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ABSTRACT 
 

We considered the Bayesian analysis of a shape parameter of the Weibull-Exponential distribution 
in this paper. We assumed a class of non-informative priors in deriving the corresponding posterior 
distributions. In particular, the Bayes estimators and associated risks were calculated under three 
different loss functions. The performance of the Bayes estimators was evaluated and compared to 
the method of maximum likelihood under a comprehensive simulation study. It was discovered that 
for the said parameters to be estimated, the quadratic loss function under both uniform and 
Jeffrey’s priors should be used for decreasing parameter values while the use of precautionary loss 
function can be preferred for increasing parameter values irrespective of the variations in sample 
size. 
 

 

Keywords:  Weibull exponential; Bayesian estimation; mathematical statistics; maximum likelihood 
estimation; simulation. 
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1. INTRODUCTION 
 
The Exponential distribution is regarded as being 
memoryless and has a constant failure rate; this 
latter property makes the distribution unsuitable 
for real-life problems and hence there is need to 
generalize the Exponential distribution in order to 
increase its flexibility and capability to model 
some other real-life problems, [1]. Some of the 
recent generalizations of the exponential 
distribution include the transmuted exponential 
distribution [2], transmuted inverse exponential 
distribution [3] and the Weibull-Exponential 
distribution (WED) [4].  
 
According to [4], if X is a Weibull-exponential 
random variable, then the probability density 
function (pdf) and the cumulative distribution 
function (cdf) of X are respectively given by; 

                 

   1
1( ) 1x xx ef x ee e


  


           (1) 

 
and 
 

   1
1

xe
F x e

 
                                      (2) 

 
where;   and   are shape parameters while 

  is scale parameter from the exponential 
distribution. 
 
The classical and non-classical or Bayesian 
methods of estimation have gained wider 
applications in statistical theory and analysis. In 
classical scenario, the parameters are 
considered to be fixed while in the Bayesian 
concept, the parameters are viewed as unknown 
random variables. It is true that in many real-life 
phenomena which are represented by lifetime 
models, the parameters cannot be treated as 
constant throughout the life testing period [5-7] 
hence the need for Bayesian estimation for 
lifetime models. 
   
[8] has considered Bayesian estimation for the 
extreme value distribution using progressive 
censored data and asymmetric loss, [9] 
estimated the shape parameter of the 
Generalized Pareto Distribution (GPD) using 
quasi, inverted gamma and uniform prior 
distributions under the LINEX, precautionary and 
entropy loss functions, [10] estimated the shape 

parameter of Generalized Exponential 
distribution using extended Jeffrey’s prior under 
the quadratic loss function, squared error loss 
function and general entropy loss function, [11] 
also estimated the parameters of Rayleigh 
distribution using Bayesian approach, [12] 
estimated the scale parameter of Laplace model 
using different asymmetric loss functions 
comprising precautionary, weighted squared, 
modified (quadratic) squared loss functions and 
[13] considered Bayesian Survival Estimator for 
Weibull distribution with censored data. In 
addition, [14] has also considered the Bayesian 
estimation of Weibull distribution under three loss 
functions. 
 
One of the important things that cannot be 
ignored in Bayesian approach is choosing the 
appropriate prior(s) for the parameters, so also is 
the choice of loss function. [15-21] and many 
others have however shown a number of 
symmetric and asymmetric loss functions to be 
functional in several applications.   
 
The objective of this study is to introduce a 
statistical comparison between the Bayesian and 
Maximum Likelihood estimation (MLE) 
procedures for estimating a shape parameter of 
the Weibull-Exponential distribution. The 
resulting estimators are obtained by using 
squared error, Quadratic and precautionary loss 
functions.  
 
The layout of the paper is as follows; in Section 
2, Maximum likelihood estimate of the shape 
parameter are obtained, in Section 3, the 
posterior distributions are obtained under the two 
different prior distributions while the Bayes 
estimates and corresponding risks are obtained 
in section 4. Finally, comparison between MLE 
and Bayes estimates under the two priors and 
loss functions are made using simulation study in 
Section 5. Some concluding remarks are given in 
Section 6. 
 
