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A B S T R A C T

Rational design and synthesis of cheap, noble metal-free, thermal/hydrothermal stable and active catalyst for
efficient hydrogenation and hydrogen production reaction is crucial towards renewable and sustainable energy
generation. This gives the use of molybdenum carbide nanoparticle considerable attention as an alternative to
noble metals. However, the industrial application is not yet feasible due to insufficient stability and activity
coupled with the lack of detailed understanding of the reaction mechanism. This work discusses the effect of the
operating parameters on the properties and morphology of molybdenum carbide nanoparticle, as well as their
impact on the catalytic activity. Critical issues such as structural diversity, surface properties, and multiscale
reaction modeling are also discussed for better understanding of the reaction mechanism. This is a promising
strategy towards synthesis of cost-effective and efficient catalysts for renewable and sustainable energy pro-
duction.

1. Introduction

One of the most important research gaps in the field of renewable
and sustainable energy is rational design and synthesis of suitable eco-
friendly and cost-effective catalysts with preserved energy and chemical
functionality for prolonged applications in several industrial processes
[1–3]. The unique chemical and physical properties of molybdenum
carbide nanoparticle [4] have enhanced its popularity in the fields of
materials and chemical science towards production of renewable and
sustainable energy [5]. The outstanding properties of MCN include
thermal stability, high electrical conductivity, adsorption capacity, high
melting point, and hardness [6]. Moreover, the characteristics of MCNs
such as resistance to nitrogen and sulfur, high catalytic current density,
and durability are similar to those of noble metals, which enable their
utilization in hydrogenation and hydrogen evolution reactions (HER)
[7,8]. Examples of these reactions include CO2 hydrogenation to al-
cohol, CO hydrogenation to alcohol [9], hydrodeoxygenation [10],
electrocatalytic hydrogen evolution from water splitting [11] including
oxygen evolution reaction [12], hydro-treating [13], watergas shift
reaction (WGS) [14], hydrodesulfurization (HDS) [15], CH4 ar-
omatization [16], and hydrodenitrogenation (HDN) [17]. The MCNs
are also suitable for electrocatalytic reactions.

MCN has been used successfully to hydrogenate feedstock such as

cellulose, indole, toluene, and cumene, which are popularly processed
with group 9 and 10 noble metals (Pt, Pd, Rh) [18–20]. These being
commercially available catalysts for reactions such as methane re-
forming, hydrocarbon isomerization, water-gas shift reactions, and CO
hydrogenation. Further, MCN has been employed as an alternative to
Ru, and to an extent Pt as electrocatalysts in the anode of polymer
membrane fuel cells (PEMFC) [21–23] because of its platinum-like
behaviors [24]. The thermal stability of MCN in the absence of oxygen
is due to the delay of the sintering and attrition effects as reaction
proceeds. However, the catalytic activity of MCN systems mainly de-
pends on the nature and physiochemical properties of the catalyst.

Previously, the high temperature classical metallurgical process was
used to prepare metal carbides but the products exhibit low specific
surface areas and high particle size [25]. This results in the Metal
carbide products exhibiting low catalytic performance in targeted cat-
alytic processes [3]. Currently, the MCN synthesis method by Lee et al.
[26], which is a temperature program reduction (TPR) carburization is
most popular due to its remarkable improvement on the textural
property of the product [27]. TPR carburization is a carbothermal re-
duction method that carburizes the Mo precursor supported on carbon
in hydrogen atmosphere [28]. The Mo precursor is to be thermally
treated, at increasing the controlled temperature in a reducing en-
vironment [29]. To form the carbide phase, the carbon source is mainly
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light hydrocarbon, while hydrogen is the reducing agent. The essence of
the controlled temperature is to optimize the carburation temperature
to avoid sintering of the reduced Mo particles, thereby reducing the
particle size of the resulting carbide. The carburization conditions
(temperature and time) control the physiochemical properties, the
chemical nature, and structure of the resulting carbide phase. MCN
exists in two main crystalline structures: orthorhombic and hexagonal
(Mo2C) and hexagonal structure. The preparation methods of carbide-
supported metal catalysts include wet impregnation [30], atomic layer
deposition [31] and vacuum environment [32]. Mostly, the synthesized
MCN, passivated prior to its exposure to air to prevent oxidation.

The goal of this review is to provide insight into the surface prop-
erties of MCN and its reaction mechanism for renewable and sustain-
able energy production towards a sustainable future. In Section 2, ra-
tional design and synthesis of MCN are discussed, highlighting the
effect of operating parameters. The third section deals with a structural
diversity of MCN using density functional theory (DFT) to categorize
different form of MCN based on structural differences. Section 4 briefly
discusses the surface properties of MCNs to determine the stability
based on their structural diversity. While Section 5 gives an insight into
multiscale reaction model on MCNs for a better understanding of cat-
alytic reaction mechanism of the system, which is crucial to the com-
mercial applications of MCN in the production of renewable and sus-
tainable energy. Finally, we presented the catalytic activity of MCN
based catalysts (both unsupported and promoted/supported) in Section
6.

