
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=best20

Critical Reviews in Environmental Science and
Technology

ISSN: 1064-3389 (Print) 1547-6537 (Online) Journal homepage: http://www.tandfonline.com/loi/best20

Toward N-nitrosamines free water: Formation,
prevention, and removal

Peter Adeniyi Alaba, Yahaya Muhammad Sani, Sunday Felix Olupinla, Wan
Mohd Wan Daud, Isah Yakub Mohammed, Christopher C. Enweremadu &
Olubunmi O. Ayodele

To cite this article: Peter Adeniyi Alaba, Yahaya Muhammad Sani, Sunday Felix Olupinla, Wan
Mohd Wan Daud, Isah Yakub Mohammed, Christopher C. Enweremadu & Olubunmi O. Ayodele
(2017) Toward N-nitrosamines free water: Formation, prevention, and removal, Critical Reviews in
Environmental Science and Technology, 47:24, 2448-2489, DOI: 10.1080/10643389.2018.1430438

To link to this article:  https://doi.org/10.1080/10643389.2018.1430438

Published online: 15 Feb 2018.

Submit your article to this journal 

Article views: 82

View related articles 

http://www.tandfonline.com/action/journalInformation?journalCode=best20
http://www.tandfonline.com/loi/best20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/10643389.2018.1430438
https://doi.org/10.1080/10643389.2018.1430438
http://www.tandfonline.com/action/authorSubmission?journalCode=best20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=best20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/10643389.2018.1430438
http://www.tandfonline.com/doi/mlt/10.1080/10643389.2018.1430438


Toward N-nitrosamines free water: Formation, prevention,
and removal

Peter Adeniyi Alaba a, Yahaya Muhammad Sanib, Sunday Felix Olupinlac,
Wan Mohd Wan Dauda, Isah Yakub Mohammedd, Christopher C. Enweremadue,
and Olubunmi O. Ayodelef

aDepartment of Chemical Engineering, Covenant University, Sango-ota, Ogun-State, Nigeria;
bDepartment of Chemical Engineering, Ahmadu Bello University, Nigeria; cDepartment of Petroleum
and Natural Gas Processing Engineering, Petroleum Training Institute, Effurun, Delta State;
dDepartment of Chemical Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria;
eDepartment of Mechanical and Industrial Engineering, University of South Africa, Science Campus,
Florida, South Africa; fDepartment of Forest Products Development and Utilization Forestry Research
Institute of Nigeria, Ibadan, Oyo State, Nigeria

ABSTRACT
This study elucidates the recent trends in the formation,
prevention, and removal of N-nitrosamines such as N-
nitrosodimethylamine (NDMA) from wastewater or drinking
water. Reports are rife on the occurrence of NDMA in areas such
as amine degradation during postcombustion CO2 capture
(PCC), chlorinated/chloraminated and ozonated drinking
water, smoked or cooked foods personal care, tobacco and
pharmaceutical products. The major routes responsible for the
formation of NDMA in portable waters include chlorination/
chloramination and ozonation. The major NDMA precursors are
secondary, tertiary, and quaternary amines such as
dimethylamine, diethanolamine, and triethanolamine. Due to
the environmental and public health concerns posed by this
contaminant, a proactive approach is necessary towards
suppressing their occurrence, as well as their removal.
Consequently, this study critically reviewed the formation,
prevention, and removal of N-nitrosamines. The study discussed
NDMA prevention techniques, such as physical adsorption, pre-
oxidation, and biological activated carbon. The removal
techniques discussed here include physicochemical (such as
combined adsorption and microwave irradiation and UV
photolysis), bioremediation, catalytic reduction, and dope
technology. Irrespective of the effectiveness and seemingly
economic viability of some of these technologies, preventing
the occurrence of NDMA right from the outset is more potent
because the treatments consume more energy.
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1. Introduction

NDMA and other nitrosamine such as N-nitrosomethylethylamine (NMEA), N-
nitrosomorpholine (NMOR), N-nitrosopyrrolidine (NPYR), N-nitroso-di-phe-
nylamine (NDPhA), N-nitrosopiperidine (NPIP), N-nitrosodiethylamine
(NDEA), N-nitrosodi-n-butylamine (NDBA), and N-nitrosodipropylamine
(NDPA) could be found in secondary treated effluent and raw wastewater as
well as drinking water (Krauss et al., 2010; Reyes-Contreras et al., 2012; Yoon
et al., 2012). Some of these nitrosamines including NDMA are categorized as
probable human carcinogens (USEPA, 1993). According to USEPA’s Integrated
Risk Information System database, six nitrosamines water concentration at a
low level (ng/L) could lead to 10¡6 lifetime excess cancer risk. Therefore, several
organizations and institutions have set different public health thresholds. For
instance, the Office of Environmental Health Hazard Assessment (OEHHA) in
California recommends 3 ng/L N-NDMA (Shen and Andrews, 2011). The Aus-
tralian Guidelines for Water Recycling recommends 10 ng/L (Pisarenko et al.,
2015), while California’s Department of Public Health (CDPH) recommends
10 ng/L limit for 3 nitrosamines (Krasner et al., 2013). However, the cancer
potency of NDMA is much higher than those of the trihalomethanes (Mitch
et al., 2003). A number of the latest pilot- and full-scale studies revealed that
rejection efficiency of NDMA by RO membranes varies widely, thereby making
it a trace organic substance of concern (Farr�e et al., 2011; Fujioka et al., 2014;
Khan and McDonald, 2010). NDMA, which is the most significant N-nitrosa-
mine based on occurrence and abundance is formed during the chloramination
of biologically treated effluent as a non-halogenated disinfectant by-product
(Qian et al., 2015; Russell et al., 2012). NDMA is also a disinfectant by-product
of ozonation processes (He and Cheng, 2016). Further, oxidation of unsymmet-
rical dimethylhydrazine, a commonly utilized constituent of liquid rocket fuel
also produces NDMA (Mitch et al., 2003). This is predicated on the recorded
occurrence of NDMA (up to 400 mg/L) in the groundwater on a testing facility
of a rocket engine, and about 20 mg/L was observed in the down gradient well
waters of Sacramento County, California (Mitch et al., 2003). The formation of
N-nitrosamines during the process of postcombustion capture of CO2 and after
releasing amine wastes into the atmosphere is also possible (Strazisar et al.,
2003; Svendsen and Asif, 2013).

Prominent N-nitrosamine precursors are secondary, tertiary, and quaternary
amines, which include dimethylamine, DMA and trimethylamine (TMA) (Callura,
2014). NDMA precursors include DMA, dimethylformamide (DMFA), trimethyl-
amine (TMA), and dimethylaminobenzene (DMAB).

DMA and tertiary amines with DMA functional group mostly found in munici-
pal wastewater (Wang et al., 2014) are the protuberant precursors. NDMA is the
first N-nitrosamine discovered in drinking water in Ontario, Canada (Taguchi
et al., 1994), while other types were detected in a number of places such as the
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United Kingdom, Asia, Australia, and North America (Asami et al., 2009; Krasner
et al., 2013; Russell et al., 2012; Wang et al., 2010).

Removal of NDMA from portable water is an uphill task due to the complex
nature of NDMA. This includes strong hydrophilicity, low molecular weight, struc-
tural stability, which makes their removal exceptionally difficult by conventional
and advanced treatment processes. Several authors have identified prevention of
NDMA formation via destruction of NDMA precursors as a viable alternative (Li
et al., 2017; Liao et al., 2015). Some proceed towards finding a more efficient
NDMA removal technique (Han et al., 2017; Su et al., 2017), while others applied
both strategies (He and Cheng, 2016; Wang et al., 2014). Consequently, to proffer
solution to these challenges, this study critically reviewed the formation, preven-
tion, and removal of N-nitrosamines. NDMA prevention techniques include physi-
cal adsorption, resin fractionation, polarity rapid assessment method, PRAM, pre-
oxidation, and biological activated carbon. The removal techniques discussed here
include physicochemical, combined physicochemical and microwave irradiation,
UV photolysis, bioremediation, catalytic reduction, and dope technology.

2. Formation of nitrosamine

2.1. Chloramination

In compliance with disinfection byproduct (DBP) regulation for minimizing halo-
acetic acids formation (Weidhaas et al., 2012) and trihalomethanes (halogenated
DBPs) (USEPA, 2014; Zhai et al., 2014), mono-chloramine replaced free chlorine
(FC) (Hollender et al., 2009) in drinking water treatment plants (DWTPs). How-
ever, disinfection with MCA engenders formation of nitrogenous DBPs such as N-
nitrosamines in a solution containing hydrophilic dissolved organic matter
(DOM) with low molecular weight (Krasner et al., 2012; Wang et al., 2013). These
nitrogenous DBPs obtained via chloramination have associated risks greater than
that of the halogenated DBP by two to three orders of magnitude (Charrois and
Hrudey, 2007). Prominent of all the N-nitrosamines is NDMA, which has been
reported as a low-level carcinogenic contaminant with cancer risk at 0.7 ng/L
(Wang et al., 2013). Moreover, the health hazard of N-nitrosamines exposure tends
to increase due to the wide acceptance of MCA in DWTPs (West et al., 2016). This
warrants a systematic investigation of N-nitrosamine formation under different
conditions. Consequently, USEPA placed NDMA and 5 other N-nitrosamines in
the unregulated contaminant monitoring rules and in their contaminant candidate
list (CCL) and in the draft of CCL 4 (Krasner et al., 2009).

