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Abstract -Gears are referred to as solids of revolution

s when engaged with other components or otherwise referred to as 

thick cylinders. In this study analytical technique was employed to 

determine the radial stress and hoop stress experienced by a spur gear 

tooth in a food packaging machine during operation, by studying the 

machine failure rate for a period of 12 months to determine the rate 

of failure in a year. The study also revealed a validated result of hoop 

stress and radial stress by varying the temperature distributions across 

the gear tooth during the modeling and simulations, the result was 

analysis with Matlab (R2007b). Finally, a comparison of the 

nonlinearity in temperature variations in the two stresses revealed 

that the impact of the hoop stress on the gear was higher compared to 

the radial stress. 

Index Terms: Radial Stress, Hoop Stress, Thick Cylinders, Failure 

Rate. 

NOTATIONS 

     = radial stress i.e. stress in the radial direction 

     = radius of the gear 

    = hoop stress i.e. stress in along the circumference 

     = shear stress in   direction 

     = in the Z – direction 

      = local body force for unit volume 

      = angular coordinate 

      = body force 

      = density of the material 

      = angular velocity 

      = biharmonic stress function 

       = Poisson ratio         

      = Modulus of elasticly 

      = Temperature (normal 
O

C) 

   = potential function 
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       = internal radius at the root  

       = outer radius  

      = stress at the tip of the tooth 

       = stress at the bottom of the tooth 

       = constant (linear expansively 12.6 × 10
-6

/
o
C) 

       = constant 

       = constant 

       = constant temp (normal 
o
C) 

 
 

I. INTRODUCTION 

Gears are the most common means of transmitting power in 

the modern mechanical engineering world. They vary from a 

smaller size to a larger size based on the size of the device or 

machine and the operations. Large gears are used in lifting 

mechanisms and speed reducers. They form vital elements of 

main and ancillary mechanisms in heavy machines such as 

automobiles, tractors, metal cutting machine tools etc. 

Toothed gears are used to change the speed and power ratio as 

well as direction between input and output. Gears are also 

rotating machine parts which have cut teeth that mesh with 

another toothed part in order to transmit torque. The cut teeth 

are also called 'cogs'. Gears are one of the most important 

parts of any machine or a mechanism. Some of the sectors in 

which gears play a vital role are: 

Turbine plant, Hot and Cold Rolling, Construction machinery, 

Elevator industry 

Gears have several advantages considering their small overall 

dimensions, constant transmission ratio and operating 

simplicity. Therefore, they have the widest application in 

mechanical engineering for transmission of power. The art and 

science of gear transmission systems continue to improve. 

Today's engineers and researchers delve into many areas of 

innovative advancement and seek to establish and modify 

methods which can make gear systems meet the ever-
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widening needs of advancing technology. Their objectives are 

improvements of transmission life, operating efficiency, and 

reliability. They also seek to increase the power-to-weight 

ratio and reduce noise and vibrations in gear transmissions. 

Research on gear noise and vibration has revealed that the 

basic mechanism of noise generated from gearing is vibration 

excited by the dynamic load. Ajayi O.O [1] states that; the 

focus of safety engineering is normally not on cost, but on 

preserving life and nature, and therefore deals only with 

particular dangerous system failure modes. High reliability 

(safety) levels are the result of good engineering, attention to 

detail and always never the result of re-active failure 

management Dynamic load carrying behavior of gears is 

strongly influenced by geometric deviations associated with 

manufacturing, assembly and deformation processes. High 

dynamic load can lead to fatigue failure and affect the life and 

reliability of a gear transmission. Minimizing gear dynamic 

load will decrease gear noise, increase efficiency, improve 

pitting fatigue life, and help prevent gear tooth fracture [Naval 

surface warfare centre Carderock division] [2] A primary 

requirement of gears is the constancy of angular velocities or 

proportionality of position transmission. Precision instruments 

require positioning fidelity. High-speed and/or high-power 

gear trains also require transmission at constant angular 

velocities in order to avoid severe dynamic problems. 