2. MAXIMUM LIKELIHOOD ESTIMATION 
 
This section presents the estimation of a shape 
parameter of the Weibull-Exponential distribution 
using the method of maximum likelihood 

estimation. Let 1 2, ,......., nX X X  be a random 

sample from the WED with unknown parameter 

vector  , ,
T    . The total log-likelihood 

function for θ is obtained from f(x) as follows: 
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The likelihood function for the shape parameter    is given by; 
 

     
1

1
|  

n
xi

i

n eL X e
  

                                                                          (4) 

 

Let the log-likelihood function  log |l L X  , therefore 

 

 
1

log 1i

n
x

i
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                                                                             (5)   

 

Differentiating  partially with respect to  , equating to zero and solving for ̂  gives; 
 

 
1

1i

n
x

i

l n
e



  


  

 
       

 
1

ˆ

1i
n

x

i

n

e






 


                                                                                    (6) 

 
Hence, equation (6) is the estimator for a shape parameter of the Weibull-Exponential distribution 
obtained by the method of Maximum Likelihood estimation. 
 
3. POSTERIOR DISTRIBUTIONS 
 
To obtain the posterior distribution of a parameter once the data has been observed, we apply Bayes' 
Theorem which is given as: 
 

     

   
0

|
|

|

p L X
p X

p L X d

 


  



                                                                                                     (7) 

 

where  p   and  |L X  are the prior distribution and the Likelihood function respectively. 

 
Here, Posterior distributions are derived by using uniform and Jeffrey’s prior. 
 
3.1 Posterior Distributions under the Assumption of Uniform Prior 
 
The uniform prior as a non-informative prior relating to parameter   is defined as: 
 

  1p                ; 0                                                                                                         (8) 

 
The posterior distribution of parameter   for a given data under uniform prior is obtained from 
equation (7) using integration by substitution method as: 
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 
 

   

1

1

( 1)

1

|

1 1

n
xi

i

i

n

nn
x

i

e
p X

n

e

e





  

 

 





 

   
 


                                                                                      (9) 

 
3.2 Posterior Distributions under the Assumption of Uniform Prior 
 
Also, the Jeffrey’s prior as a non-informative prior relating to parameter   of the WED distribution is 
defined as: 
 

  1
p 


                      ; 1                                                                                                (10) 

 
The posterior distribution of parameter   for a given data under Jeffrey prior is obtained from 
equation (7) using integration by substitution method as: 
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4. BAYES ESTIMATORS AND THEIR RESPECTIVE CORRESPONDING RISKS 
 
Here, we estimate a shape parameter of the WED using three loss functions under the posterior 
distributions obtained from both the uniform and Jeffrey’s priors.  
 
The Bayes estimators and their corresponding Bayes posterior risks using uniform prior are as 
follows: 
  
4.1 Using Squared Error Loss Function (SELF) under Uniform Prior 
 
The squared error loss function relating to the parameter   is defined as: 
 

   2
, SELF SELFL                                                                                                                   (12) 

 where SELF  is the estimator of the parameter   under SELF 

 
The derivation of Bayes estimator using SELF under uniform prior is given below: 
 

   |SELF E E X   
 

   
0

| |E X p X d   
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                                                                                                             (13) 

Substituting for  |p X  in equation (11), we have:                 
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Now, using integration by substitution method in equation (14) and simplification, we obtained the 
Bayes estimator using SELF under the uniform prior as: 
 

 

   
1

2

1 1i

SELF n
x

i

n

n e






 

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                                                                                                       (15) 

 

Using the Squared error loss function (SELF), the following risk  SELFp   is defined as: 

 

      22 | |SELFP E X E X                                                                                                (16) 

 
And it is obtained as 
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                                                                                 (17) 

 
4.2 Using Quadratic Loss Function (QLF) under Uniform Prior 
 
The Quadratic loss function (QLF) is defined as 
 

 
2

, QLF
QLFL

 
 