NDMA may be formed as a byproduct of disinfection of wastewater and drink-
ing water treated with polymers such as poly(diallyldimethylammonium chloride)
(polyDADMAC) and poly(epichlorohydrin dimethylamine) (polyamine), and
pharmaceuticals and personal care products (PPCPs) substituted amine groups
when exposed to chloramines. For polymer-based, the formation pathway signifi-
cantly depends on properties of the polymer. These include purity, structure and
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molecular weight, residual DMA, and other intermediate compounds used during
polymer synthesis. Reaction variables like contact time, pH, and oxidant dosage
also influence the formation mechanism (Park et al., 2009). Park et al. (2009) stud-
ied the formation mechanisms of NDMA by direct chloramination of intermediate
monomers and polymers in reagent water. The result showed polyamines have
greater potential to form NDMA when compared with polyDADMAC. The forma-
tion of NDMA from both polymers was significantly associated with degradation
of polymer and release of DMA as chloramination proceeds. When polyamine is
used, NDMA formation proceeds by degradation of tertiary amine chain ends,
while the formation of NDMA proceeds by degradation of the quaternary ammo-
nium ring group. (Park et al., 2009) also stated that presence of polymer impurities
such as catalysts, intermediate compounds, oligomers, and monomers also
increases the formation tendency of NDMA. Furthermore, low molecular weight
polymers have a higher NDMA formation potential when compared with high
molecular weight polymers. The increase in oxidant dosage above the optimum
amount raises the formation potential of NDMA after a long contact time. The
effect of pH is also vital in water treatment (Naje et al., 2016), even towards the for-
mation of DMA and NDMA. For instance, the optimum degradation pH for both
polyDADMAC and polyamine is 8 (Park et al., 2009). West et al. (2016) recently
reported the speedy formation of NDMA in the presence of seven N-nitrosamine
precursors in the presence of mono-chlorine disinfectant. The precursors include
dimethylamine, 3-(dimethylaminomethyl) indole, trimethylamine, 4-dimethylami-
noantipyrine, ethylmethylamine, dipropylamine and diethylamine. Other observed
N-nitroamines include NDEA, NDPA, N-nitrosomethylamine, NMOR, NPYR,
NPIP, and NDBA. However, changes in pH do not influence the formation of
NDMA, while the formation of other N-nitrosamines slightly decreases with
increase in pH from 7 to 9.

Amine-based PPCPs (i.e., PPCPs containing diethylamine [DEA] or DMA in
their structures) fall within tertiary and quaternary amine groups that could con-
tribute to the nitrosamines formation during chloramine disinfection of wastewa-
ter effluent organic matter (EfOM) (Krasner, 2009; Shen and Andrews, 2011).
PPCPs could be discharged to the environment and infiltrate into drinking water
treatment plant either via wastewater treatment plant effluent or via natural water
(Shen and Andrews, 2013b; Zhang et al., 2014).

(Shen and Andrews, 2011) reported twenty amine-based PPCPs with potentials
for NDMA formation during disinfection via chloramination (Table 1). Eight
of the reported pharmaceuticals exhibit relatively high potential for NDMA forma-
tion (more than 1% molar yield) out of which ranitidine shows the highest
potential. The presence of dichloramine is responsible for the formation of NDMA
from the precursors because the molar transformation of the precursor increases
with the molar ratio of Cl2:N. However, it is not likely those PPCPs will constitute
the bulk of nitrosamine precursors in water since most of them are in trace level in
the source waters but significant NDMA formation could be ascribed to additive
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formation from multiple, low-yielding compounds (Hanigan et al., 2017). Further-
more, transformation products and metabolites of some PPCPs could also consti-
tute nitrosamines formation potential. Therefore, the overall potential of PPCPs to
form nitrosamine formation depends on the possible transformation products, the
parent compounds, as well as their metabolites.

Moreover, the dissolved oxygen and solution pH significantly affect nitrosamne
formation. The yield of NDMA decreases with a decrease in the concentration of
dissolved oxygen during chloramination of ranitidine (Le Roux et al., 2011). This
shows that rather than dichloroamine, dissolved oxygen is the major oxidant dur-
ing chloramination of ranitidine. According to the report of Shen and Andrews
(2013a) on influence of pH on the formation of NDMA from sumatriptan and
ranitidine, the most favorable pH for NDMA formation is from 7 to 8. A lower pH
results in protonation of all the amines, thereby limiting NDMA formation.
Although a higher pH increases the amount of non-protonated amines, formation
of NDMA is limited due to shortage of dichloroamine.

Apart from the 20 listed reported by Shen and Andrews (2011), methadone is
another newly identified pharmaceutical with relatively high potential for NDMA
formation (Hanigan et al., 2017). Methadone is a pharmaceutical containing
organic nitrogen (tertiary amine) and is basically used for treatment of heroin
addiction. Recently, methadone becomes a commonly prescribed pill for chronic
non-cancer pain and mitigation of withdrawal symptoms ascribed to prescription
opiates such as morphine (Control and Prevention, 2012). According to the report
of (Hanigan et al., 2015), the molar yield of NDMA ranges from 23% to 70%

Table 1. Nitrosamine formation potentials of selected PPCPs under the modified formation poten-
tial conditions (Initial concentration of PPCPs D 25 nM) (Shen and Andrews, 2011).

Molar yield (%)

PPCP Milli Q Tap water

NDMA precursors
Ranitidine 89.9 94.2
Doxylamine 8.0 9.7
Sumatriptan 6.1 6.1
Chlorphenamine 5.2 5.5
Nizatidine 4.5 4.8
Diltiazem 2.1 2.6
Carbinoxamine 1.0 1.4
Tetracycline 0.8 1.2
Diphenhydramine 0.63 0.65
Azithromycin 0.51 0.78
Clarithromycin 0.34 0.86
Erythromycin 0.62 0.79
Roxithromycin 0.39 0.54
Amitriptyline 0.66 0.61
Escitalpram 0.74 0.55
Metformin 0.37 0.41
Tramadol 0.46 0.44
Venlafaxine 0.41 0.63

NDEA Precursors
DEET 0.65 0.71
Lidocaine 0.52 0.52
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depending on the dosage of chloramine (1–150 mgCl2/L). This is responsible for
NDMA formation potential between 1% and 10% in most raw surface waters, and
up to 62% of NDMA formation potential in wastewater. Both methadone and
ranitidine are high-yielding NDMA precursors found in domestic sewage as
microconstituents (Zeng and Mitch, 2015).

NDMA could be formed when free chlorine is used as a disinfectant in the pres-
ence of nitrite (Choi and Valentine, 2003). The proposed pathway is as follows:

HOCl C NO2
¡ $ NO2Cl C OH¡ (1)

NO2Cl C NO2
¡ $ N2O4 C Cl¡ (2)

NO2Cl C OH¡ $ NO3
¡ C HC C Cl¡ (3)

HC C NH2Cl C NO2
¡ $ NO2Cl C NH3 (4)

CH3ð Þ2NH C N2O4 $ CH3ð Þ2N¡NO (5)

Although DMA is the popular source of NDMA, the nitrosation reaction
between DMA and nitrites is extremely slow (Najm and Trussell, 2001). The inter-
action of chloramine with DMA to form unsymmetrical dimethylhydrazine
(UDMH), could be simply oxidized to different compounds, among which is
NDMA at a low yield (Scheme 1) (Choi and Valentine, 2002; Mitch and Sedlak,
2002; Nawrocki and Andrzejewski, 2011), with the highest NDMA formation at a
pH range of 6 to 8 (Mitch and Sedlak, 2002). Therefore, UDMH oxidation is not a
rate-determining step but the NDMA formation increases as the concentration of
chloramine increase, indicating that chloramine is the nitrogen source towards the
formation of NDMA. In the view of this, Gerecke and Sedlak (2003) suggested that
natural organic matter could be an N-nitrosamine precursor in wastewater treat-
ment plants.

Schreiber and Mitch (2006) revisited the NDMA formation pathway and sug-
gested that formation of NDMA is largely influenced by the presence of dichlor-
amine rather than mono-chloramine. The proposed mechanism for this process is
given by:

CH3ð Þ2NH C HNCl2 $ CH3ð Þ2N¡NHCl (6)

CH3ð Þ2N¡NHCl C O2 $ CH3ð Þ2N¡N D O C HOCl (7)

DMA reacted with dichloramine to produce chlorinated UDMH derivative
that was oxidized by dissolved oxygen. The formation of NDMA was revealed
to be absolutely associated with the concentration of the dissolved oxygen.
Furthermore, this pathway leads to the generation of a stronger oxidant
(HOCl) after reaction with oxygen (a weaker oxidant) (Schreiber and Mitch,
2006). NDMA formation via this pathway may be about 2–10 times greater
compared with the one generated via monochloramine pathway at a neutral
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pH (Schreiber and Mitch, 2005). Therefore, it is essential to seek to minimize
dichloramine formation in water treatment plant.

On the other hand, the study of Roux et al. (2012) on chloramination of raniti-
dine revealed that NDMA could also be formed by direct substitution on the DMA
group of ranitidine (Table 2). This explains the reason for high yield of NDMA
from ranitidine. The density functional theory (DFT) conducted recently by Liu
et al. (2014) revealed that the formation mechanism of NDMA from trimethyl-
amine (TMA) and ranitidine involves 4 steps (Scheme 2). Step 1 involves nucleo-
philic substitution by chloramine to produces a Complex I. Step 2 is oxidation
reaction, which involves elimination of HCl from Complex I (X D H or Cl) first
occurs and simultaneously generates an active intermediate [XN-R-Model], which

Scheme 1. Pathway for chloramination induced the formation of DBPs (Nawrocki and Andrzejewski,
2011).
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was simply trapped by O2. According to the DFT model, the chloramination pro-
cess in step 1 is not as difficult as the oxidation in step 2Step 3 involves endother-
mic dehydration of OONX (X D H or Cl) after trapping of proton to form a NOC

cation. NOC cation is a confirmed nitrosating agent; therefore, it can react with the
anime immediately after its generation (step 4). The rate-limiting step is nitrosa-
tion reaction, which also determines the yield of NDMA for tertiary amines. The
products of the nitrosation are NDMA and a stable furan-2-ylmethanlium cation,
which could interact with nucleophiles to produce alcohols. These results corrobo-
rate with the pathway reported by Roux et al. (2012) using HPLC¡MS.

