content measurement and other was used as a reference for soil temperature measurement. Thermometers (0°C - 110°C) were inserted in each of the PVC tubes at the reference soil column at depths of 14 cm, 12 cm and 10 cm to monitor the vertical temperature variation. At each depth, two thermometers were installed 3 cm apart to monitor the horizontal temperature variation. The top of the PVC tubes were covered with a black polythene sheet then placed in the open field to be heated by solar energy.

4. Results and Discussion

The results obtained during the experiment are shown below in table 1 and table 2.

<table>
<thead>
<tr>
<th>Table 1: Mean maximum temperature at 14cm depth in five local government Areas of Abuja.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean maximum Temperature</td>
</tr>
<tr>
<td>Abaji</td>
</tr>
<tr>
<td>Bwari</td>
</tr>
<tr>
<td>Garki</td>
</tr>
<tr>
<td>Gwagwalada</td>
</tr>
<tr>
<td>Kuje</td>
</tr>
</tbody>
</table>

Table 2: Bulk density and moisture contents at 14cm depth in five local

<table>
<thead>
<tr>
<th>Bulk density (g cm⁻³)</th>
<th>1.32</th>
<th>1.34</th>
<th>1.36</th>
<th>1.43</th>
<th>1.45</th>
<th>1.48</th>
<th>1.52</th>
<th>1.50</th>
<th>1.55</th>
<th>1.56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture contents (%)</td>
<td>7.70</td>
<td>9.40</td>
<td>14.20</td>
<td>17.70</td>
<td>20.20</td>
<td>21.00</td>
<td>22.70</td>
<td>25.00</td>
<td>30.00</td>
<td>31.30</td>
</tr>
</tbody>
</table>

Fig 1.1: (A) Bulk density progressions per day (B) Soil moisture content progression per day (C) Soil temperature progressions per day-blue line signifying Bwari L.G.A., red line signifying Gwagwalada L.G.A., purple line signifying Abaji L.G.A., Green line signifying Garki L.G.A., sky-blue line signifying Kuje

Fig 1.2: temperature-Bulk density retrogression, When $A_0 = 1$

Fig 1.3: temperature-Bulk density retrogression, When $A_0 = 0.5$

Fig 1.4: temperature vs Bulk density retrogression, when $A_0 = -1$

Fig 1.5: temperature vs Bulk density retrogression, when $A_0 = -0.5$

Fig 1.6: temperature vs Annual temp. Amplitude progression, when $A_0 = 1.32$

Fig 1.7: temperature vs soil bulk density progression in Abaji L.G.A, when $120 \leq A_0 \geq 130$. Experimental and theoretical graph shown above.

Fig 1.8: temperature vs soil bulk density progression in Bwari L.G.A, when $-120 \leq A_0 \geq 130$. Experimental and theoretical graph shown above.

Fig 1.9: temperature vs soil bulk density progression in Garki L.G.A, when $120 \leq A_0 \geq 130$. Experimental and theoretical graph shown above.

The soil moisture progression per day as shown in Figure (1.1A,B) is in agreement with past research work. (12,13, 14,15) The longer the days, the greater the soil moisture and the bulk density of the soil. The results revealed that the effect of the soil type. The organic contents and the compactive energy on the dry density affect the porosity of the soil. It is also evident (from figure 1.1C&D) that as soil moisture increased from air-dry state, maximum soil temperature increased to a maximum value of dry density called optimum water content. The compacting energy used 9.4% for all the locations except Abaji which was at 14.2% and decrease after that point. Beyond the optimum values, the maximum soil temperature decreases with increasing value of moisture content to lower optimum value at 21% moisture. The decrease in maximum temperature is due to the fact that addition of water to dry soil expels some soil air and increases the thermal contact between the soil particles. This results shows a large increase in thermal conductivity, k and a small increase in the volumetric heat capacity. The overall result is an increase in the thermal diffusivity. Figure1.2-1.5 shows the effects of temperature deviations on the soil bulk density. First (in figure 1.2) when the annual amplitude of the surface soil temperature is unity, the graph shows that a negative relationship. The same occurrence happened when the annual amplitude of the surface soil temperature is 0.5(as shown in figure 1.3). The amplitude of the surface soil temperature was made -1 and -0.5 as shown in figure 1.4 and 1.5 respectively. Positive relation between the temperature deviations and the bulk density was noticed which simply means that the susceptibility for compaction is more visible at the negative amplitude of the surface soil temperature. In figure 1.6, the bulk density was rather constant to observe the variations between the temperature deviations and annual amplitude of the surface soil temperature. It results shows a linear relationship between them. Figure 1.7- 1.11 is the main analysis of the temperature deviation curve which was derived in equation (ii) above. Generally, the temperature deviations in the practical values have an irregular sinusoidal shape. The theoretical graph is the parabolic curve which had intersects with the irregular sinusoidal graph. Figure 1.7- 1.11 has two major advantages (i) it predicts the annual amplitude of the surface soil temperature of a region (ii) It predicts the presence of soil compaction. Figure 1.7 has one point of intersection which gave an annual amplitude of the surface soil temperature (716°C).The amplitude of the practical value is higher than the theoretical amplitude; therefore it shows the presence of soil compaction in Abaji L.G.A. Figure 1.8 also has one point of intersection and annual amplitude of the surface soil temperature (70.5 °C). The amplitude of the practical value is higher than the theoretical amplitude, therefore it shows the presence of soil compaction in Garki L.G.A. Figure 1.9 has six points of intersection which gave the following annual amplitude of the surface soil temperatures(-716°C,-25°C,11°C,33°C,50°C and 53°C).The average is therefore 79°C. The amplitude of the practical value is higher than the theoretical amplitude, therefore it shows the presence of soil compaction in Bwari L.G.A. Figure 1.10 has one point of intersection which gave an annual amplitude of the surface soil temperature (716°C).The amplitude of the practical value is lower than the theoretical amplitude, therefore it shows that there is a negligible presence of soil compaction in Gwagwalada L.G.A. Figure 1.11 has four points of intersection which gave the following annual amplitude of the surface soil temperatures(-58°C,-27 °C,40°C,56 °C). The average is therefore 716°C. The amplitude of the practical value is higher than the theoretical amplitude, therefore it shows the presence of soil compaction in kuje L.G.A.

5.0 Conclusion

Soils in Abuja display some degree of compaction except for Gwagwalada that showed negligible compaction. Garki location produced the highest compaction at 14cm depth. The highest annual amplitude of the surface soil temperatures was noticed in Kuje and the lowest in Bwari.

Appreciation

This work is self-funded. We appreciate Mrs. Jennifer Emetere for editing the script. We appreciate the Head of Physics Department of the above named institution.
References

15. Willem W. Verstraeten , Frank Veroustraete and Jan Feyen (2008); Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales of Observation, Sensors 8, 70-117