Constant velocity (i.e., constant ratio) motion transmission is 

defined as "conjugate action" of the gear tooth profiles 

Kahraman [3].  

A gear having straight teeth along the axis is called a spur 

gear. They are used to transmit power between two parallel 

shafts. It has the largest applications and, also, it is the easiest 

to manufacture. Spur gears are the most common type used. 

Tooth contact is primarily rolling, with sliding occurring 

during engagement and disengagement. Some noise is normal, 

but it may become objectionable at high speeds. 

 A rack is a straight tooth gear which can be thought of as a 

segment of spur gear of infinite diameter. Rack and pinion 

gears are essentially a variation of spur gears and have similar 

lubrication requirements. 

 

II. REVIEW OF PREVIOUS STUDIES 

Hoop and Radial stresses are important in the advanced design 

and fatigue failure analysis of components in the gear 

transmission system, aerospace, and nuclear and automotive 

industries. Hoop and Radial stresses may play a significant 

role in analyzing dynamic behavior of gear transmission 

systems. A number of studies have been performed on the 

dynamic behavior of gear transmission systems. Fredette and 

Brown [4] used holes drilled across the entire tooth as a 

function of size and location. The ultimate objective of this 

work was to find the overall effect of whole size and location 

on the critical stresses in the gear. Joshi and Karma [5] did a 

work which deals with the effect on gear strength with 

variation of root fillet design using FEA. Circular root fillet 

design was considered for analysis. The loading was done at 

the highest point of single tooth contact (HPSTC). Hebbel, et 

al [6] used elliptical and circular holes as a stress relieving 

feature. Analysis revealed that, combination of elliptical and 

circular stress relieving features at specific, locations are 

beneficial than single circular, single elliptical, two circular or 

two elliptical stress relieving features. Hassan [7] developed a 

research study in which Contact stress analysis between two 

spur gear teeth was considered in different contact positions, 

representing a pair of mating gears during operation. A 

program has been developed to plot a pair of teeth in contact. 

Each case represented a sequence position of contact between 

these two teeth. The program gives graphic results for the 

profiles of these teeth in each position and location of contact 

during rotation. Finite element models were made for these 

cases and stress analysis was done. The results were presented 

and finite element analysis results were compared with 

theoretical calculations, wherever available. Hariharan [8] 

performed stress analysis on 8 different gears by finding the 

highest point of contact for all gears. Stress analysis for the 

load contact point moving along the involute curve is done for 

gears. The point of contact where 

maximum stress occurs is determined for all eight tested gears 

and the variation in this height (Highest point of Contact) 

diameter for contact ratio greater than one is studied. Then the 

maximum gear ratio is taken for application of force for all 

studies. From the results, in the study comparison of stresses 

on each gear with their respective highest point of contacts 

and selection of the weak gear among those for stress relief 

studies was done. He introduced circular holes as stress 

relieving features at different locations and also varied the 

diameters of holes. Zhong, and Zhang [9] performed an 

optimization work on a spur gear drive in which a load factor 

was formulated as a nonlinear optimization model. Three 

methods were presented to find the globally optimal design 

scheme on the structure of the spur gear pair. By suitable 

variable transformation, the constructed model was first 

converted into a linear program with mixed variables. They 

also developed an algorithm of global optimization for solving 

a binary linear programming with mixed variables .All the 

global optimum solutions were found for the original design 

problem. Taking into account the modification of the contact 

ratio factors, a specific global optimization method is provided 

to optimize the design of spur gear drive with soft tooth flank 

in a continuous variable space V. Siva et al [10] also did a 

modeling and analytical work on spur gear for sugarcane Juice 

Machine under static load condition using FEA. In the study, a 

proposal was developed to substitute the metallic gear of 
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sugarcane juice machine with plastic gears to reduce the 