2.2. Ozonation

Formation of NDMA is of great concern in treatment systems for portable
water reuse that involves ozonation. This is mainly because molecular ozone

Scheme 2. Proposed NDMA Formation Pathways from Ranitidine Model during Chloramination (Liu
et al., 2014).

Figure 1. Distribution of resin fractions to bulk organic matter and NA precursors adopted from
(Liao et al., 2015).
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is a primary oxidant capable of NDMA formation. Ozonation helps to remove
trace organic contaminant (TOrC) in water (Pisarenko et al., 2015). Efforts
made to mitigate NDMA formation by adjustment of pH and/or addition of
H2O2 were to no avail since they both exhibit similar overall exposure to �OH
in wastewater under a sufficient reaction time (Pisarenko et al., 2015; Pisar-
enko et al., 2012). Therefore, the addition of H2O2 to ozone is not always nec-
essary in an advanced oxidation process. Furthermore, significant formation of
NDMA is limited to wastewater matrices from industrial discharges. The rate
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Figure 3. Sorption of DMA on 4A, CBV-780, diatomite, MCM-41, and dealuminated Na-ZSM-5 ana-
logues (Si/Al D 12.5, 25, 40, and 130) adopted from (He and Cheng, 2016).

Figure 2. Distribution of PRAM fractions of bulk organic matter and N-nitrosamine precursors (Note:
C18 and SCX were conducted simultaneously. RSDs of NDMAFP, NDEAFP, DON, DOC, and UV254
determination were <20%, <20%, <20%, <5%, and <2%, respectively) adopted from (Liao et al.,
2015).
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of formation of NDMA approaches its peak at O3: TOC (total organic carbon)
above 0.5 (Pisarenko et al., 2015).

Recently, several works have been done on NDMA formation during ozonation
(Gunten et al., 2010; Hollender et al., 2009; Schmidt and Brauch, 2008;
Zimmermann et al., 2011). Unfortunately, the pathway to the formation of this car-
cinogenic contaminant seems complex. Consequently, it is essential for researchers
to make concerted efforts towards identifying the precursor in order to strategize on
how to curtail its occurrence. (Gunten et al., 2010; Schmidt and Brauch, 2008) sug-
gested that something similar to N, N-dimethylsulfamide (DMS), which was previ-
ously said to be an unknown metabolite of the tolylfluanid and fungicide, could be a
NDMA precursor when reacted with ozone in the presence of bromide. (Nawrocki
and Andrzejewski, 2011) also suggested a number of other compounds such as
1,1,1’,1’-tetramethyl-4,4’-(methylenedi-p-phenylene)disemicarbazide (TDMS) and
4,4’-hexamethylenebis(1,1-dimethylsemicarbazide) (HDMS).

3. Nature of nitrosamine precursor

3.1. Resin fractionation technique

One of the technique used for characterizing N-nitrosamine precursor is the resin
approach. This is achieved by extracting non-humic and humic (natural organic
matter, NOM) matters in various resins at acid pH and basic pH. Several authors
have worked extensively on this technique for characterization NOM (Singer et al.,
2007; Wang et al., 2013). Resin fractionation technique separates bulk organic sub-
stance into the hydrophilic (HPI) and hydrophobic (HPO) fractions (Chen et al.,
2008) by using resin like acrylic ester XAD-8, which adsorb HPO NOM, while the
filtrate is HPI NOM. Furthermore, the HPO fraction could be fractionated into
hydrophobic neutral (HPON), hydrophobic base (HPOB), and hydrophobic acid
(HPOA) NOM by methanol elution, 0.1 M sodium hydroxide or 0.1 M hydrochloric
acid, respectively (Liao et al., 2015). The characteristics of NDMA precursor depend
on the source of water. The study of (Chen et al., 2008) on a water treatment plant,
Northern China revealed that the HPO fraction is mainly haloacetic acids (Weidhaas
et al., 2012) and trihalomethanes, THM precursors. While (Chen and Valentine,
2007) studied chloraminated in Iowa River water; (Dotson et al., 2009; Wang et al.,
2013) studied Luan River, Northern China, all reported that N-nitrosamine precur-
sors are more of HPI NOM. Meanwhile, the recent study of (Liao et al., 2015) on
aquaculture-impacted lake water in the Yangtze River Delta, China revealed that the
HPOA fraction forms the largest part to NDMAFP (45%), UV254 (61%), NDEAFP
(42%), DON (44%), and DOC (39%), followed by HPON, HPI, and HPOB
(Figure 2). The HPI fraction is about 19% of the NDMAFP, which is lesser when
compared with the HPOA fraction. The main drawback of the resin technique is a
lack of selectivity for NDMA precursors. This is due to the similarity in the normal-
ized NDMAFP between the four resin fractions.
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3.2. Polarity rapid assessment method

PRAM is also used for characterization of the N-nitrosamine precursor in water.
However, unlike resin technique, it enables the use of a small sample size (mini-
mum of 100 ml) (Chen et al., 2014; Rosario-Ortiz et al., 2007). This technique iso-
lates and fractionates N-nitrosamine precursors at ambient pH in a parallel
arrangement of solid-phase extraction (SPE) cartridges. The cartridges consist of
non-polar C18 SPE cartridges, which fractionates organic matter based on polarity,
and strong cation exchange (SCX), which fractionates based on the charge of the
organic matter. The non-polar C18 SPE cartridges (with a matrix such as octa-
decyl-silyl) is responsible for adsorption of the non-polar fraction of NDMA, while
the non-polar fraction is the filtrate (Figure 3(a)) (Liao et al., 2015). The SCX
SPE type (with matrix-like benzenesulfonic acid-silyl) isolates the amine-type
functional group, which is referred to as the cationic fraction and the filtrate is
referred to as the non-cationic (Figure 3(b)) (Liao et al., 2015). It is easy to carry
out quality assurance as the PRAM operation proceeds. The quality test could be
performed by using ultraviolet absorbance at 254 nm (UV254) and surrogate indi-
cators of dissolved organic carbon (DOC). This has been reported to give relative
standard deviation (RSD) below 15% for replicate SPE cartridges and for water
sample reload (Chen et al., 2014). The study of (Liao et al., 2015) on sample
obtained from one aquaculture-impacted lake water in the Yangtze River Delta,
China, revealed that the non-polar fraction contributes the largest to NDMAFP
and NDEA (60 and 70% respectively), while it only contributes 24% of the DON,
19% of the UV254, and 31% of the DOC in this water (Figure 3(a)). They also allude
that the cationic fraction contributes the largest to NDMAFP and NDEA (63 and
56% respectively), while it only contributes 11% of the DON, 22% of the UV254,
and 1% of the DOC in this water (Figure 3(b)). Unlike the resin fractionation tech-
nique, PRAM is a viable tool with high for fractionation selectivity of N-nitrosa-
mine precursor (Philibert et al., 2012).

Water softening processes cation exchange technology is also a viable means of
quantifying NDMA precursors prior to chloramination or other disinfection pro-
cess. This is predicated on the fact that NDMA precursors comprises of the non-
polar moiety and protonated dialkylamine functional group (Chen et al., 2014; Liao
et al., 2015). The pH of NDMA precursors is commonly higher than 7, signifying
that these precursors will protonate and the charge will turn out to be positive when
the pH is neutral (Chen et al., 2014). Recently, (Li et al., 2017) also asserted that N-
nitrosamine precursors comprise of cationic DMA group and organic matter with a
non-polar moiety. They therefore, developed a strong acidic cation exchange resin
(Amberlite IR-120, purified and transformed into NaC form) for removal of
NDMA precursors (ranitidine (RNTD) and DMA). The matrix of the resin consists
of Styrene, divinyl benzene. The removal efficiency of these precursors depends
greatly on pH. At pH < pka-1 and the molar ratio of exchange capacity to the pre-
cursor of 4, the removal efficiency of RNTD are above 94% and that of DMA is
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above 78%. This cation exchange technology is also potent for removal of other 7
model NDMA precursors. These include N,N-dimethylbutylamine, doxylamine, N,
N-dimethylisopropylamine, N,N-dimethylphenethylamine, N,N-dimethylbenzyl-
amine, N,N-dimethylaniline and N,N-dimethyloctylamine.

4. Prevention

Quite a lot has been done towards identifying N-nitrosamine precursors and pre-
venting the formation of N-nitrosamine rather than their removal because of their
continuous occurrence in portable water distribution system (West et al., 2016).
Some researchers have established that presence of bromide, ammonia, and nitrite
can intensify formation of NDMA in a system that involves formation of reactive
bromamine species and nitrosation (Mitch et al., 2003; Shah and Mitch, 2011)
Prominent N-nitrosamine precursors are secondary, tertiary, and quaternary
amines, which include DMA and trimethylamine (TMA).

Their origin includes cationic shampoos, polymers, ion-exchange resins, and phar-
maceuticals (Shah and Mitch, 2011). To reduce the formation potential (FP) of
NDMA, the number of tertiary amine chain ends must be minimized to produce
polyamines with less branching and high MW (Park et al., 2009). Another viable strat-
egy reported by Park et al. (2009) is ensuring a suitable capping of the tertiary amine
chain ends, which prevent chlorine oxidants from degrading them to evolve DMA.
The occurrence of NDMA and DMA can be minimized by decreasing the amount of
residual oligomers, by reducing the overall NDMA-FP of the polymers (Park et al.,
2009). Rational design of new water treatment polymers for, food and/or domestic
applications should incorporate NDMA-FP testing and assessment of the tendency of
amine-based polymers to release free amine, thereby producing safer products.