2. Preparation of MCN

MCNs are popularly prepared by carbothermal reduction carbur-
ization process. This process consists of three different steps; (i) de-
position of the Mo-precursor on the carbon source, (ii) carbothermal
reduction of the Mo-precursor to produce MCN, and [33] the sub-
sequent stabilization of the produced MCN by Mo-carbide surface
passivation [19]. Generally, synthesis of MoO2 nanoparticles is not a
difficult task; the transformation into MCN is where the major challenge
is. The transformation is so complex due to the influence of several
variables. Experimentally, different kind of MCN is prepared using
various strategies. These strategies include direct carburization of MoO3

by 10–20% CH4–H2 mixtures at 750 °C for 4 h to produce thermo-
dynamically stable hexagonal Mo2C [34]; reduction of MoO3 by NH3 to
produce Mo2N and then carburization of Mo2N by using CH4–H2 mix-
ture to produce orthorhombic Mo2C [35] reduction and carburization
of belt-shaped α-MoO3 by using 5% n-C4H10–H2 mixture at 700 °C for
4 h to produce metastable phase face-centered cubic (fcc) α-MoC1-x

[36]; solid-state reaction in combination with H2 reduction at 800z °C
to form hexagonal Mo2C at 20min reduction time and hexagonal η-MoC
at 10min reduction time using glucose as the carbon source [37].

However, carburization with a 10% C2H6–H2 mixture produces in
mixed crystal phases [36]. All the phases can be differentiated and
identified with ease. MCN can also be synthesized via reactive hard-
templating, a technique where a precursor such as MoCl5 is used with
mpg-C3N4 as a template in ratio 1:1 in ethanol solution (Eq. (1)) [38].

+ → +(MoCl 2C H OH MoCl (OC H ) 2HCl)5 2 5 3 2 5 2 (1)

Furthermore, Hare et al. [39] and Saito et al., [40] used arc dis-
charge method to prepared β -Mo2C and α-Mo2C encapsulated with
polyaromatic carbon. The most efficient and common strategy for MCN
production is high temperatures reduction and carburization of MoO3

by a mixture of hydrocarbon and hydrogen. The major advantages of
this strategy are the formation of a pure crystal phase and avoidance of
contamination by coke. Typically, the crystalline phase can be con-
trolled by reconciling the gas composition of the reducing and car-
burizing agent [41]. However, the effect of the operating parameters
has not been significantly explored. The synthesized MCN normally
possess random size distribution, which ranges from few nanometers to
several hundred nanometers with irregular shapes [42].

2.1. Effect of operating parameters on the nature of MCN

The effect of carburization conditions such as carbon source, pre-
treatment temperature TpreT, heating rate, Mo loading, carburization
time (tcarb), carburization temperature (Tcarb), Mo-precursor and crys-
talline phases is vital on the MNC crystalline Mo-phases. The effect
could be analyzed by comparing the measured H2-consumption from
TPR results and the crystallinity of the carburized samples via XRD
analysis.

2.1.1. Carbon source
The morphology of MCN is highly sensitive to the choice of hy-

drocarbon used. Mo et al. [43] reported that a high concentration of
carbon source such as long chain hydrocarbon favors the formation of
MoC (with face-centered cubic (fcc)) and nanosized Mo2C (with hex-
agonal closest-packed (hcp)) due to the severity of carbon deposition at
high carburization temperature. The deposited carbon may block the
mesopores to form new micropores [43]. Further, increasing the chain
length of the carbon source lessens the particle size and the required
carburization temperature for MCN synthesis [41]. The use of low
concentration of small chain hydrocarbon leads to agglomeration of
carbide particles at a low heating rate. Prominent among the carbon
sources are 20% CH4–H2 to form hexagonal close-packed MCN, 5% n-
C4H10–H2 to form fcc MCN, 10% C2H6–H2 to form mixed crystal phases
by the reducing and carburizing the precursor. The MCN synthesized
with C2H6–H2 as the carburizing agent exhibits the roughest surface and
highest adsorption capacity for H2, while synthesized with n-C4H10–H2

exhibits a very condensed surface [41]. Recently, Tang et al. [37]

Nomenclature

CVD Chemical vapor deposition
DFT Density functional theory
DFTB Density functional tight-binding
EAM Embedded atom type
ELM Extreme learning machine
Fcc Face-centered cubic
Hcp Hexagonal closest-packed
HDN Hydrodenitrogenation
HDS Hydrodesulfurization
HER Hydrogen evolution reactions
IMLS Interpolating moving least squares
JCPDS Joint Committee on Power Diffraction Standards
MCN Molybdenum carbide nanoparticle

MM Molecular mechanical
MSI Modified Sheppard interpolation
NN Neural-network
PES Potential energy surface
QM Quantum mechanical
RKHS Kernel Hilbert space
RPBE Revised Perdew–Burke–Ernzerhof
RT Room temperature
tcarb Carburization time
Tcarb Carburization temperature
TMC Transition metal carbides
TPH Temperature-programmed hydrogenation
TPR Temperature program reduction
US Umbrella sampling
WGS Watergas shift reaction
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explored the use of glucose as a cheap and environmentally benign
carbon source. They successfully produced MCN with a high surface
area by using a facile solid-state reaction together with H2 reduction at
800 °C.