 

  
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                                                                                                              (18) 

 where QLF  is the estimator of the parameter   under QLF 

 
The derivation of Bayes estimator using QLF under uniform prior is as follows: 
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Substituting for  |p X  in equation (19), we have:         
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Using integration by substitution method in Equation (20) and simplifying, we obtained the Bayes 
estimator using QLF under the uniform prior as: 
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Using the Quadratic loss function (QLF), the following risk  QLFp   is defined as: 

 

    
 

2
1

2

|
1

|
QLF

E X
P

E X



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
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Therefore, the following risk under the uniform prior using the Quadratic loss function is given as: 
 

       
   

2
1 1

1 1QLF

n n n
P
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                                                                                        (23) 

 
 
4.3 Using Precautionary Loss Function (PLF) under the Uniform Prior  
 
The precautionary loss function (PLF) introduced by [22] is an asymmetric loss function and is defined 
as 
 

   2

, PLF
PLFL

 
 




                                                                                                                (24) 

 where PLF  is the estimator of the parameter   under PLF 

 
Similarly, the derivation of Bayes estimator under PLF using uniform prior is given below: 
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1 1
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Substituting for  |p X  in equation (25);, we have:   
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Again, using integration by substitution method in Equation (26) and simplifying, we obtained the 
Bayes estimator using PLF under the uniform prior as: 
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Applying the Precautionary loss function (PLF), the following risk  PLFp   is defined as: 

 

    2 |PLF PLFP E X                                                                                                          (28) 

 
and derived as:  
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Similarly, the Bayes estimators and posterior risks of a shape parameter of the WED using three loss 
functions under the posterior distribution obtained from Jeffrey’s prior are as follows:  
 
4.4 Using Squared Error Loss Function (SELF) under Jeffrey’s Prior 
 
The derivation of Bayes estimator under SELF-using Jeffrey's prior is given below: 
 

   |SELF E E X   
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Substituting for  |p X  in equation (30), we have:           
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Using integration by substitution method in Equation (31) and simplifying, we obtained the Bayes 
estimator using SELF under Jeffrey prior as: 
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Using the Squared error loss function (SELF), the following risk  SELFp   is defined as: 

 

      22 | |SELFP E X E X                                                                                                (33) 

 
Therefore, the following risk under Jeffrey's prior using the squared error loss function is: 
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4.5 Using Quadratic Loss Function (QLF) under Jeffrey’s prior 
 
The derivation of Bayes estimator under QLF using Jeffrey’s prior is given below: 
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Substituting for  |p X  in equation (35), we have:     
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Using integration by substitution method in Equation (36) and simplifying, we obtained the Bayes 
estimator using QLF under Jeffrey prior as: 
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Using the Quadratic loss function (QLF), the following risk  QLFp   is defined as: 
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Hence, it is obtained as:                     
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4.6 Using Precautionary Loss Function (PLF) under Jeffrey’s Prior 
 
Similarly, the derivation of Bayes estimator under PLF using Jeffrey’s prior is given below: 
 

       
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   2 2

0

| |E X p X d   


                                                                                                          (40) 

Substituting for  |p X  in equation (40); we have:       

 

 
 

 
 

1

112 1

0

1

|

i

n
xi

i

nn
x

i n eE X d
n

e
e





  


  

 
 

  



                                                                    (41) 

 
Using integration by substitution method in Equation (41) and simplifying, we obtained the Bayes 
estimator using PLF under Jeffrey prior as: 
 

 

   
2

1

2

1i

PLF
n

x

i

n

ne






 


 
  

 


                                                                                                    (42) 

 

Applying the Precautionary loss function (PLF), the following risk  PLFp   is defined as: 

 

    2 |PLF PLFP E X                                                                                                          (43) 

 
Hence, obtained as: 
 

        

   

1
2

1

2 1
2

1i

PLF n
x

i

n n n
P

ne






 
        
  
  


                                                                                (44) 