4.1. Physical adsorption of nitrosamine precursors

Formation of NDMA could be prevented by targeting physical adsorption of pre-
cursors such as DMA. N-nitrosamine precursors can be absorbed on porous min-
eral adsorbents such as zeolites (Alaba et al., 2015b, 2017), kaolin (Alaba et al.,
2015a) and activated carbon (AC) (Adebisi et al., 2017). Zeolites are known for
their remarkable shape selectivity and adjustable pore structure (Alaba et al.,

Figure 4. Diagram of O3-BAC technology adopted from (Liao et al., 2013).
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2016a) and have been investigated on adsorption of NDMA from various solutions
and gas streams (Kamaloo et al., 2013; Li et al., 2013; Pinisakul et al., 2008; Sun
et al., 2014). Conventional zeolites are generally microporous but they can be
transformed to mesopore (Alaba et al., 2016b) since porosity is key in adsorption.
Recently, (He and Cheng, 2016) extensively studied the use of porous mineral
sorbents with different pore sizes for removal of N-nitrosamine precursor, DMA
(Figure 1). The sorbents and their pore size range include diatomite (400 nm),
CBV-780 (0.58–0.70 nm), MCM-41 (2–5 nm), 4A (0.4 nm), and Na-ZSM-5 zeo-
lites (Si/Al D 12.5, 25, 40, and 130) (0.51–0.56 nm). The sorption performance of
DMA for 4A and MCM-41 are similar, and a little lower than that of CBV-780 but
considerably higher when compared with that of diatomite. The best sorption per-
formance was obtained when they modified the Na-ZSM-5 (Si/Al D 40) by dealu-
mination and the sorption capacity increases with increase in the degree of
dealumination. The suitability of Na-ZSM-5 (Si/Al D 40) is ascribed to the hydro-
phobic nature of its pore wall surface and porosity due to dealumination. The
adsorbed DMA on the zeolite was degraded by microwave irradiation, whose activ-
ity hardly affects the transparent framework of the zeolite matrix.

4.2. Pre-oxidation

Recently, pre-oxidation with ozone, chlorine (Jeon et al., 2016; Qian et al., 2015),
chlorine dioxide (Lee et al., 2007), hydrogen peroxide, permanganate, sunlight
(Chen and Valentine, 2008) and ferrate (Lee et al., 2008) have been reported as
remarkable techniques for removal of NDMA precursor towards elimination or
substantial reduction of N-nitrosamine formation in drinking water. However, the
attention of researchers on the reduction of NDMA formation by peroxidation is
yet not encouraging. (Wilczak et al., 2003) are the first to attempt the reduction of
NDMA formation via peroxidation using chlorine. Subsequently, (Charrois and
Hrudey, 2007) reported that 2 hr of free-chlorination prior to chloramination sig-
nificantly reduces the formation of NDMA by about 93% in a bench-scale experi-
ment. Meanwhile, there is no convincing explanation or mechanism to explain
this reduction. (Lee et al., 2008) explored the reaction kinetics for oxidation of
NDMA and its precursors in a peroxidation process using ferrate (VI) as the oxi-
dant. They reported that the rate constant follows the second-order model for reac-
tions of Fe(VI) with NDMA and DMA including 7 tertiary amines with DMA
functional group such as TMA, DMAI, DMEA, DMAP, DMAB, DMFA, and
DMDC at pH ranging from 6–12. Pre-oxidation with Fe(VI) completely removed
the NDMA-FPs of most of the NDMA precursors without formation of any other
NDMA precursors. However, the pre-oxidation has no significant effect on DMA.
By using a high dose Fe(VI) on various natural waters, they achieved about 46–
84% removals of the NDMA formation potentials.

However, exposure of the pre-oxidant must be minimized to avoid the forma-
tion of both regulated and unregulated DBPs. Of all the pre-oxidant, chlorine and
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ozone have been recommended as more effective for deactivation of NDMA pre-
cursor (Chen and Valentine, 2008; Lee et al., 2008). For instance, pre-ozonation
could effectively reduce NDMA-FP at low exposures relevant to disinfection,
thereby reducing the risk of formation of both regulated and unregulated DBPs
(Krasner et al., 2013). Despite the effectiveness of ozonation towards a reduction
in NDMA-FP and the NDMA removal benefits for wastewater treatment, there is
a need for further mitigation strategies to prevent the direct formation of NDMA
in wastewater treatment (Pisarenko et al., 2012).

4.3. Biological activated carbon technique

Biological activated carbon (BAC) process combines both physical adsorption and
bio-treatment (biodegradation) (Carvalho et al., 2007). Therefore, the organic sub-
stance could be removed, biodegraded and some could be adsorbed on the acti-
vated carbon (AC) surface and subsequently biodegraded by the microorganism in
the BAC filter (Liao et al., 2015). The microorganism degraded the N-nitrosamine
precursors that occupy the adsorption sites, thereby extending the life of the AC.
Several researchers have successfully removed NDMA precursors from wastewater
(Farr�e et al., 2011; Liao et al., 2015; Liao et al., 2014). The influent in BAC process
is usually an effluent of pre-ozonation/mid-ozonation process as a vital part of
reverse osmosis-free advanced treatment for reuse of portable water. The report of
(Liao et al., 2014) on aquaculture-affected drinking water source in China revealed
that BAC techniques removed up to 90% of several N-nitrosamine (NDEA,
NDMA, NPIP, NPYR, and NMOR) precursors. In order to clarify the relative sig-
nificance biodegradation and physical adsorption, (Liao et al., 2015) performed
both lab-scale and pilot-scale experiment using mid-ozonation effluent as BAC
influent. They ascribed 42% removal efficiency to physical adsorption and 70%
efficiency to biodegradation of NDMAFP for the lab-scale experiment. The overall
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Figure 5. NDMA adsorption isotherms adopted from adopted from (Xiaodong et al., 2012).
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removal efficiency of 9 N-nitrosamine FP in the pilot-scale experiment is 59%,
which is higher those of coagulation and sedimentation, pre-ozonation, intermedi-
ate ozonation (18, 14 and 30, respectively).

Furthermore, the pilot plant setup suggested by Liao et al. (2013) for the treat-
ment of organic matter and antibiotic contaminants could be adopted (Figure 4).
This process includes pre-ozonation, coagulation, and sedimentation, mid-ozona-
tion, BAC and post sand filter.

It is tenable to allude that the collaborative effect of ozonation and BAC filtra-
tion is effective towards upgrading wastewater treatment plants to prevent the
occurrence of N-nitrosamine in drinking water, thereby protecting human life and
the environment. However, the mechanism for removal of N-nitrosamine precur-
sors via BAC filtration needs further clarification.

5. Removal techniques

In spite of the potential health risk of NDMA being a carcinogenic N-DBP, the
treatment routes towards removing it from drinking water are few. This is because
of the complexity of the removal process. NDMA is highly soluble in water
(290 gL¡1 at 20�C) with 2.63 £ 104 atm m3mol¡1 Henry’s Law constant at 20�C,
which is low (Mitch et al., 2003b), therefore it cannot be removed or degraded
effectively from drinking water via air stripping or volatilization. Furthermore, the
low hydrophobicity (1ogKow1=4 0.57) of NDMA has rendered sorption technique
inefficient for its removal from water (Dai et al., 2009). The following sections are
the promising removal techniques.

Figure 6. (a) Possible reactions involved in the AC-catalyzed transformation of amine to N-nitrosa-
mine; (b) Proposed mechanism for the formation of N-nitrosamine from secondary amine on the
surface of AC particles adopted from (Huang et al., 2013; Padhye et al., 2011).

2464 P. A. ALABA ET AL.



5.1. Physicochemical

Removal of NDMA in portable water treatment poses a significant technical chal-
lenge due to its high solubility in water (290 gL¡1 at 20 �C) with 2.63 £ 104 atm
m3mol¡1 Henry’s Law constant at 20 �C, which is low (Mitch et al., 2003), there-
fore it cannot be removed or degraded effectively from drinking water via air strip-
ping or volatilization. Furthermore, the low hydrophobicity (1ogKow1=4 0.57) of
NDMA has rendered sorption technique inefficient for its removal from water
(Dai et al., 2009). NDMA also has small molecular size, and poor biodegradability
(He and Cheng, 2016).

5.1.1. Adsorption
Despite the complication in the removal of NDMA, AC adsorption was recognized
as a suitable treatment method as far back as 1996 at a prominent site of NDMA
contamination on Rocky Mountain Arsenal, near Denver, CO (Fleming et al., 1996)
due to a lack of better alternative technologies. This is because the adsorption capac-
ity of AC is limited for NDMA (Gunnison et al., 2000), the cost associated with
replacement or regeneration of adsorbent dictates the budget for this technology.
Other technology such as advanced oxidation process or reduction by zero-valent
metals, which involves the use of ultraviolet light and/or hydrogen peroxide are lim-
ited by formation of radical scavengers in water (Lee et al., 2007; Lv et al., 2013)
and are more expensive and require a significantly more experience when compared
with implementation and operation of AC (Kommineni et al., 2003). To proffer
solution to the reusability challenge of AC, (Kommineni et al., 2003) studied the fea-
sibility of regenerating NDMA absorbed commercial granular AC (GAC) using
Fenton’s reagent. They were able to achieve NDMA reduction below the detection
limit (4 mg/L) from 1 mg/L within 30 min in homogeneous Fenton process with
total Fe > 1.2 g/L and H2O2 > 2.7 g/L at pH of 1.90. For NDMA adsorbed on
GAC, they achieved a NDMA destruction efficiency of 99% in some hours at a low
pH (close to 2). They applied addition of complexing ligand to boost solubility of
iron at neutral pH, thereby improving the destruction efficiency. However, the effi-
ciency is still below what was recorded at low pH. They also reported that the
destructive regeneration of GAC does not affect its adsorption capacity for NDMA
although the adsorption sites were slightly affected as shown by iodine number, and
the regeneration cost is not outrageous. The products of Fenton reaction are nitrate
or nitrogen gas, monomethylamine, and formaldehyde, subject to reaction
conditions.