2.1.2. Pre-treatment temperature
The influence of pre-treatment temperature plays a vital role in

carburation and crystallinity of MCN. Ma et al. [44] revealed that pre-
treating the precursors helps to achieve a complete carburization at a
lower temperature compared to unpretreated samples. Guil-Lopez et al.
[19] studied the effect of pre-treatment temperature on MCN obtained
at 10% Mo loading, 710 °C Tcarb, and tcarb of 60 min in an argon stream.
Two different TpreT 250 and 550 °C were used to produce samples E-11
and E-12 respectively. The TPR-H2 consumption profile showed that
sample E-11 exhibited two different sharp peaks. A low-temperature
peak and an incomplete high-temperature peak (Fig. 1a), which in-
dicates incomplete carburization. Meanwhile, sample E-12 has no sharp
peak at low temperature because Mo6+ completely reduced to Mo4+ as
the pretreatment proceeds at 550 °C. Moreover, the unfinished carbur-
ization of sample E-11 is mainly because its carburization commenced
at a temperature (635 °C) higher than that of E-12 (600 °C).

Further, the unfinished carburization of E-11 lead to the formation
of a large amount of crystalline MoO2 phase rather than MCN as pre-
sented in the samples XRD pattern (Fig. 1b). A few traces of MCN and
graphite, which corresponds to the carbon source were also present.
However, the XRD pattern of sample E-12 shows that the sample is
predominantly MCN with a trace of graphite due to complete carbur-
ization of the precursor. Therefore, low-temperature pretreatment
speeds up the carburization reaction of Mo° rather than a reduction of
MoO2.

2.1.3. Heating rate
Guil-Lopez et al. [15] investigated the effect of heating rate on the

formation of MCN at 20% Mo loading, Tcarb = 840 °C, and tcarb = 5min
in an argon stream. Two different types of carburation experiments
were used to produce sample E-2 and E-10 respectively. The first car-
buration was done at 10 °C/min till the Tcarb from room temperature
(RT) while maintaining tcarb. The second type was conducted at 10 °C/
min till 550 °C and successively heated at 3 °C/min from 550 °C to Tcarb.
The TPR-H2 consumption profile shows that both samples have two
complete different sharp peaks. A low-temperature peak and a high-
temperature peak (Fig. 2a). Moreover, the carburization of sample E-10
commences at a temperature (575 °C) earlier compared to that of E-2
(618 °C) and the peak temperatures are 693 and 760 °C (Fig. 2a). This
shows that the carburation of the sample is favored by low heating rate
[29] as in E-10. From the XRD pattern (Fig. 2b), it is vivid that both
samples are majorly MCN with a trace of graphite from the carbon
source. However, E-10 exhibits higher MCN particle size than E-2 due
to sintering of the carbide phase of the sample, induced by high tem-
perature.

2.1.4. Carburization temperature
One of the major requirement for synthesis of MCN, which makes it

difficult to reproduce and control the desired particle size and surface
area is high temperatures [34]. Guil-Lopez et al. [15] did an extensive
study on the effect carburation temperature on the crystalline phases of
MCN at 50% Mo loading, 250 °C TPreT and tcarb of 5min using heating of
10 °C/min in an argon stream. The samples were carburated at four
different Tcarb = 500, 650, 700 and 840 °C to form sample E-6, E-7, E-8
and E-1 respectively (Fig. 3). All the samples exhibit only one peak at
low temperature except E-1 that has another incomplete peak at high
temperature. Further, the low-temperature peak of E-6 is incomplete,
while it terminated at about T= 600 °C for E-7, and E-8. This indicates
that samples E-6, E-7, and E-8 are mainly MoO2 with a trace of Mo° for
sample E-8, while E-1 comprises of MCN, Mo°, and MoO2. The presence
of MoO2 and Mo° in E-1 is due to incomplete carburization at the high-

temperature peak. The XRD patterns of the samples also confirm the
composition of the samples (Fig. 3b). The incomplete carburization of
E-1 is because of insufficient carburization time. However, several re-
searchers like Guzmán et al. [34], Xiao et al. [41], Mo et al. [43] were
able to achieve complete carburization at low temperature but at a
reasonable length of time. Therefore, it is tenable to adduce that low-
temperature carburization is visible at a reasonable length of carbur-
ization time. This claim is well proven in the next subsection.

2.1.5. Carburization time (tcarb)
Fine-tuning tcarb with other parameters like Tcarb is crucial towards

achieving a completely carburized MCN phase [34]. The study of Guil-
Lopez et al. [15] investigates the effect of tcarb on the carburation and
crystallinity of MCN. The samples pre-treated at 200 °C containing
50wt% Mo was carburated using heating rate of 10 °C/min to 840 °C at
a different time of 5 and 60min for samples E-1 and E-9 respectively
(Fig. 4). Fig. 4a shows that 5min carburation (E-1) exhibits an in-
complete carburation, while the carburation was completed for E-9.
Therefore, a long tcarb is essential for a complete carburation at 840 °C
due to low carburation rate. The composition of the two samples is
vivid in Fig. 4b. Sample E-1 comprises of crystalline phases of MCN,
MoO2, and Mo0 while E-9 is purely MCN crystalline phase. The presence
of MoO2 and Mo0 in E-1 is due to the incomplete carburization.

