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Temperature profiling in both fluid and pipe walls had not been explained theoretically. The equations of energy balance and heat
conductivity were queried by introducing known parameters to solve heat transfer using virtual mathematical experimentation.
This was achieved by remodeling Poiseuille’s equation. Distribution of temperature profiles between pipe wall, fluid flow, and
surrounding air was investigated and validated upon comparison with experimental results. A new dimensionless parameter
(unified number (U)) was introduced with the aim of solving known errors of the Reynolds and Nusselts number.

1. Introduction

Flow is an important phenomenon in hydraulic engineering
concept. The dynamics of differential temperature of fluids
through pipe wall is important to analyze accurately the
fluid flow and its effects over long distances, for example,
transporting fluidswithin or outside an industrial zone.Many
factors have been listed to affect the thermal flow in either
turbulent or laminar flow. Some of the factors include friction
loss in laminar and turbulent pipe [1]; viscoelastic properties
of fluids [2, 3]; the temperature gradient between the pipe and
fluid [4]; circumferential heat flux variations [5]; introduction
of nanoparticles [6]; diameter of the pipe [7].

The temperature profile which explains the differential
temperature, energy, and fluid flow gives details of the
dynamics of fluid to its natural heat transfer. However, the
heat transfer of the moving fluid had been investigated
in past time [8–10] with greater successes recorded in the
nonlinear conduction model [11, 12]. The convergence of
the temperature profile to the desired profile is established
by Lyapunov criteria [13]. In this paper, Poiseuille’s criteria
were theoretically improved upon the inclusion of two salient
parameters, that is, unified number (𝑈) and temperature
profiles.The basic operation of this model concentrates along

one-dimensional temperature profile, that is, preferable along
the 𝑧-axis.

2. Theoretical Background

The heat transfer processes based on energy balance and
heat conductivity could be summarized in one-dimensional
analysis (profile dynamics along the length of the pipe as
shown by the red line) shown in Figure 2:
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𝐶
𝑝
is the specific heat at constant pressure (Jkg−1 K−1),𝐶 is the

species concentration in the fluid (kgm−3), 𝑘 is the thermal
conductivity (Wm−1 K−1), 𝑇 is the temperature profile (K),𝐷
is the mass diffusion coefficient (m2s−1), 𝑡 is the time (s), 𝑢 is
the velocity of the fluid, and 𝜌 is the density of the material
(kgm−3). Equation (1) is a restructured equation of motion
of the fluid where 𝜀, 𝜀∗, and 𝐷 have a fundamental element
1/𝜌. Equation (2) expresses the law of conservation of energy
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of our model. Here, the temperature of the fluid, wall of the
tube, and external temperature are almost equal. The initial
and boundary conditions are

𝑢 = constant, 𝑇 = 𝑇
∞
, 𝐶 = 𝐶

∞
,

∀𝑟 ≤ 2𝑟,within the fluid.
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𝑓
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∞
+ 𝑇eq (𝑧) , 𝐶= 𝐶

∞
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2𝑟 ≥ 𝑟 ≤ 2𝑅 = within the wall
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∞
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∞
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(3)

(See Figure 1).
The geometry of the pipe and the nonlinear conduction

would constantly alter the conservation of mass as shown
below:
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Therefore, the influence of the radius is assumed to be
negligible under the above condition. Before deriving a uni-
fied differential equation, the most significant dimensionless
parameters are highlighted as

𝜃 =
𝑇eq (𝑧) − 𝑇𝑎

𝑇
𝑓
− 𝑇
𝑎

. (5)

Equation (5) is the dimensionless parameter for temperature
which expresses the scale or magnitude of the temperature
gradient of the fluid with respect to the pipe wall. The
condition𝐻

𝑝
> 𝐻
𝑓
is a relative term on the account that the

temperature of the pipe may not necessarily be dependent on
the surrounding air. To avoid complexities of various possible
heat sources of the pipe, we assume it takes its temperature
from the surrounding air. Again, this assumption is also
relative because of the influencing heat source which might
be weather or artificial (heat generated from machineries).
Another vital factor of the condition 𝐻

𝑝
> 𝐻
𝑓
is the fluid

flow of very cold liquids. In this case, the pipe absorbs heat
from the environment so that

𝐻
𝑓
+ 𝐻
𝑝
= 𝜀. (6)

The condition 𝐻
𝑓
> 𝐻
𝑝
might also be relative. For clarity,

we assume that the fluid temperature is dependent only on its
source, that is, the machine from which it is flowing.