To further reduce the treatment cost, some researchers have studied the synthe-
sis of AC from biomass (Wang et al., 2013), and commercial AC modification
(Xiaodong et al., 2012). (Wang et al., 2013), comparatively investigated N-nitrosa-
mine removal with AC nanoparticles (NPs) prepared from coconut shell, charcoal,
and bamboo at two distinct pH (6.6 and 8.6). They reported that the ACNPs syn-
thesized from coconut shell gives the best removal efficiency at 4 hr contact time.
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The effect of pH within the investigated range is not significant. (Xiaodong et al.,
2012) studied the use of several commercial and modified commercial AC for
removal of NDMA. Three commercial AC with textural properties: AC-1, AC-2
and AC-3 with micropore volume 0.46, 0.24 and 0.40 cm3/g, and pore size 2.13,
3.89 and 2.15 nm respectively. The adsorption capacity is in the order of AC-3 >

AC-1 > AC-2 (Figure 5), indicating that the capacity to adsorb NDMA depends
on the pore size and microporosity of AC. The molecular size on NDMA is
0.45 nm, and AC-3 has the biggest micropore volume at 0.46 nm, which offers the
best adsorption potential close to pore walls. This justifies the best adsorption per-
formance exhibited by AC-3. They modified the ACs by thermal treatment at
850�C for 2 hr (to produce AC-1M, AC-2M, and AC-3M), which eliminate the
carbon atoms and oxygen groups on pore walls, and slightly lessen the pore size
and homogenize the morphology of the pore. Furthermore, the hydrophobicity of
the pore walls increases, thereby increasing the adsorption capacity (Figure 5) due
to a reduction in the competition between NDMA and water in the pore, which
facilitates dispersive interaction between the aromatic rings of the AC surface and
the non-polar –CH3 of NDMA.

On the other hand, researchers need to be careful in the use of AC due to its
ability to catalyze the formation of N-nitrosamines from secondary amines
(DMA, DPA, DEA, and DBA) to trace levels at ambient aerobic conditions
(Padhye et al., 2010). This occurs mostly at high pH (>6), in the presence of
O2 and N2 (especially drying in air for a long period). Two types of reactions
are possible via AC catalysis to form N-nitrosamine: nitrosation of the amine
with nitrite at AC surface, and amine oxidation in the presence of O2 and H2

(Figure 6a) (Huang et al., 2013). Fig. 6b presents the mechanism of the later.
The surface active sites of AC interact with O2 molecules to yield reactive O2

species (ROS). The ROS formation enables fixation of N2 on the surface of car-
bon to form reactive nitrogen species (RNS) such as hydroxylamine and nitrous
oxide, which could react with adsorbed amines to generate nitrosamines (Pad-
hye et al., 2011). Furthermore, the formation of N-nitrosamine can be pro-
moted by ACs with higher carbonyl group content, reduced surface properties,
more surface defects, higher O2 uptake capacity, and higher surface area. There-
fore, it is essential to carefully select the reaction condition and the AC to be
used for N-nitrosamine adsorption. Table 3 presents the variation of formation
of NDMA from DMA among the AC materials. Siemens Aquacarb particles
(AqC) exhibited the utmost yield, while AC fibers and Ambersorb 572 showed
the lowest NDMA yields (Padhye et al., 2010).

5.1.2. Combined adsorption and microwave irradiation
Removal of NDMA and its precursors from portable water with the aid of
porous mineral sorbents prior to degradation by microwave irradiation is an
emerging technology. In a recent study (He and Cheng, 2016), examined a
wide variety of mineral sorbents (Figure 7a). The sorbents and their pore size
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Table 3. NDMA formation from DMA in the presence of AC materials (Padhye et al., 2010).

Carbon
materials

Specific surface
area SBET (m

2/g) pHzpc

Test
condition

NDMA
(nano moles)

NDMA
(ng/L)

NDMA (ng/L)
by NDMA-d6

isotope dilution

Ambersorb 572 1020 7.0 a 0.45 § 0.33c 333 § 244 972 § 702
AqC 1202 9.6 a 2.14 § 0.18 1584§ 133 11337 § 954
PSC 1114 9.7 a 0.57 § 0.07 422 § 52 4971 § 618
UCT NA NA a 1.68 § 0.09 1243§ 67 4463 § 249
GAC 819 7.4 a 0.28 § 0.03 207 § 22 2316 § 258
F400 1044 9.2 b 0.61 § 0.08 451 § 59 3773 § 509
OLC 983 9.3 b 0.86 § 0.02 636 § 15 5794 § 141
HD4000 706 6.6 b 0.60 § 0.01 444 § 7 4459 § 74
ACF 10 972 7.3 b 0.17 § 0.01 126 § 7 1275 § 73
ACF 15 1520 8.9 b 0.21 § 0.01 155 § 7 1558 § 71
ACF 20H 1740 9.5 b 0.16 § 0.02 118 § 15 627 § 80

a222 mM DMA, 200 mg carbon, 2 hr suspension shaking time, 3 hr carbon drying time. b200 mM DMA, 150 mg carbon,
1.5 hr suspension shaking time, 6 hr carbon drying time. cExperiments were conducted with regenerated Ambersorb
572 particles which were washed with methanol and then dichloromethane, followed by drying in a 100 �C oven. All
reaction suspensions were buffered at pH 7.5 by 10 mM phosphate buffer. Instrument detection limit for NDMA D 2
pico moles; Mean § standard deviation (n D 3); NA D not available; pHzpc: zero point of charge.
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Figure 7. Sorption of NDMA on porous mineral sorbents at 25�C: (a) NDMA sorption on 4A, CBV-
780, diatomite, MCM-41, and dealuminated Na-ZSM-5 analogues (Si/Al D 12.5, 25, 40, and 130); (b)
NDMA sorption on dealuminated Na-ZSM-5 (Si/Al D 25) with different types of surface cations
adopted from (He and Cheng, 2016).
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range include diatomite (400 nm), CBV-780 (0.58–0.70 nm), MCM-41 (2–
5 nm), 4A (0.4 nm), and Na-ZSM-5 zeolites (Si/Al D 12.5, 25, 40, and 130)
(0.51–0.56 nm). The sorption performance of DMA for CBV-780 and MCM-41
are similar, which is slightly higher than those of diatomite and 4A. This indi-
cates the dependence of NDMA sorption on the porosity of mineral sorbent.
Bulky molecules could only access the external surface of microporous sorbent
rather than the pore opening due to mass transfer limitation (Alaba et al.,
2016c). The adsorption of NDMA on 4A proceeds by deposition on the exter-
nal surface and insertion of the N-nitroso functional groups (N-N D O) into
the micropore channels (Cao et al., 2007). This shows the reason for the poor
capacity of 4A to adsorb NDMA. On the other hand, the poor adsorption per-
formance of diatomite is due to its macroporosity, because the external surface
of NDMA molecules is almost similar to the pore wall surfaces (He and Cheng,
2016). The best sorption performance was obtained from modified Na-ZSM-5
(Si/Al D 40). The sorption capacity increases with increase in the degree of
dealumination. The suitability of Na-ZSM-5 (Si/Al D 40) is ascribed to the
hydrophobic nature of its pore wall surface and porosity due to dealumination.
The critical molecular size of NDMA is 0.42 nm (Li et al., 2013). This enhances
adsorption potential energy (better geometric confinement) through the micro-
pores (0.51–0.56 nm) of Na-ZSM-5 zeolites compared with those of other
microporous minerals with higher pore size.

The surface ions attached to the zeolite micropores influence the adsorption
capacity of the mineral sorbent as shown in Figure 7b. For instance, the incorpo-
ration of Cu2C in the ZSM-5 micropores significantly improved the sorption of
NDMA compared to using Na-ZSM-5, because of the complexing between the
lone pairs of electrons in the vacant d-orbitals in Cu2C ions and the N atoms of the
molecules of NDMA. Similarly, HZSM-5 exhibited promising NDMA sorption
than Na-ZSM-5 because the weak base N atoms of NDMA molecules are capable
of forming hydrogen bonds with the protons existing in the micropores of HZSM-
5 (Li et al., 2013). On the other hand, the sorption performance of Mg-ZSM-5 is
marginally lower compared to that of Na-ZSM-5 since the divalent Mg2C cations
(with 0.065 nm radius) exhibit a significantly stronger interaction with water mole-
cules than Na2C cation (with 0.099 nm radius), although at half of the density of
the Na-ZSM-5.

Microwave irradiation degraded the adsorbed NDMA and DMA on the zeolite.
Hence, their activity hardly affects the transparent framework of the zeolite matrix.
Mostly, the micropores adsorb the irradiation energy absorbed by the hydroxyls,
surface cations, and polar molecules (water, DMA, NDMA, and the products of
their destruction). Micro-scale formation of “hot spots” at low bulk temperatures
(<160�C) of the mineral sorbents within 600 sec of microwave irradiation treat-
ment degrades the adsorbed DMA and NDMA. Degradation time, surface cation
and the Si/Al ratio of Na-ZSM-5, which determines the surface cation density as
illustrated in Figure 8 are the major factors influencing degradation. The mineral
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sorbents are readily reusable after a complete removal of DMA and NDMA
because microwave irradiation scarcely influences the microwave-transparent
structure of the sorbents. This is an emerging and promising treatment technique
for removal of NDMA and other N-nitrosamines from wastewater and drinking
water.