2.1.6. Carbon/metal ratio
Carbon/metal ratio plays a vital role in the design of MCN due to its

remarkable impact on the chemical and catalytic properties. The in-
crease in carbon/metal ratio leads to a decrease in adsorption energy
but an increase in the dissociation barrier. The study of Posada-Perez
et al. [45], shows that an increase in the carbon content of MCN from
Mo2C to MoC lessens the reactivity of the Mo centers because the MoC
surface is saturated and less metallic, while that of Mo2C is unsaturated
and more metallic [46]. Although, the Mo centers are still capable of
binding CO2 molecule effectively without breakage of the second C–O
bond, the cleavage of the first C–O bond need to be supported by hy-
drogen as shown below [47]:

+ → → +H OCO HOCO HO CO (2)

Consequently, MoC is a selective catalyst for reduction of CO2 to
CH3OH. The remarkable impact of carbon/metal ratio on catalytic and
chemical properties of MCN is illustrated in Fig. 5.

The rate of production of CH3OH increases as the ratio increases
from Mo2C to MoC making MoC a better catalyst for the system.

Fig. 1. The effect of the argon pretreatment on the nature of MCN. Illustrating
(a) TPR-H2 profile in the course of the carburization process, and (b) XRD
pattern showing the crystalline phases of the synthesized MCN. Recognized
crystalline phase: ( ) Mo2C, ( ) MoO2, and the support (C); adopted from
[20].
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Therefore, MoC is a viable and selective catalyst for high temperatures
synthesis of CH3OH.

2.2. Surface carbon species

The surface carbon species [48] of MCN comprises of free carbon,
adsorptive carbon, and carbidic carbon. The free carbon could be pyr-
olytic or graphitic carbon, left on the MCN surface during high-tem-
perature hydrocarbon degradation. Graphitic carbon exhibits a higher
graphitization degree than the pyrolytic carbon [49,50]. The adsorptive
carbon is the weakly adsorbed matter for instance bonded molecules of
CO and CO2 [51]. The carbidic carbon is the native carbon, which could
be carbon-terminated Mo2C and the strong adsorptive CS like the one
attributed to disassociation of adsorbed feedstock. The report of Mo
et al. [43] indicates that the graphitic carbidic, adsorptive, and pyr-
olytic were in the range of 200–300, 460–490, 600–690 and 700–800
°C, respectively on MCN surface based on temperature-programmed
hydrogenation (TPH) (Fig. 6).

3. Structural diversity of molybdenum carbide

Understanding the structural diversity of MCN is an uphill task due
to its complex nature and a number of metastable and stable phases
[52]. However, density functional theory (DFT) based estimations with
the revised Perdew–Burke–Ernzerhof (RPBE) exchange-correlation
functional has been successfully employed to identify the crystal
structure [53]. MCN is characterized by five different crystal structures:
α-MoC1−x, α-Mo2C, β-Mo2C, γ-MoC and η-MoC [54], which arise from
different preparation methods as well as carburizing agents [55]. The
composition and dispersion of Mo and C in the structures vary influ-
encing the electrochemical activity. Further, the structures exhibit
varying sizes of the tunnel, which affects ions insertion. The crystal
structure of α-MoC1− x is fcc, which is similar to that of NaCl while both
γ-MoC and η-MoC exhibit hexagonal structures but different stacking
sequence [54]. According to the Joint Committee on Power Diffraction
Standards (JCPDS) data files, β-Mo2C is orthorhombic with the Mo
arrangement slightly distorted from hcp [51], while α-Mo2C has hcp
surface with carbon atoms incorporated at the octahedral interstitial
sites [55]. Both of them are suitable for hydrogenation of CO [5,56] and
conversion of benzene to cyclohexane [57]. However, the orthorhombic
β-Mo2C is more stable while the hexagonal α-Mo2C is less stable [58].
Fig. 7 presents the Bulk crystallographic structures of MCN.

Prominent of all the MCN structures are α-MoC1− x [59] and β-
Mo2C [24,60] due to their high stability and remarkable electro-
chemical performance, which is attributable to their large ionic con-
tribution [55]. Further, β-Mo2C is a suitable electrocatalytic material
due to its low work function (3.4 eV), which facilitates surface-ad-
sorbate electron transfer [55]. Based on DFT computation, β-Mo2C
exhibits a stronger metallic property than the other polymorphs, which
show the strongest covalent bond [55]. The lattice constant computed
using DFT-RPBE for bulk α-MoC1−x is 4.36 Å [61,62] while the ex-
perimental value is 4.33 Å [63]. The β-Mo2C comprises a sequence of
alternating Mo and C layers with DFT-RPBE lattice constants: a
= 4.819 Å, b =6.012 Å, and c =5.150 Å [61,62], which are similar to
the obtained experimental data by [64]. The lattice constant of com-
puted for α-Mo2C are: a = b =6.118 Å and c =4.682 Å [46], which
are reportedly close to the experimental values [65]. All the strategies
for MCN preparation are related to reductive carburization of the pre-
cursor material in a stream containing hydrogen via TPH [66], and
chemical vapor deposition (CVD) [67], liquid-phase reaction [68],
template method [69], etc. Prominent of all the strategies is TPH, which
involves a reductive reaction between the hydrogen, carbon source
(light hydrocarbon) and the Mo precursor. To obtain β-Mo2C with an
enhanced number of active sites, in situ carburization is vital. This
constructs β-Mo2C nanoparticles with a fast electron transfer path,
which could be covalently anchored on a promoter [70]. The reaction
scheme is given in Fig. 8.