weight and noise. For this purpose two different types of 

plastic materials were considered namely Nylon and 

Polycarbonate and their viability were checked with their 

counterpart metallic gear (cast iron).Based on the static 

analysis, the best plastic material was recommended for the 

purpose. Static analysis of a 3-D model was performed using 

ANSYS10.0.Compared to cast iron spur gears Nylon gears are 

suitable for the application of sugarcane juice machine 

application under limited load condition. M. Savage, et al [11]  

also did an optimization work on spur gear. The optimal 

design of compact spur gear reductions includes the selection 

of bearing and shaft proportions in addition to the gear mesh 

parameters. Designs for single mesh spur gear reductions are 

based on optimization of system life, system volume, and 

system weight including gears, support shafts, and the four 

bearings. The overall optimization allows component 

properties to interact, yielding the best composite design. A 

modified feasible directions search algorithm directs the 

optimization through a continuous design space. Interpolated 

polynomials expand the discrete bearing properties and 

proportions into continuous variables for optimization. After 

finding the continuous optimum, the designer can analyze near 

optimal designs for comparison and selection. Design 

examples show the influence of the bearings on the optimal 

configurations. Enesi et al [12] also employed the finite 

element approach to model the hoop stress on a simple spur 

gear in operation by considering constant, linear and 

nonlinearity in temperature distributions on the gear tooth. His 

result revealed that the nonlinearity in temperature distribution 

had highest impact of stress on the spur gear. 

 

III. ANALYSIS PROCEDURE AND GENERAL 

MODEL DEVELOPMENT FOR RADIAL AND HOOP 

STRESS 

 

A. Problem Statement 

This thermal investigation (radial and hoop stress) is about a 

spur gear which form a major rotary component in a food and 

beverage packaging machine (filler). Gearing is one of the 

most critical components in mechanical power transmission 

systems. The transfer of power between gears takes place at 

the contact between the mating teeth. During operation of the 

filler machine, meshed gears’ teeth flanks are subjected to 

high contact pressures and due to the repeated stresses, 

damage on the teeth flanks are caused; in addition to flank 

damage tooth breakage at the root of the tooth is one of the 

most frequent causes of gear failure in a rotating filler 

machine. This fatigue failure of the tooth decides the 

reliability of the gear. However, the pressure between these 

two surfaces should be infinite and this infinite pressure at 

contact may cause immediate yielding of both surfaces. In 

order to minimize this failure, this study was done to provide a 

structural framework for analyzing the functions and potential 

stresses (radial and hoop) for a spur gear in a rotating filler 

machine with a focus on preserving system functions. 

The Table I show the numbers of time of failure of the spur 

gear in study from the period of January-December 2014 and 

Fig. 3 also show the plot of failure rate vs. months of the year.  

 

Table I. 

Failure rate and month of failure 

S/N MONTHS FAILURE RATE ( n) 

1 Jan 5 

2 Feb 5 

3 Mar 8 

4 Apr 10 

5 May 0 

6 Jun 6 

7 Jul 7 

8 Aug 0 

9 Sep 4 

10 Oct 9 

11 Nov 3 

12 Dec 5 

 

 
 

Fig 3: Showing plot of failure rate versus month which 

failures occur 

 

The modeling procedure consists of a set of governing 

equations which were derived from stress equilibrium 

equations and solved analytically using the polar coordinate 

system for both radial and thermal stress. The final equations 

were obtained based on the following assumptions: 

1. 1-dimensional stress in the radial direction and 

2. 1-dimensional stress in the     direction 

 

CASE1:The study considered a case where the temperature 

distribution is constant throughout the tooth of the gear i.e. 

      for both hoop and radial stress 

Where; 
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       T normal temperature in degree Celsius 

   Minimum temperature in degree Celsius 

 CASE 2: The study also considered a case where temperature 

varies with the radius that can be represented in a   form 

        for both hoop and radial stress 

Where: 

      T normal temperature in degree Celsius 

   Minimum temperature in degree Celsius 

         Constant 

       r= radius of the gear 

CASE3: The study also considered a case where temperature 

varies non-linearly with the radius in a form that can be 

represented with the equation             for both 

hoop and radial stress 

Where: 

T normal temperature in degree Celsius 

   Minimum temperature in degree Celsius 

  Constant 

  Constant 

r= radius of the gear 

 

B. Gear material and properties 

The gear material investigated is mild steel and the following 

properties of mild steel were used in the simulation. 