5.1.3. UV photolysis
Among other prominent NDMA destruction technology is direct UV photoly-
sis (Lee et al., 2005; Stefan and Bolton, 2002) designed for treating effluent-
dominated river consisting N-nitrosamines (Swaim et al., 2006). UV-based
treatment is an advanced oxidation process (AOP), which generates reactive
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Cheng, 2016).
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free radicals such as hydroxyl (HO¢), and is mainly employed for the removal
of 1,4-dioxane N-nitrosamines (Fujioka et al., 2017). Direct UV photolysis eas-
ily decomposes NDMA at wavelengths below 260 nm. The maximum absor-
bance wavelength of NDMA is 227 nm, originating from a p ! p� transition,
and absorbs UV irradiation intensely at 254 nm (e D 1974 M¡1 cm¡1) (Lee
et al., 2005; Sharpless and Linden, 2003) and weakly at 332 nm (e D 109 M¡1

cm¡1) (Stefan and Bolton, 2002). A commercial UV lamp like low-pressure
mercury-vapor UV lamp is capable of such emission. Conversely, medium-
pressure UV lamp light is more efficient than low-pressure because medium-
pressure UV exhibits higher quantum yield and absorption coefficient (Sakai
et al., 2012). The study of (Sakai et al., 2012) revealed that medium pressure
UV exhibits the highest degradation at a wavelength range of 230–270 nm
(7.2 cm2/J), which is close to three times larger than that recorded for low-
pressure UV (2.6 cm2/J). The estimated quantum yield for medium-pressure
UV is 0.42, which is larger than that recorded for low-pressure UV (0.28).
The report of (McCurry et al., 2015) also affirmed the superior performance
of medium-pressure UV.

The wavelength of the UV light and the initial solution pH affect the behavior
of N-nitrosamine during UV irradiation. Generally speaking, the N-nitrosamine
degradation rate declines with an increase in pH (Xu et al., 2010; 심재구 et al.,
2016). The study of (Lee et al., 2005) on the mechanism of NDMA UV degrada-
tion at pH below 8.5 revealed homolytic cleavage of N–NO bonds, heterolytic
cleavage of N–NO bonds, and photo-oxidation. The mechanism is initialized by
NDMA protonation to form NDMA�–H

�
(excited NDMA) prior to UV irradia-

tion. Homolytic cleavage of N–NO bonds entails decay of NDMA� into two spe-
cies—nitric oxide [(�N O) and aminium radical (CH3)2NH

C)] (Eq. 8), and further
decayed to protonated Nmethylidenemethylamine (CH2 D NCHCH3) and hyponi-
trous acid (Zakaria et al.); (Chow et al., 1972). The CH2 D NCHCH3 go through
hydrolysis to form formaldehyde (HCOH) and methylamine (CH3NH

3C, MA)
(Eq. 9). At a pH above 5.5, the reaction between �N O and (CH3)2NH

C produces
amidoxime (CH3NHC D NOH) (Eqn. 10), while N-methylformamide
(CH3NCOH) and N2O are produced from the interaction between nitrite ion
(NO2

¡) and CH3NHC D NOH.

NDMA�! CH3ð Þ2NHC C �NO (8)

CH3ð Þ2NHC C �NO !¡HNO
CH2 DNCH3�����������!Hydrolysis

CH3NH3
C C HCOH (9)

CH3ð Þ2NHC C �NO!CH3NHC D NOH����!CNO2
¡
CH3NCOH C N2O (10)
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Heterolytic cleavage of N–NO bonds entails reaction of NDMA� with NO2
¡ or

water molecule to form DMA and nitrite (Eq. 11) (Lee et al., 2005).

NDMA� ����������������!
HC =H2O or NO2

¡
CH3ð Þ2NH2

C C HNO2 (11)

Photooxidation involves a one-electron transfer from NDMA�, which reacts with
O2 to form superoxide radical (O2

�¡), �NO and CH2 D NCHCH3 (Eq. 12). The
CH2 D NCHCH3 further undergoes hydrolysis and decay to form CH3NH3 (MA)
and HCOH (Eq. 12) (Lee et al., 2005). Lastly, O2

�¡ and �N O interact to form per-
oxynitrite (ONOO¡), which further converts into nitrate ion (NO3

¡) (Eq. 13).

NDMA� !
O2

¡ CH2 D NCHCH3 C �NO C O2
�¡ (12)

�NO C O2
�¡ ! ONOO¡ ! NO3

¡ (13)

The presence of some degradation products, MA and DMA in water can lead to
regeneration of NDMA. Heterolytic cleavage of N–NO bonds is a dominant path-
way, at pH range of 3 to 4, with NO2

¡ and DMA as the main degradation prod-
ucts. Formation of DMA declines with increase in pH, favoring formation of MA,
which is better since DMA is the most important precursor of NDMA. The three
pathways occur simultaneously at pH range of 3 to 4 resulting in the formation of
both MA and DMA at the same level. UV degradation of NDMA at a pH above 8
exhibits very low quantum yield (Lee et al., 2005; Lee et al., 2005) because of the
light scavenging effects of dissolved organic matter (DOM) carbonate ions (CO3

2-

), and bicarbonate ions (HCO3
¡) (Xu et al., 2009; Zhou et al., 2012).

Meanwhile, NDMA regeneration can be checked effectively by inhibiting DMA
and NO2 formation UV treatment technique is combined with ozonation, being
one of the most proficient approaches for the destruction of NDMA (Xu et al.,
2009; Xu et al., 2009). This approach takes advantage of a synergistic effect of UV
and ozone (UV/O3) to effectively degraded N-nitrosamine in chloraminated drink-
ing water. The rate of HO¢ generation of was accelerated by the photolysis of O3

(Chen et al., 2016a) and the DMA yield decreases with increase in O3 dosage (Xu
et al., 2009). (Xu et al., 2009) investigated the ability of UV/O3 to prevent NDMA
regeneration after degradation by comparing the products of degradation and the
NDMA regeneration possibility between UV irradiation alone and UV/O3. They
reported that NO2

¡ and DMA yields during the UV/O3 process were less than for
only UV photolysis. The NO2

¡ and DMA yields were 3.22 mg L¡1 and 2.25 mg
L¡1 from UV photolysis, while they were 0.45 mg L¡1 and 0.92 mg L¡1 from the
UV/O3 process. Moreover, NDMA regeneration was also lower for the UV/O3
(7.37 mg L¡1) process than for UV photolysis (51.8 mg L¡1) under similar operat-
ing condition. They suggested that during the UV/O3 process, DMA and NO2

¡

were oxidized by both O3 and HO¢ and the interaction between HO¢ and NDMA
favors formation of MA rather than DMA, thereby minimizing NDMA
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regeneration potential. Despite the effectiveness of this technique, preventing
NDMA formation right from the outset is preferable because the treatment pro-
cesses consume exorbitant energy and are expensive.

Other factors affecting UV photolysis include dissolved oxygen and Natural
organic matter (Gonzalez et al.). (Xu et al., 2009) established that the presence of
dissolved O2 and humic substance (a component of NOM) favor photodegradation
of NDMA. The NDMA� induced by p!p� transition engenders its interaction
with dissolved O2 (Lee et al., 2005), leading to breakage of N–N bond rather than
N D O bond under O2 saturated condition (Lee et al., 2005). The humic substance
is photoactive in nature, making it induce degradation of NOMs with UV light
(Gerecke et al., 2001; Lam et al., 2003).

Incorporating H2O2 reduces the energy consumption of UV photolysis to some
extent. UV/ H2O2 achieved this by removing the UV absorbing constituents such
as nitrates and NOM, thereby minimizing the competition for UV light (Martijn
et al., 2010). (Martijn et al., 2010) revealed that nitrate absorbs UV radiation at a
similar wavelength to H2O2 but a higher molar adsorption, which introduces com-
petition for photons particularly when broad spectrum UV light is used. NOM,
which is measured as DOC strongly absorbs UV radiation is the most significant
HO¢ scavenger. H2O2 also act as HO¢ scavenger other than NDMA degrading
agent. However, UV photolysis dominates the degradation mechanism of NDMA
because H2O2 concentration has a little impact on the degradation of NDMA
(Martijn et al., 2010).

Recent development in AOP is the utilization of heterogeneous photocata-
lysts (anodizing TiO2) based UV irradiation (UV/TiO2), which is without con-
tinuous addition of chemical and yet proved to be a superior technique to UV
photolysis alone (Amy Kampa, 2015). The UV/TiO2 process produces singlet
oxygen molecules and HO¢ for the destruction of NDMA into MA and DMA
(Lee et al., 2005). (Kim et al., 2012) reported that UV/TiO2 technique is so
potent that it can remove the entire NDMA from water at a pH range of 4 to
6. An increase in NDMA concentration decreases the yield of MA and
increases the yield of DMA. Raising the initial pH of the solution from 4 to 9
leads to a decrease in the NDMA removal efficiency. Scheme 3 presents the

Scheme 3. Pathways of NDMA destruction by UV/TiO2 AOP (C. Lee, W. Choi, and J. Yoon, 2005).
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pathway for degradation of NDMA. Modification of TiO2 to enhance the sur-
face morphology can enhance destruction of NDMA and also change the deg-
radation by-products composition (Fujioka et al., 2017). TiO2 modification by
silica-loading and Nafion-coating favored the yield of DMA rather than MA,
while modification by surface-fluorination favored the yield of MA rather than
DMA (Lee et al., 2005).