Due to all these outstanding qualities of MCNs, β-Mo2C was pro-
posed as a viable substitute for the conventional Cu-based catalysts
utilized in reactions like Water-Gas-Shift (WGS) [71,72] while α- Mo2C
highly suitable for dehydrogenation of ammonia [73].

4. Surface properties of MCNs

MCNs possess a similar surface to that of transition metal surface M
(111), which is a little more reactive toward CH2/3 species when
compared with metals with a similar strength of carbon adsorption.
This makes MCN a suitable for hydrogenation reaction, which is less
vulnerable to graphite poisoning because of an increased attraction to
hydrocarbons [74]. Moreover, Mo2C (001) has a similar the O/OHx
binding with that of the transition metal M(211) surfaces indicating the
likelihood of oxygen poisoning on Mo2C surfaces. However, if there is
deposition of oxygen from the decomposition of CO2 or water, the Mo2C
surface becomes stable against subsurface oxidation, while for oxygen
deposition from methanation of CO, a subsurface oxycarbide is

Fig. 2. Effect of heating rate during carburization on the nature of Mo-mate-
rials. Illustrating (a) TPR-H2 profile in the course of the carburization process,
and (b) XRD pattern showing the crystalline phases of the synthesized MCN.
Recognized crystalline phase: ( ) Mo2C, and the support(C); adopted from
[20].

Fig. 3. Effect of the maximum carburization temperature (Tcarb) on the nature
of Mo-materials. Illustrating (a) TPR-H2 profile in the course of the carbur-
ization process, and (b) XRD pattern showing the crystalline phases of the
synthesized MCN. Recognized crystalline phase: ( ) Mo2C, (■) Mo, and ( )
MoO2; adopted from [20].
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expected to be stable at low temperatures and lower kinetic rate as
compared with carbon dioxide or water decomposition [74]. The suit-
ability of MCNs for hydrogenation reaction is also supported by the
outcome of the study of Posada-Perez et al. [45], which concluded that
MCN is an active and selective catalyst for CO2 reduction to methanol.
This is because adsorption and decomposition of CO2 are more effective
on the surface of Mo-terminated β-Mo2C(001) compared to transition
metal surfaces like Cu(111) being the surface that is generally used as a
standard in catalysis [75]. Posada-Perez et al. [45] stated that the ap-
parent activation energy obtained for the synthesis of CH3OH via CO2

reduction on MoC is 17.2 kcal mol−1, which is lower than the respective
values of 25.4 and 20.9 kcal mol−1 reported for Cu(111) and TiC(001)
[76].

Several studies show that the structure of Mo2C surface depends on
the annealing time and temperature [77–80]. The study of Lo et al. [77]
reveals that the three-fold hollow sites of Mo layer were occupied by the
C atoms when annealed below 687 °C when high-resolution images of
Mo2C(0001)-(√3×√3)R30° structure were investigated by scanning
tunneling microscopy. Fig. 9 presents the low Miller-index surfaces of
fcc α-MoC1−x, hexagonal MoC, α -Mo2C and β-Mo2C. The α-MoC1− x,
exhibits (001), (011) and Mo- and C-terminated (111) polar surfaces.
The (001) surface is found to be the most stable while (011) surface is
unstable. The hexagonal MoC phase, which is obtained with an an-
nealing temperature of 1327 °C [79] possesses (001) and (100) polar
surfaces with both Mo- and C-termination (Fig. 10).

Both α -Mo2C and β-Mo2C have Mo- and C-terminated polar sur-
faces ((001) and (111)) when annealed above 1027 °C and nonpolar
(100), (011), and (101) [78]. The atomic sites were completely relaxed
in all the slab super-cell models even though neither the variations in
surface energies nor the surface reconstruction was amongst the en-
gaged super-cells [55].