 =Young Modulus of elasticity obtained as 210000 MPa. 

 =density obtained as 7850      

 =                                                 

 =Poisson ratio of mild steel given by 0.303 approximately. 

Fig. 4 models a finite element of stress variation around a gear 

tooth in the cylindrical coordinate system acting on its 

surfaces. 

 

Fig 4: Variation of stresses over a small element in a 

cylindrical polar coordinate system 

 

Considering equilibrium in the radial direction, the resultant 

radial force on the element due to the variation of     is: 

      
    

  
                                  

Neglecting the terms involving products of more than three 

coordinate increments, this expression simplifies to: 

        
   

 
 

    

  
                                                   

Due to the hopper stresses acting on the sloping sides of the 

element, there is a resultant radial force of 

       
    

  
          

  

 

         
    

 
                        

Since    
  

 
 

  

 
 for small values of   

  

 
 

As result of the variation in the shear stress     in the   

direction, the radial force is 

    

  
            

  

 
          

 

 

    

  
       

Thus as a result of the variation in shear stress     in the Z 

direction   

    

  
                 

    

  
                             

For the local acceleration of the element in r direction, 

equation 6 results:  

                                                                               

If the local body force per unit volume is   , and since the 

volume of the element is approximately          the total 

body force is 

                                                                                 

The stress equation of small motion in the radial forces is 

given by: 

        
   

 
 

    

  
          

    

 
 

         
 

 

    

  
          

    

  
 

                              

                                             

This gives:  

    

  
 

 

 

    

  
 

    

  
 

       

 
                      

Similar derivatives were obtained in the hoop and axial 

direction as: 

    

  
 

 

 

    

  
 

    

  
 

    

 
                             

    

  
 

 

 

    

  
 

    

  
 

   

 
                            

Analysis of stress at a point shows that shear stresses are 

complementary as: 
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For the case of symmetry about the Z-axis, 

The variables with respect to the angular coordinate, , were 

set to zero, together with the shear stress     and body force 

  in equations (9).This then gives: 

    

  
 

    

  
 

       

 
        

    

  
   

    

  
 

    

  
 

   

 
                                         

From equation (9) 

        

     

                                                                               

Applying the biharmonic stress function: 

           
  

    
 

 

 

  
 

  

     
  

    
 

 

 

  
 

  

              

(13)                            

The general biharmonic governing differential equation is 

given by: 

                  

                                                   

That is; 

 
  

   
 

 

 

 

  
 

  

   
  

   

   
 

 

 

  

  
 

   

   
   

      
   

   
 

 

 

  

  
 

   

   
     

   

   
 

 

 

  

  
 

   

   
 

       

 

Case 1: Assuming that there is no significant variation of 

stress in the axial direction we have; 

 

 

 

  
  

 

  
 
 

 

 

  
  

  

  
         

 

 

 

  
    

    
 

 

 

  
             

On integrating equation (16): 

                          
 

 
         

    
 

 
             

But  

   =  
 

 

  
   

                                                                                                 

       
   

   
 

So 

       
 

                 
   

         

  

         (19)                                

       
 

  
             

         
 

  
      

      
 

  
                           

For rotating gear,  

        
   

  
 

         

         

   
 

 
      

Thus, 
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Also, 

   

 
  

  
              

      

 
     

 
  

  
                                                                    

 

    
 

  
             

     

 
     

 
  

  
     

  

  

 

 

    
 

  
    

     

 
     

 
  

  
     

  

  

                           

The quantity            

because it is small and negligible 

                

                 

So, 

    
 

  
    

     

 
     

  
  

  
      

  
  

                             

(23a)                                                                         
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Subtracting equation (23a) from (23b) 

          
 

  
  

 

  
   

     

 
      