The other key dimensionless parameters are the Reynolds
numbers which are defined as ratio between inertial and
viscous forces. Therefore, we shall be looking at the external
airflow and for the internal fluid flow which is expressed as

Re
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𝑓
𝐷
𝑖

𝜇
. (7)

𝜌 is the density, 𝜇 is the viscosity of the fluid flowing in the
pipe, 𝐷

𝑖
is the internal diameter of the pipe, and 𝑈

𝑓
is the

mean velocity of that fluid. Due to the overall convective
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Figure 1: Cross-sectional area of the pipe.
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Figure 2: Profile dynamics of pipe.

exchange of heat between the liquid and surrounding air, it
is also necessary to state the Reynolds number for the air as

Re
𝑎
=
𝜌𝑈
𝑎
𝐷
𝑖

𝜇
. (8)

Another dimensionless quantity is the Prandtl number which
is the ratio between momentum diffusivity and thermal
diffusivity. Prandtl number of liquids varies correspondingly
to the temperature of the fluid even though it is not shown in
its expression:

Pr =
𝜇𝐶
𝑝

𝑘
. (9)

𝜇 is the viscosity of fluid, 𝐶
𝑝
is specific heat at constant pres-

sure, and 𝑘 is the thermal conductivity of the fluid. The other
dimensionless parameter is the Nusselt number which is the
ratio between total heat transfer in a convection dominated
system and the estimated conductive heat transfer:

Nu =
ℎ𝐷
𝑖

𝑘
. (10)

𝐷
𝑖
is the internal diameter of the pipe and 𝑘 is the thermal

conductivity of the fluid.

3. Mathematical Experimentation

Solving the second order differential equation in (1)-(2)
enables the discovery of other dimensionless quantities. If (11)
below is introduced to (1), (12) emerges with introduction
of a decelerating parameter 𝑎

𝑓
which is due to the presence

of friction loss as the fluid flows through a lengthy pipeline.
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∞
) is negligible because the fluid is assumed to have

a homogenous flow:
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The generalized temperature model (Figure 3) in [14–18] is
summarized as

𝑇eq = 𝑒
(𝑢(𝑇eq)𝑡/𝜆)𝑇0 sin (𝑘𝑧) . (13)

This scheme shall be used to solve the flow rate which is
dependent on the thermal equilibrium of the pipe wall and
fluid. This is made possible when (14) is substituted into (12)
with the condition that 𝜀(𝑇eq) ≪ 1:

𝐷 sin (𝑘𝑧) + 𝐷𝑇eqcos
2

(𝑘𝑧) = 𝑎
𝑓
cos (𝑘𝑧) . (14)

We shall be investigating two cases; that is, 𝑘𝑧 = 0 and > 0.
First, let 𝑘𝑧 = 0,

𝑇eq = −
𝑎
𝑓

𝐷
, (15)

where𝑎
𝑓
∝ 𝑇
0
(𝑑𝑉/𝑑𝑡).𝑑𝑉/𝑑𝑡 is the volumeflow rate defined

by Poiseuille’s equation; that is,
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Leaving the temperature profile (𝑇eq) of the fluid to be
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((𝑃
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1
)/𝐿) is the pressure gradient and 𝑇

0
is the initial

temperature of the fluid through the pipe. The proposed
constant of (17) 𝐶 = 𝑚𝐶

𝑝
𝑈
𝑎
/𝑉ℎ𝑈. The constant introduces

the influences of the pipe properties on the fluid flow which
is the objective of this study:
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𝑇
0
is the initial temperature of the fluid,𝑇eq is the temperature

profile/gradient between the fluid andpipe,𝑚 ismass ofwater
flowing through the pipe, 𝐴 is the cross-sectional area of the
pipe, and 𝜌 is the density of the pipe. Combine (8)–(10); that
is, 𝑈 = PrRe/Nu = 𝜌𝐶

𝑝
𝑈
𝑎
/ℎ𝑧. 𝑈 is the unified parameter

and it is defined as
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𝜌𝐶
𝑝
𝑈
𝑎

ℎ
𝜃. (19)
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Figure 3: Effects of 𝜃 to the temperature profile.