The surface stability of MCNs are not only determined by the surface
structures but also operating conditions like carburization condition
during its preparation, which also affects the surface structures. The
surface structure influences the surface energy, which has a close re-
lationship with the value of carbon chemical potentials (μC). The study
of Wang et al. [81] shows that different surface terminations give dif-
ferent trends with μC. This means that the surface energies of Mo ter-
minations increase as μC increases, while those of C terminations de-
crease, indicating that Cterminated surfaces are more stable under
stronger carburization capacity large value of μC than Moterminated
polar surfaces. The most stable surface varies with μC. For instance, (1 1
0)Mo termination exhibits the best stability within the range of − 12.0
to − 10.7 eV value of μC, while the (1 0 0)Mo termination exhibits the

best stability within the range of− 10.7 to− 10.2 eV. Within the range
of − 10.2 to − 9.5 eV, the (1 1 1)Mo/C1 termination shows the best
stability. Within the range of − 9.5 to − 8.5 eV, the (1 1 0)Mo/C2
termination becomes the best based on stability, while the (1 1 0)Mo/
Crelaxed termination exhibits the best stability within the range of
− 8.5 to − 6.0 eV. This is a clear indication that the choice of surfaces,
as well as terminations, is essential towards a better understanding of
important catalysis reaction mechanisms via DFT computations.

5. Multiscale reaction model on MCNs

For a better understanding of catalytic reaction mechanism with
MCNs, there is a need to establish a multiscale reaction model, which
combines quantum mechanical (QM) density functional tight-binding
(DFTB) technique with a molecular mechanical (MM) force field
[82,83]. This could be accomplished by building a QM/MM model to
define the MCN, the model aromatic solvent, and the surroundings. The
free energy profiles of the reactions could be determined by using
Umbrella sampling (US) [82]. Liu and Salahub [82] studied a multiscale
reaction model of a catalytic hydrogenation of benzene on MCN by
using QM/MM method together with US technique towards in situ up-
grading of heavy oil. Their report shows that the multiscale model re-
veals new features of MCN as compared with the traditional compu-
tational method. Consequently, the MCN and the solvent made entropic
contributions, which significantly influence the free energy profiles of
the nanoscale heterogeneous reactions to establish a reaction working
condition. Fig. 9 gives the optimized embedded reactant state of the
first hydrogenation reaction.

However, the multiscale model efficiency is determined by the cost
of computation on ab initio. It is of vital importance to search for a
more economical means for large-scale simulation using ab initio mo-
lecular dynamics [84]. Functional forms such as bond-order based po-
tentials suggested by Brenner and Garrison [85] and Tersoff [86] for
covalent materials, embedded atom type (EAM) potentials for metals
[87], and classical force fields [88] for molecular systems has been
recommended. However, they are all limited in numerical accuracy and
inability to reuse the functional form for another system order than the
particular system for which it was modeled [89]. Further, several ap-
proaches based on electronic data fitting such as splines [90], Gaussian
approximation potentials [91], modified Sheppard interpolation (MSI)
based on a Taylor expansion [92], genetic programming [93], re-
producing kernel Hilbert space (RKHS) [94], expansion in terms of
invariant polynomials (IP) [95] and interpolating moving least squares
(IMLS) [96] have been suggested. Although these approaches are

Fig. 4. Influence of the time (tcarb) at maximum carbur-
ization temperature (Tcarb) on the nature of Mo-materials.
Illustrating (a) TPR-H2 profile in the course of the car-
burization process, and (b) XRD pattern showing the
crystalline phases of the synthesized MCN. Recognized
crystalline phase: ( ) Mo2C, Mo, and ( ) MoO2; adopted
from [20].
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exceptionally and perfectly numerical, the functional form is “non-
physical” (bias-free). Therefore, the construction of the PESs needs to
be great carefully done to give the appropriate physical representation
of the system [89].

Recently, the use of neural-network (NN) as an intelligence tech-
nique to represent the ab initio potential energy surface (PES) adap-
tively is a promising approach. NN offers a remarkable computational
efficiency and is capable of reproducing the experimental data thereby

giving an exceptionally cheap and quality model of the physicochem-
ical process [97]. Neural-network is a class of algorithms formulated for
various applications [89]. Among them are applications related to PES
such as estimation of the correlation energy of heavy atoms and dia-
tomic molecules [98], modeling of bond energies [99], enhanced en-
thalpies [100,101] and heat of formation [102], and lower level elec-
tronic structure-based computation of DFT energies [103]. The
applications ride on the capability of NNs to discover a hidden pattern
in complex data [89]. According to the study of Behler [89], NNs offer
several advantages compared to the conventional potential. The ad-
vantages include accuracy, improvability, efficiency, cost-effectiveness,
lack of system specific terms, the ability to deal with high dimensional
PESs and ability to analyze how bonds are broken and made. Further-
more, the construction is highly automatic with little human effort. The
potential constructed for a specific system can be used to predict the
energies of atomic configurations of related structures in the training
set. In addition, the analytic gradients are readily available due to their
well-defined functional form. The recent study of Artrith and Behler
[104] on the properties of bulk copper and of a variety of surface
structures reveals that NN PESs have the capacity to produce a similar
result with that DFT at a small fraction of the computational costs.