 
5. SIMULATION STUDY 
 
We used a package in R software to generate 
random samples of size n = (25, 35, 75, 125) 
from WED by using different values of   and 

assuming that the exponential parameter   and 
shape parameter   are known, that is 

 1   . Tables 1 to 3 present the results of 

our simulation study by listing the estimates of 
the shape parameter under the appropriate 
estimation methods such as the Maximum 
Likelihood Estimation (MLE), Squared Error Loss 
Function (SELF), Quadratic Loss Function (QLF), 
and Precautionary Loss Function (PLF) under 
both Uniform and Jeffrey priors. The Maximum 
Likelihood estimates and Bayesian estimates 
were obtained under a reasonably high number 
of replications; different sample sizes were used 
to investigate the performance of the estimators 

about their biases and mean squared errors as 
well as the sample sizes. 
 
The performance of the two methods was 
evaluated using the following performance 
measures: 
Bias: 

 
1

1
ˆ

N

i
i

Bias
N

 


    

and Mean Square Error,  

 2

1

1
ˆ

N

i
i

MSE
N

 


   

 

Where ̂  is the estimate of   from the ith 
simulated data and N is the number of Monte 
Carlo samples. 
 
Note: the estimate with the minimum bias and 
MSE will be considered as the best. 
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Table 1. Simulation of bayes estimates, their biases and mean squared errors based on the 

replications and sample sizes where 0.5   assuming that   and   are known  1  
 

 

Sample  
sizes 

Measures MLE Uniform prior Jeffrey’s prior 

SELF QLF PLF SELF QLF PLF 

25 Estimate 0.4437 0.4615 0.4260 0.4703 0.4437 0.4082 0.4525 
BIAS 0.0840 0.0899 0.0813 0.0940 0.0840 0.0818 0.0866 
MSE 0.0123 0.0145 0.0109 0.0160 0.0123 0.0105 0.0133 

35 Estimate 0.4611 0.4743 0.4479 0.4808 0.4611 0.4348 0.4676 
BIAS 0.0699 0.0732 0.0686 0.0756 0.0699 0.0690 0.0713 
MSE 0.0083 0.0094 0.0076 0.0101 0.0083 0.0074 0.0087 

75 Estimate 0.4645 0.4707 0.4583 0.4738 0.4645 0.4521 0.4676 
BIAS 0.0464 0.0475 0.0460 0.0482 0.0464 0.0462 0.0469 
MSE 0.0035 0.0037 0.0034 0.0039 0.0035 0.0034 0.0036 

125 Estimate 0.4644 0.4681 0.4607 0.4699 0.4644 0.4570 0.4663 
BIAS 0.0360 0.0364 0.0358 0.0368 0.0360 0.0358 0.0362 
MSE 0.0021 0.0021 0.0020 0.0022 0.0021 0.0020 0.0021 

 
Table 2. Simulation of bayes estimates, their biases and mean squared errors based on the 

replications and sample sizes where 1.5   assuming that   and   are known  1    
 

Sample  
sizes 

Measures MLE Uniform prior Jeffrey’s prior 
SELF QLF PLF SELF QLF PLF 

25 Estimate 1.3311 1.3844 1.2779 1.4108 1.3311 1.2247 1.3575 
BIAS 0.2521 0.2699 0.2438 0.2820 0.2521 0.2454 0.2598 
MSE 0.1106 0.1309 0.0985 0.1440 0.1106 0.0945 0.1197 

35 Estimate 1.3833 1.4228 1.3438 1.4425 1.3833 1.3043 1.4029 
BIAS 0.2099 0.2197 0.2057 0.2267 0.2098 0.2071 0.2140 
MSE 0.0743 0.0842 0.0685 0.0905 0.0743 0.0667 0.0787 

75 Estimate 1.3935 1.4121 1.3749 1.4213 1.3935 1.3563 1.4027 
BIAS 0.1393 0.1424 0.1380 0.1446 0.1393 0.1386 0.1406 
MSE 0.0317 0.0337 0.0305 0.0350 0.0317 0.0302 0.0326 