4. Practical Application of Proposed Model

This theoretical model was applied to check the behavioral
peculiarities of the unified number (𝑈) on the temperature
profiles of buoyancy effects in horizontal pipe flows of drag-
reducing viscoelastic fluids. We assumed a highly dense
metallic/ceramic pipe through which any nonvolatile fluid
of lower viscosity (say 𝜂 > 1 but 𝜂 < 100) flows through.
The specific parameters used for the experiment include
𝑇
0
= 303K, ℎ = 0.4W/mK, 𝜌 > 1000Kg/m3, 𝐶

𝑝
=

381 J/KgK, 𝐷 = 1mm3 to 7mm3, and 𝑈
𝑎
= 0.003m/s.

The major objective of this section is to investigate the
usual experimental errors noticed in the Nusselt number
of a turbulent flow. Basically, Poiseuille’s equation is not
obeyed when the Reynolds number exceeds 2000; however,
regardless of the type of flow, few unseen factors present
the anomaly found when calculating the Reynolds number
across two distant points on the pipe. Therefore, we shall
compare our theoretical model with known experimental
results (Figures 4(a) and 4(b)), that is, to ascertain the
accuracy of the unified number (𝑈).

5. Results and Discussion

Our theoretical model is an improvement on the deficiency
of Poiseuille’s equation to analyze complex problems in
hydraulic engineering. One of themajor adjustmentsmade to
incorporate both the unifiednumber (𝑈) and the temperature
profiles of the fluid flow was the volume flow rate which
varies to the third power of the diameter (𝐷). This simply
means that when the diameter of the pipe is doubled, the
flow rate increases by a factor 8. This idea was used to solve
the shortcomings of the application of Reynolds number
greater than 2000; that is, Re > 2000. The behavioral
content of the unified number exactly mimics the behavioral
trend of experimental results of the Reynolds, Nusselt, and
Prandtl number (Figures 4(a) and 4(b)). The experimental
confirmation of the model is, therefore, a major success
in solving flow rate problems in hydraulic engineering and
blood flow rate. The unified number governs the convective
phenomena between two interacting fluids that are separated
by a conductivemedium. In this case, the conductivemedium
is the pipe whose properties are defined by its density and
specific heat capacity as shown in (18).
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Figure 4: (a)Theoretical model using the unified number in laminar flow. (b) Experiments of two turbulent flows (Gasljevic et al., 2000) [19].
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Figure 5: Temperature distribution trend in a pipe wall and fluid.

The second condition (refer to (??)) when 𝑘𝑧 > 0, the
mass diffusion coefficient is neglected on the assumption of
the nonconservation of mass along the 𝑟-axis.

The temperature profile of the collective pipe wall and
fluid (Equilibrium Temperature) is analyzed in Figure 5. The
temperature distribution undulates at constant volume flow
rate. Despite the viscosity of the fluid and the properties of
the pipe wall, the shear stress on the wall pipe is paramount
because it determines the temperature profile as the fluid
makes uneven contact with the pipe wall. This is the idea
of the unified number in solving hydraulic problems in
machinery [20].

6. Conclusion

The theoretical model had enabled the confirmation of a
scheme known as the unified number which is believed to
govern the convective phenomena between two interacting
fluids that are separated by a conductive medium. The
validity of the hypothesis by experimental results shows the
importance of the conductivemediumwhose properties were
defined by its density and specific heat capacity. More revela-
tions on the unified numbermay be achieved in analyzing the
effects of distortion to laminar and turbulent flow through
conductive pipes (copper, steel, etc.) and nonconducting
pipes (blood vessels, ceramic pipes, etc.).
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[7] C. B. Tibiriçá, S. Szczukiewicz, G. Ribatski, and J. R. Thome,
“Critical heat flux of R134a and R245fa inside small-diameter
tubes,” Heat Transfer Engineering, vol. 34, no. 5-6, pp. 492–499,
2013.

[8] M. Epstein, J. P. Burelbach, andM.G. Plys, “Surface temperature
profiles due to radiant heating in a thermocapillary channel
flow,” Journal of Heat Transfer, vol. 119, no. 1, pp. 137–141, 1997.
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