5.2. Bioremediation technology

A number of studies have revealed that organic contaminants can be biodegraded
under anaerobic and aerobic environments in various locations such as lake water,
groundwater, and surface and vadose soils (Bradley et al., 2005; Chung et al., 2008;
Yang et al., 2005). However, the natural enzymes responsible for NDMA metabo-
lism are mostly unknown. Previous work on biodegradation shows that the tech-
nique needs a lot of improvement. The study of Tate and Alexander (1975) and
Mallik and Tesfai (1981) reported slow NDMA degradation rate and long lag times
in aerobic systems. Meanwhile, the more recent study of Gunnison et al. (2000) on
anaerobic and aerobic degradation revealed the capability of native microorgan-
isms cultured from soils for biodegradation of NDMA.

Moreover, Sharp et al. (2005) studied the capability of bacteria strains that
express monooxygenase enzymes to degrade NDMA. Some of the enzymes investi-
gated include the propane monooxygenase (PMO) enzyme of Mycobacterium vac-
cae JOB-5, Methylosinus trichosporium OB3b expressing the soluble methane
monooxygenase (sMMO), and the toluene 4-monooxygenases obtained from
Pseudomonas mendocina KR1 and Ralstonia pickettii PKO1, which are able to
degrade NDMA. However, exposure to acetylene gas (suicide substrate) inhibits
NDMA degradation for a specific monooxygenases. Conversely, the particulate
form of MMO expressed by M. trichosporium OB3b, the toluene 2-monooxyge-
nase expressed by Burkholderia cepacia G4, and the toluene side-chain monooxy-
genase expressed by Pseudomonas putida mt-2 have no capacity to degrade
NDMA. Sharp et al. (2005) further stated that the aromatic dioxygenases expressed
by bacteria have no capacity to degrade NDMA, while Rhodococcus sp. RR1 is
capable of degrading NDMA by an unknown enzyme that is constitutively
expressed, unlike the monooxygenases earlier mentioned, was not subdued by con-
tact with a suicide substrate. Table 4 presents the bacterial strains verified for
NDMA degradation ability and Table 5 shows the effects of exposure of NDMA to
suicide substrate.

The study of Fournier et al. (2006) on biodegradation pathway of NDMA in a
pure culture under the natural environment (using toluene-4-monooxygenase
(T4MO) expressed by Pseudomonas mendocina KR1). Their study reported initial
oxidation of NDMA to a novel metabolite [N-nitrodimethylamine (NTDMA)] by
the strain KR1 as catalyzed by T4MO. The O2 expended during this biotransfor-
mation was obtained from the atmosphere in the form of 18O2 and H2

18O. The
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produced NTDMA was further metabolized to form N-nitromethylamine (88% to
94% recovery) and a trace of formaldehyde (HCHO), as well as a small amount of
CH3OH through a second, minor pathway facilitated by an initial a-hydroxylation
of NDMA. The bio-transformation process is suggested to be cometabolic oxida-
tion since the strain neither mineralizes substantial amount of the compound to
CO2 nor grow on NDMA. Fournier et al. (2006) reported over 75% NDMA
biodegradation efficiency by using propanotroph Rhodococcus ruber ENV425.
The biotransformation occurred after growth on propane, and the concentrations
metabolites generated pose no important risk.

Table 4. Bacterial strains tested for degradation of NDMA (Sharp et al., 2005).

Bacterial strain Induced enzymea
Growth

substrateb
Detectable
degradationc

Rated

[ng/mg/min]

Methylosinus trichosporium OB3b Soluble methane monooxygenase Methane Yes 3
Methylosinus trichosporium OB3b Particulate methane monooxygenase Methane No —
Mycobacterium vaccae JOB-5 Propane monooxygenase Propane Yes 100
Pseudomonas mendocina KR1 Tol 4-monooxygenase Toluene Yes 5
Ralstonia pickettii PKO1 Tol 4-monooxygenase Toluene Partial 1
Burkholderia cepacia G4 Tol 4-monooxygenase Toluene No —
Pseudomonas putida mt-2 Tol side chain monooxygenase Toluene No —
Pseudomonas sp. W31 Tol 2,3 dioxygenase Toluene No —
Pseudomonas putida F1 Tol 2,3 dioxygenase Toluene No —
Pseudomonas flourescens CFS215 Tol 2,3 dioxygenase Toluene No —
Pseudomonas sp. JS150 Tol 2,3 dioxygenase Toluene No —
Rhodococcus sp. RR1 Unknown Soy broth Yes 13
Escherichia coli pCR 2.1-TOPO No oxygenase Soy broth No —

aThe list depicts the primary enzyme expected to be induced under the growth conditions. OB3b grown in the absence
of copper induces sMMO while copper addition promotes pMMO. Secondary enzymes as identified by gene pres-
ence have been observed in the case of JS150 (tol 2 and 4-monooxygenase).

bStrain RR1 degraded NDMA whether grown on soy broth or toluene. Strains PKO1 and JS150 were amended with
casamino acids in addition to toluene to facilitate robust growth.

cPartial degradation denotes f40% NDMA disappearance over the course of 1 day. Undetectable degradation was
identified as having no significant difference when comparing the degradation curve to incubated controls.

dRates are reported as the average of at least 3 data points from the maximum slope of NDMA degradation curves and
are expressed as a function of protein density. Controls demonstrated that headspace partitioning and sorption were
not significant factors to consider when calculating rates of disappearance over the duration of these experiments.

Table 5. Effects of acetylene gas exposure on NDMA degradation (Sharp et al., 2005).

Bacterial strain (enzyme)a Inhibition of NDMA degradation

Methylosinus trichosporium OB3b (sMMO) Yes
Methylosinus trichosporium OB3b (pMMO) —
Mycobacterium vaccae JOB-5 Yes
Pseudomonas mendocina KR1 Yes
Ralstonia pickettii PKO1 Yes
Burkholderia cepacia G4 —
Pseudomonas putida mt-2 —
Pseudomonas sp. W31 —
Pseudomonas putida F1 —
Pseudomonas flourescens CFS215 —
Pseudomonas sp. JS150 —
Rhodococcus sp. RR1 No

aThe enzyme form expressed by OB3b (sMMO or pMMO) was controlled by growth conditions (F copper).

2474 P. A. ALABA ET AL.



Recently, Hatzinger et al. (2011) constructed a lab-scale membrane bioreactor (R.
Lee and Ambrose) (Figure 9) for evaluation of ex situ NDMA biotransformation
capability using propanotroph Rhodococcus rubber ENV425 on a long-term basis.
The primary growth substrate is propane, while the electron acceptor is O2. They
achieved more than 99.95% removal efficiency after 70 days. Similar to Fournier
et al. (2006) the oxidation process is cometabolic. However, the aerobic treatment of
NDMA in MBR is not viable in the presence of high concentration of trichloroe-
thene (TCE).

Weidhaas et al. (2012) comparatively studied the effect of different growth sub-
strates on the kinetics of biotransformation of NDMA and N-nitrodimethylamine
(DMNA), a structural analog to NDMA in a contaminated groundwater. The
investigated substrates include methane, butane, benzene, propane, and toluene.
They reported that the cometabolic oxidation rates of NDMA is in the order tolu-
ene > methane > butane > benzene > propane, while of DMNA is methane >
propane > butane > benzene > toluene. Webster et al. (2013) examined the appli-
cability and viability of lab-scale fluidized bed reactor (FBR) for cometabolization
of NDMA using Rhodococcus ruber ENV425. They reported that the technology
is effective for treatment of 10–20 mg/L of NDMA to effluent concentrations below
100 ng/L at 20 min hydraulic resident time (HRT), while at 30 min HRT and opti-
mized propane, the effluent concentration dropped to below 10 NH/L. They also
stated that the presence of TCE at 6 mg/L as a co-contaminant has no significant
effect on NDMA treatment. A more feasible NDMA biotransformation pathway is
bio-reduction by hydrogenation, which comprises three steps that result in the

Figure 9. Components of the propane-fed membrane bioreactor (MBR) adopted from (Hatzinger
et al., 2011).
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formation of ammonia and DMA. Each step involves a two-electron (2HC C 2e¡)
reduction:

CH3ð Þ2N2O C .2HC C 2e¡ / ! CH3ð Þ2N2 C H2O (14)

CH3ð Þ2N2 C .2HC C 2e¡ / ! CH3ð Þ2N2H2 (15)

CH3ð Þ2N2H2C .2HC C 2e¡ /! CH3ð Þ2NH C NH3 (16)

The latest technology for this NDMA bio-reduction is H2-based membrane bio-
film reactor (MBfR) (Nerenberg and Rittmann, 2004; Rittmann et al., 2004).
(Chung et al., 2008) investigated NDMA bio-reduction in an H2-based MBfR,
which is active in the reduction of nitrate and sulfate. The studied the effect of H2

pressure and the relative concentrations of sulfate, nitrate, and NDMA, which pos-
sibly are rival electron acceptors. They reported not less than 96% NDMA reduc-
tion efficiency with the availability of H2 (i.e., H2 pressure being the primary and
nitrate reduction, the secondary) being the most vital factor influencing the kinet-
ics of NDMA-reduction.

N-nitrosamines can also be bio-reduced by exploring bacterial community
structure in BAC filters. Recently, several authors reported bacterial community
structure involved in the reduction of organic compounds in portable water or in
groundwater using bio-filtration processes (Das et al., 2012; Livermore et al., 2013;
Wolff et al., 2015) constructed two biofilters by using BAC and N-nitrosamine-
containing drinking water from treatment plants. They observed that the relative
abundance at both the class and phylum levels were altered by N-nitrosamines as
they detected the genus Rhodococcus, containing many nitrosamine-reducing
strains after cultivating BAC2 filter. The detected bacterial culture Rhodococcus
cercidiphylli A41 AS-1 was isolated and was reported to exhibit bio-reduction abil-
ity for NDMA, NDEA, NDPA, NPYR, and NDBA with removal efficiency ranging
from 38.1% to 85.4%. A better biodegradation ability N-nitrosamine as the carbon
source rather than as the nitrogen source (Scheme 3).