NN PESs could be constructed via several approaches, which include
single NN, systematic NN potentials, and high-dimensional NN poten-
tials. Single NN PESs can be trained implemented with ease and the
potentials could be evaluated speedily and accurately. However, they
are only applicable to small molecules because the potentials are lim-
ited to low degree of freedom. PESs based on systematic NN potentials
are suitable for large molecule [105,106] and serve as an intermediate
to high-dimensional NN potentials. High-dimensional NNs normally
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Fig. 5. (a) Production rates of methanol from CO2 hydrogenation on β-
Mo2C(001)-Mo and polycrystalline MoC at 500 and 600 K and Arrhenius plots
for the production of (b) CO, methane and methanol on β -Mo2C(001)-Mo; (c)
CO and methanol on MoC at temperatures of 600, 575, 550, 525, and 500 K. In
a batch reactor, the metal carbide catalyst operating at 0.049MPa (0.5 atm) of
CO2 and 0.441MPa (4.5 atm) of H2; adopted from [48].

Fig. 6. TPH profiles of the MCN before (A) and after (B) CO hydrogenation
reaction at m/z = 15 adopted from [39].
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suitable for huge systems comprising some thousands of atoms [89].
According to the study of Behler [89], an ideal potential should be high-
dimensional and obviously determined by using the entire degree of
freedom of the system with a reliable set of high-level ab initio data. It
could be used for a variety of systems without changes in their func-
tional form, and a remarkable accuracy close to the fundamental first-
principles molecular dynamics simulations is achievable because of
their bias-free construction [107,108]. Sosso et al., [109] even sug-
gested that the capability of NN PES is beyond that of the first-princi-
ples. This was observed when they used NN techniques to develop a
classical interatomic potential for the bulk phases of GeTe.

However, high-dimensional NN potential is more costly. They are
capable of providing energies and forces from 100 to 200 atoms per
second per computation core on average desktop computers, although it
is by far faster than DFT [110]. Since NN PESs need bigger training sets
compared to other kinds of potentials for an adequate description of the

physics of the system, it is mandatory to consider the required equili-
brium structures as well as non-stationary points in the training set to
avoid holes in high-dimensional NN PESs. However, the training data
set should be minimized to reduce computational cost, since only the
energetically reachable part of the data set such as the configurations
visited in MD simulations are significant [89].

Shen et al. [83] studied a multiscale model towards lowering the
cost of ab initio computation by using NN as proposed by Behler and
Parrinello [110]. They developed a semi-empirical QM/MM model for
determination of potential energy of a specific QM/MM system at ab
initio QM/MM level. The developed model was further utilized for
three more reactions in water to estimate the changes in free-energy.
The ab initio QM/MM level was obtained by converting the semi em-
pirical QM/MM model computed free-energy profile with the potential
energies predicted with the developed NN. The obtained results show a
remarkable correlation with the reference data gotten from the ab initio
QM/MM molecular dynamics model [83]. This shows that application
of NN method couple with semiempirical QM/MM model is an efficient
and reliable approach for modeling of a chemical reaction. The previous
study of Nguyen-Truong et al. [111] also attested to the efficacy of NN
by using Levenberg–Marquardt (LM). They revealed that the algorithm
is exhibited high accurate with less training iterations and the fitting
(vibrational PES of H2O, reactive PESs of O3 and ClOOCl) require fewer
data points.

However, the use of NN is becoming an old fashion due to the
emergence of a simpler, more cost-sensitive and efficient learning ap-
proach known as extreme learning machine (ELM) developed by Huang
et al. [112]. This is because ELM exhibits extremely fast learning speed,
superior suitability for high-dimensional potentials, and generalization
capability. ELM is a learning algorithm for single-hidden layer feed-
forward neural networks (SLFNs), which selects hidden nodes randomly
and computes the output weights of SLFNs analytically. ELM can be
regarded as a linear system after the input weights and the hidden layer

Fig. 7. Bulk crystallographic structures of (a) fcc α-
MoC1−x, (b) hexagonal γ-MoC and η-MoC, and (c) or-
thorhombic β-Mo2C. Turquoise and magenta spheres de-
note C and Mo atoms, respectively adopted from [57].

Fig. 8. Reaction scheme for Mo2C formation via in situ carburization using
Temperature program hydrogen (TPH).

Fig. 9. Top (left panels) and side views (right or middle panels) of the considered α-MoC1−x, hexagonal MoC, and α -Mo2C & β-Mo2C surfaces. In the α-MoC1−x (111)
surfaces three panels are presented, being Mo- (left panel) and C-terminations (right panel). On α -Mo2C & β-Mo2C polar surfaces—(111) and (001)—left and right
panels belong to C- and Mo-terminations whereas the middle panel is a top view. Surface unit cells are appeared as red lines; adopted from [57]. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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biases are randomly selected [113]. Being one of the foremost trends for
optimization and high learning speed in the machine intelligence
community, ELM has a promising potential to scale up for several
practical applications, while attaining the developments in theories,
applications, and hardware implementation [113,114].

By using ELM, the neural networks training time can be lessened by
a thousand times. The performance of ELM has been assessed on several
benchmark problems [115]. However, ELM PESs not been investigated
to the best of our knowledge.