    
   

    
 

  
  

 

  
       

  

  

 

 

 

 
          

     

 
      

    
      

 

  
  

 

  
       

  
  

 
 

  
  

 

  
  

 

  
  
   

 

  
    

            
     

 
      

    
  

 
     

    
  

  
   

      
  

  

      

 

For constant ‘C’, substitute “A” into equation (23a) 

 

  
 

 
     

     

 
     

  
  

  
      

  

  

 
 

  
   

 

  
 

 
     

     

 
     

  
  

  
      

  
  

 
  
 

  
    

       

   −3+ 8  2 02−  2−   02−  2 02  2          

  
 

 
     

     

 
      

    
  

   

  
      

  
  

 
  

  
    

      

                                               (25)                                                        

 

Substitute equations (24) and (25) into equations (22) 

    
 

  
    

     

 
      

  

  
     

  

  

 

 

     

  
 

   
    

  
           

     

 
      

    
  

 
     

    
  

  
   

      
  
  

 
 

 

   

 
    

     

 
      

    
   

   

  
      

  
  

 
   

  
    

          
  

     

 
      

  

       
  
  

  

Recall that, 

 
   

  

  
      

    

 
       

  

  
     

                                                 

(22) 
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(23d) 

          
 

  
 
 

 

  
      

    

 
       

    
   

     
 

  
 
 

 

  
        

           
    

 
       

    
      

 

  
  

 

  
       

 

  
  

 

  
 

   

 
  
    

 

  
    

             
    

 
       

    
  

    
 

  
 
 

 

  
           

To obtain C substitute A into equation (23c) 
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Substituting the values of A and C into Equation (22) 

     
  

  
     

    

 
     

  

  
      

   
 

   
  
     

 

  
    

              
    

 
       

    
    

  1  2−1  2    +2 121+3 8  2  2−  2+ 

  2  2−  2   −   −   −1+3 8  2 2−   2      
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  1  2−1  2    + 1+3 8  2  2−  2+ 

  2  2−  2   −   −   −1+3 8  2 2−   2      

 

a. Modelling for the radial-thermal stress 

CASE 1:       

       
  
   

 

  
    

             
   

 
       

    
  

 
  

   
   

 
   

    
      

 

  

       
   

 
       

    
   

    

  
 

  
 

   
  

  
  
    

           

   
   

 
       

     
    

  

   
    

 

CASE 2     :         

     
  
   

 

   
    

  
          

   

 
       

    
    

    2−  2  2.  2    2−  22+   3−  331 2+   +3+ 

8  2  2+  2+2    2    2−  2+   3−  33−    2.  2

   −   −3+ 8  2 2−   2    2−  22+   3−  33  

 

CASE 3:Equation for                

     
  
   

 

   
    

  
          

   

 
       

    
    

    2−  2  2.  2    2−  22+   3−  33+   4−  441 

2+   +3+ 8  2  2+  2+2    2    2−  22+   3−  

33+   4−  44−    2.  2   −   −3+ 8  2 2−   2  

  2−  22+   3−  33+   4−  44  

 

b. modeling for hoop-thermal stress 

    Case 1:      
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    Case 2:        
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    Case 3:                
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IV. RESULTS AND DISCUSSSION 

For Radial stress results: 

Case: 1 

 

Fig. 5: Radial stress versus depth distance below surface 

 

Case: 2 

 

Fig. 6:  Radial stress versus depth distance below surface   

Case: 3 

 

Fig. 7: Radial stress versus depth distance below surface 

 

For Hoop Stress Result 

Case 1 

 
Fig. 8: Hoop stress versus depth distance below surface 

 

Case: 2 

. 