5.3. Catalytic reduction

Catalytic reduction with H2 gas has remarkable potential for speedy degrada-
tion of NDMA in water in a similar manner the technique is used for reduc-
tion of halogenated hydrocarbons. However, halogenated hydrocarbon
reduction is considerably faster and more viable economically than the exist-
ing NDMA reduction techniques. This technology has been extensively studied
using catalysts such as Fe and Ni-enhanced Fe (Gui et al., 2000; Odziemkow-
ski et al., 2000) and Zn (Han et al., 2011), palladium-Indium (Pd-In) (Davie
et al., 2008), Cu enhanced Pd (Davie et al., 2006) to yield a combination of
NH4

C, NH3, NO, and DMA depending on the catalyst used at pseudo-first-
order reaction rates. The previous challenges with this technique are catalyst
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deactivation and long half-lives, which necessitates large reactor bed in above-
ground applications to ensure adequate contact time for reduction of NDMA
(Davie et al., 2006). However, the study of Davie et al. (2006) proffers solution
to this by using nickel, palladium, and copper enhanced palladium catalysts.
They reported that 10 mg/L each of these catalysts exhibits short half-lives
(about hours). Palladium can effectively treat wastewater contaminated with
TCE (Mcnab et al., 2000). To further enhance the efficacy of this reductive
destruction technology (Davie et al., 2008), promoted Pd-based catalyst (5%
Pd by weight on g-Al2O3) with In. This catalyst synergistically combines the
capacity of Pd to activate H2 with the NDMA activation capability of In.
Their report shows that there is a remarkable increase in the NDMA destruc-
tion pseudo-first-order rate constant with increase in In loading from
0.057 hr¡1 for 0% In to a maximum of 0.25 hr¡1 for 1% In. Further increase
in In loading decreases the destruction rate due to pore blockage by In,
thereby restricting access to Pd sites. The proposed mechanism for NDMA
destruction is as follows:

H2 ! 2H� (17)

NDMA !Pd NDMA� (18)

NDMA !In NDMA�

NDMA C 4H� !Pd DMA C NH4
C C OH¡ (19)

NDMA C 4H� !In DMA C NH4
C C OH¡ (20)

The Pd-In catalysts could be regenerated by aggressive oxidation with hypochlo-
rite. This bimetallic catalyst offers a significant enhancement over earlier investi-
gated Pd-Cu Catalysts by Chaplin et al. (2006) and Davie et al. (2006), which was
severely destroyed at the first incidence of sulfide poisoning. The study of Frierdich
et al. (2009) also proffers solution to the challenges by using air-tolerant and non-
pyrophoric nickel–boron (Kawamura et al., 1997) rather than Raney Ni, which is
pyrophoric and non-air-tolerant, making it prone to deactivation (Frierdich et al.,
2007). Their kinetic study reveals that NiB has the capacity to reduce NDMA to
DMA, and ammonia rapidly via hydrogenation. The reductive destruction of
NDMA is neither affected by prolonged pre-exposure of the dry catalyst to air nor
the pH solution. However, further study is required towards enhancing the perfor-
mance of NiB catalysts for treatment of NDMA in complex matrices (such as dis-
infected wastewater, effluent contaminated groundwater) in more realistic flow-
through pilot reactors like packed column systems).

A 100% NDMA reduction was reported by Chen et al. (2016b) when they pro-
moted Pd supported g-Al2O3 using Ni for 1 hr. The mechanism for reduction of
NDMA over 3% (Pd0.8Ni0.2) catalyst follows activation of H2 by Pd, and H atom
spillover from Pd to Ni/NiO, thereby reducing NDMA via N-N cleavage. No
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significant effect was recorded for pH variation above neutral, and no internal and
external diffusion limitation was experienced. The catalyst exhibits excellent stabil-
ity for no significant variation in performance was recorded after recycling for
three times. This shows that 3%(PdxNi1¡x) is a promising catalyst for the reduc-
tive destruction of NDMA.

A more economical NDMA reduction technique was studied by Han et al.
(2017). The technology operates at neutral pH and does not require a supply of H2

gas as it generates H2 from the water to be treated. They did this by rational design
of bimetallic catalyst by using Cu(II) to enhance the performance of zero-valent Fe
and Zn. The concentration of Cu(II) was varied from 0.1 to 2.0 mM with Fe and
Zn separately. NDMA Removal efficiency increases with increase in Cu(II) con-
centration. At the same Cu(II) concentration, the Zn/Cu(II) system performed
remarkably better than the Fe/Cu(II) system. For instance, at 2.0 mM Cu(II),
almost all the NDMA was reduced at about 1 hr using Zn/Cu(II), while a similar
amount of NDMA was reduced for about 18 hr using Fe/Cu(II).

5.4. Dope technology

Dope technology is an electrochemical mediated treatment technique using boron-
doped diamond (BDD) film electrodes, which is capable of overcoming some limi-
tations associated with other treatment techniques. Several authors revealed that
BDD electrodes are capable of oxidizing compounds by HO¢ formed from water
oxidation (Marselli et al., 2003) and by combining direct electron transfer (Carter
and Farrell, 2008; Zhi et al., 2003); the later mitigates problems regarding scaveng-
ing of HO¢. BDD electrodes exhibit a high over the potential for oxidation of water,
and the potential at the surface of the electrode can oxidize better than that of other
AOPs generated HO¢. This feature enables BDD electrodes for oxidation of nitrog-
enous DBPs like NDMA via direct electron transfer reactions (Chaplin et al.,
2009). Furthermore, BDD electrodes resist fouling by components in water and
exhibit a longer service-life when compared with other electrode materials (Chen
et al., 2003). However, information regarding the use of this technology for oxida-
tion of N-nitrosamine is limited. The first report on NDMA oxidation was pro-
vided by Chaplin et al. (2009). They studied the capability of BDD-film electrodes
supported on p-silicon to oxidize NDMA in batch experiments. The oxidation
rates of NDMA were measured based on current density, electrode potential, and
flow-through reactors and temperature using rotating disk. This technology shows
a remarkable performance, however since it involves chloride, the technology is
limited by perchlorate formation (Donaghue and Chaplin, 2013). In another study
of Chaplin et al. (2010), they reported that the presence of DOC, Cl¡, or HCO3- at
RO concentrates concentrations does not affect the rate of oxidation of NDMA.
The technique only experiences a change in NDMA oxidation mechanism to direct
electron transfer oxidation from hydroxyl radical facilitated in the presence of
hydroxyl radical scavenger at 100 mM concentrations of Cl and HCO3¡.
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Electrochemical mediation has also been reported for reduction of various organic
contaminants including N-nitrosamines. However, they operate at high potentials
[up to 4 V vs the standard hydrogen electrode (SHE)] (Chaplin et al., 2010). Mean-
while, the recent work of Su et al. (2017) proffers solution to this challenge by
rational design of hemin-functionalized carbon nanotubes based redox electrodes,
which exhibit high electrocatalytic performance for reduction of N-nitrosamine at
low potentials (¡0.5 V vs Ag/AgCl or ¡0.27 vs SHE) and with above 700 turnover
numbers. The N-nitrosamine degradation mechanism involves a proton-facilitated
transformation of the nitroso group to secondary amines and hydrazines.

6. Conclusion

The goal of eliminating and preventing the formation of N-nitrosamine is to
ensure carcinogenic contaminants-free water. However, it is evident that formation
and destruction mechanisms of N-nitrosamine are complex. Consequently, this
study elucidated and developed an understanding of the reactions leading to the
N-nitrosamine formation and efficient treatment routes for ensuring portable
water. Prevention of NDMA formation by degrading or destroying the precursors
is more important and cheaper than N-nitrosamine removal. The physical adsorp-
tion of N-nitrosamine precursors is carried out using porous adsorbents with
hydrophobic pore walls. This is despite the effectiveness of pre-ozonation towards
NDMA-FP reduction and the benefits of NDMA removal. Biological activated car-
bon process combines both physical adsorption and bio-treatment. Coupling pre-
ozonation with BAC filtration could be effective towards upgrading wastewater
treatment plants to prevent the occurrence of N-nitrosamine. However, the mech-
anism for removal of N-nitrosamine precursors via BAC filtration needs further
clarification.

Combined adsorption and microwave irradiation is employed to improve
NDMA removal by degrading the adsorbed NDMA using microwave irradiation.
However, the energy requirement makes the process uneconomical. Similarly, con-
ventional UV photolysis poses an economic challenge. This is aside from the for-
mation of radical scavengers associated with the addition of oxidants such as
H2O2, O3, and O3/H2O2 in water making the process ineffective. However, photo-
catalytic reduction technique, which involves incorporation of TiO2 with the tradi-
tional UV photolysis is a better choice but further research is needed on surface
morphology modification and TiO2 doping techniques to improve the TiO2 life-
time, photocatalytic reactor design, of, and cleaning techniques towards scaling up
of photo-reduction applications. Bioremediation of NDMA is one of the alterna-
tive technique to the above-mentioned techniques due to its cost effectiveness.
Despite advances over the years, this technique needs further evaluation as a
potential substitute for traditional UV photolysis for NDMA removal.

Interestingly, reductive destruction via heterogeneous catalysis appears a more
efficient alternative technology towards mitigating the health risks posed by the
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occurrence of NDMA. Meanwhile, additional investigations into catalyst poisoning
and regeneration strategies are necessary to determine the practicability of this
technology to treat NDMA infected portable water streams. Conclusively, regard-
less of the effectiveness and seeming economic viability of some of this technology,
preventing the occurrence of NDMA right from the outset is more potent because
the treatments consume more energy.
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