125 Estimate 1.3932 1.4044 1.3821 1.4099 1.3932 1.3709 1.3988 
BIAS 0.1079 0.1093 0.1073 0.1104 0.1079 0.1075 0.1085 
MSE 0.0186 0.0193 0.0182 0.0198 0.0186 0.0180 0.0189 

 

Table 3. Simulation of bayes estimates, their biases and mean squared errors based on the 

replications and sample sizes where 3.5   assuming that   and   are known  1    
 

Sample  
sizes 

Measures MLE Uniform prior Jeffrey’s prior 
SELF QLF PLF SELF QLF PLF 

25 Estimate 3.1060 3.2302 2.9818 3.2918 3.1060 2.8575 3.1675 
BIAS 0.5882 0.6298 0.5688 0.6579 0.5882 0.5726 0.6062 
MSE 0.6024 0.7127 0.5363 0.7838 0.6024 0.5146 0.6515 

35 Estimate 3.2277 3.3199 3.1355 3.3657 3.2277 3.0433 3.2735 
BIAS 0.4897 0.5126 0.4799 0.5291 0.4897 0.4833 0.4994 
MSE 0.4048 0.4582 0.3731 0.4928 0.4048 0.3632 0.4286 

75 Estimate 3.2515 3.2948 3.2081 3.3164 3.2515 3.1648 3.2731 
BIAS 0.3249 0.3323 0.3219 0.3375 0.3249 0.3233 0.3281 
MSE 0.1724 0.1833 0.1660 0.1904 0.1724 0.1642 0.1773 

125 Estimate 3.2509 3.2769 3.2249 3.2898 3.2509 3.1989 3.2638 
BIAS 0.2518 0.2551 0.2503 0.2575 0.2518 0.2509 0.2532 
MSE 0.1012 0.1051 0.0989 0.1076 0.1012 0.0983 0.1030 
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6. CONCLUSIONS  
 
We have obtained the Bayesian estimators of a 
shape parameter of Weibull-Exponential 
distribution in this study, the Posterior 
distributions of this parameter are derived by 
using Uniform and Jeffrey’s priors. Bayes 
estimators and their associated risks have been 
obtained by using three loss functions under the 
two prior distributions. The three loss functions 
used in this study are the Squared Error Loss 
Function (SELF), Quadratic Loss Function (QLF) 
and Precautionary Loss Function (PLF). The 
biases and mean square errors based on all the 
priors and for all the loss functions relating to the 
shapee parameter of the Weibull-Exponential 
distribution expectedly decrease with increase in 
sample size.  
 
For 0.5, 1     , the result indicates that 

using QLF under Jeffrey prior produces the best 
estimator with minimum bias and MSE                   
followed by QLF under Uniform prior and                   
these performances are found to be                
consistent irrespective of the different sample 
sizes used.  
 
For 1.5, 1     , the result indicates that 

using QLF under Jeffrey’s prior produces the 
best estimator with minimum bias and MSE 
followed by QLF under Uniform prior and these 
performances are found to be consistent 
irrespective of the different sample sizes used 
and this generally means that increasing the 
exponential or the other shape parameter has a 
huge impact on the estimate of the shape 
parameter of the Weibull-Exponential distribution 
under consideration. 
 
Also, for  3.5, 1     , our result shows 

that using QLF under Jeffrey’s prior produces the 
best estimator with minimum bias and MSE 
followed by QLF under Uniform prior and again 
these performances are found to be consistent 
irrespective of the different sample sizes 
considered, and this proves that increasing the 
shape parameter under study alone, keeping the 
other shape and exponential parameter constant 
has a very little or no effect on the estimate of the 
shape parameter of the Weibull-Exponential 
distribution under study. Most importantly, we 
found that using the QLF under both priors is a 
better approach for estimating the shape 
parameter of the WED irrespective of the values 
of the exponential and shape parameters and the 
sample sizes. 
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