Fig 9: Hoop stress versus depth distance below surface 

Case: 3 

 

Fig. 10: Hoop stress versus depth distance below surface 
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Fig. 5 shows that at the point of contact the compressive stress 

is approximately 178 GPa. This stress decreases along the 

depth of the gear tooth inward until a depth of 0.53 cm where 

it becomes constant at 0 GPa. Beyond this depth, the tooth 

material experiences no stress effect. It is therefore obvious 

that if the gear tooth needs to be hardened, it is at the tip and 

the distance as stated before 

Fig. 6 represents the case of linear variation of temperature 

distribution with the radius of the gear tooth as earlier 

represented with an equation for case 2 for radial stress. It can 

be deduced that the figure is an exact replica of Fig. 5 even 

though the temperature distribution varies linearly with the 

tooth radius. The same result would be achieved. However the 

reverse is the case for a non linear variation of temperature 

distribution with radius 

 Fig. 7 represent the third case of temperature distribution 

varying non-linearly with the radius of the gear tooth which 

also has its equation named as case 3 for radial stress 

distribution. The effect of non-linearity of temperature 

variation was felt much more in depth.  The compressive 

stress travels deeper than when the temperature was either 

constant or varied linearly. Thus while there were no stress 

effects at a depth of 0.53 cm for constant and linearly varied 

temperatures, the stress effect for non linearity in temperature 

variation travelled up to the depth of 1 cm. Hence, the 

nonlinearity temperature variation makes the material 

susceptible to penetrating stress. Moreover, since the tooth 

surfaces undergo fluctuating, and cyclic stresses of all kinds 

during the course of action, fatigue failure of the surface may 

ensues. 

In comparison with the result of hoop stress, Fig. 8 is a plot 

representing the changes in hoop stress with depth along the 

tooth distance .This also represents the case where temperature 

is assumed constant on the tooth. It could be observed as well 

from Fig. 8 that at the point of contact, the compressive stress 

is approximately 0.212 Gpa. This stress decreases along the 

depth of the gear tooth inward in a circumferential manner 

until a depth of 0.2 m where it becomes constant at 0.084Gpa. 

Beyond this depth, the tooth material experiences less stress 

effect. 

Similarly Fig. 9 illustrates the plot for a case 2 for hoop stress 

which is also a case of linear temperature variation for hoop 

stress. The effect of linearity in temperature variation is not 

obvious as earlier observed for case 2 of radial stress since the 

plot takes the same shape as well as the same values for 

maximum stress and depth responsible for the tooth 

deformation. 

 Fig. 10 represents a plot for the case of nonlinearity of 

temperature variation for hoop stress, from the result 

compressive stress is also felt deeper compared to the constant 

and linearity cases for temperature variation. The stress effect 

for the nonlinear variation in temperature is felt up to the 

depth of 0.24m. It is therefore also possible to say that the 

nonlinearity variation in temperature has more stress effect. 

A common observation from the three plots for hoop stress 

revealed that all the plots appeared to have the same decrease 

and increase in stress towards the plastic region which 

signifies the effect of nonlinearity in temperature variation as 

well as variation in the tooth radius as the stress moves 

inward.  

In general circumferential (hoop) and radial stresses are 

responses to diametrical deformation. The hoop stress is stress 

in the direction along the circumference, and the radial stress 

is a stress in the radial direction. In gear teeth, there is a 

distribution of tangential and radial stress across the thickness 

of the gear tooth. However, when the wall thickness of the 

gear tooth is less than 1/20th of the radius according to Shigley 

the distribution has a valid approximation of an average hoop 

stress. As well, the radial stress tends not to matter much 

because it is so small when compared to the hoop stress. The 

hoop stress then becomes the driving factor for gear tooth 

design or analysis. 

 

 

V. CONCLUSIONS 

Analytical techniques have been used to determine radial and 

hoop stress effect on a spur gear with the considerations of 

constant, linear and nonlinearity in the variation of 

temperatures on the gear tooth. 

The result revealed that the nonlinearity in temperature 

variations for both radial stress and hoop stress have more 

thermal effect on the spur gear tooth compared to the constant 

and linear temperature variation. 

In general, it has also been demonstrated from the results of 

hoop stress that it has more impact when compared to the 

radial stress. 
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The analysis reveals that the maximum effective 

stress always occurs at the inside surface 
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