6. Application of MCN for hydrogenation and hydrogen
production

6.1. Unsupported MCN

Recently, Posada-Pérez et al. [116] reported the use of MCN het-
erogeneously catalyzed hydrogenation reactions, where H2 is adsorbed
and dissociated. The study was carried out using systemic DFT-PBE
with or without dispersion terms, regarding the interaction and stability
of H2 with orthorhombic β-Mo2C(001) and cubic δ-MoC(001) surfaces.
For β-Mo2C(001), two likely Mo or C terminations are considered. Their
report shows that the energy profiles for the elementary steps H2 dis-
sociation are mainly influenced by dispersion. The DFT-PBE computa-
tion with vdW dispersion give an energy barrier of 0.60 eV for δ-MoC,
and essentially zero on β-C and β-Mo, while it was predicted that
computation with vdW would favorable desorption of δ-MoC and β-C
more than dissociation. The computation of surface free energy calcu-
lations indicates that both terminations of β-Mo2C become stable as H
coverage increases. On the other hand, in the case of the δ-MoC (001)
surface, adsorption of H becomes stable up to half coverage where all C
sites are filled (Table 1).

Li et al. [36] developed belt-shaped MCN (α-MoC1-x and β-Mo2C)
for dehydrogenation of benzyl alcohol to benzaldehyde. Their report
shows that β-Mo2C nanobelts displayed a higher catalytic performance
than the α-MoC1-x. The outstanding performance of β-Mo2C could be
attributed to the high number of coordinatively unsaturated Mo sites on
its surface. The study of T. Mo et al. [43] on hydrogenation of CO, states
that increase in the degree of carburization weakens the CO adsorption
strength on MCN. However, increase in degree carburization of MCN
engenders a continuous increase in the intrinsic activity with respect to
TOF. Table 2 presents the catalytic performance of various unsupported
MCN catalysts.

6.2. Supported MCN

Several authors have studied supported MCN for the purpose of

establishing selectivity control in reactions such as HDO. Boullosa-Eiras
et al. [120] studied the use of TiO2 supported MCN (Mo2C/TiO2) as an
alternative catalyst for HDO of fast pyrolysis of phenol as a bio-oil
model compound. The reaction was performed at a temperature range
of 350–450 °C at a pressure of 25 bar. The primary product obtained is
benzene (large amount) via hydrogenolysis, indicating high selectivity
towards benzene. Small quantities of non-aromatics such as methylcy-
clopentane, cyclohexene, and cyclohexane were also observed. The best
catalytic performance was obtained at 350 °C and 25 bar with a mod-
erate deactivation after 9 h on stream.

MCN supported platinum (Pt/Mo2C) catalysts was successfully used
for water gas shift (WGS) reaction, exhibiting a remarkable WGS rate
(mol CO/molPt s), which is better than the rates reported for commer-
cial Cu-Zn-Al catalyst and most of the active oxide supported Pt cata-
lysts (like Pt/CeO2, Pt/CeOx, and Pt/TiO2) [117].

Zou et al. [122] investigated the effect of various additives such as
K, Ce, Co, Mg and La on MCN supported on Ni impregnated γ-Al2O3

during tri-reforming of methane. Their report shows that the presence
of Ni species stirred-up methane dissociation and made active carbon
available for the carburization process. Addition of La to the Ni sup-
ported MCN is capable of preventing small particles aggregation, fa-
cilitating topotactic transformation of MCN species and suppressed
deposition of carbon, thereby leading to remarkable catalytic perfor-
mance. Addition of Ce and Co resulted in deterioration of the activities
of the catalyst to some extent because the particle size is larger, while
the addition of Mg decreased the porosity of the catalyst and promoted
coke formation. The addition of K inhibited the carburization process of
molybdenum oxide species and caused the phase transformation of
active γ-Al2O3 to less active θ-Al2O3. K and Mg-promoted Ni supported
MCN, particularly the former, displayed a dramatic decline in the redox
ability for the methane tri-reforming.

Chai et al. [123] studied the effect of various carbon support (gra-
phitic mesoporous carbon (GMC), carbon black and activated charcoal)
on MCN during catalytic hydrogenation of CO to produce mixed al-
cohol. Their report shows that the catalytic performance of the catalysts
depends on MCN particle size rather than the type of support (Table 3).
Consequently, GMC was observed as the most promising support of β-
Mo2C due to its ability to form smaller carbide particles leading to
higher catalytic performance. Incorporation of a small amount of K2CO3

into β-Mo2C/GMC (molar K/Mo = 0.05–0.5) as a promoter con-
siderably favors the production of C2+–OH, resulting in a maximum
space time yield (STY) for C2+–OH at medium K/Mo ratio of 0.1.
K2CO3 promoted β-Mo2C/GMC exhibited a better C2+–OH selectivity
and space-time yield (STY) when compared with a typical Rh/GMC
catalyst when triply promoted with oxide of Fe, Li, and Mn.

Kiai et al. [124] prepared a series of carbon nanotubes (CNTs)

Fig. 10. QM/MM model of a 1.2nm MCN (Mo
atoms in red and C atoms in cyan) with ad-
sorbed benzene (in black) and the two dis-
sociated H atoms (in black) embedded in the
model aromatic solvent; adopted from [84].
(For interpretation of the references to color in
this figure legend, the reader is referred to the
web version of this article.)

P.A. Alaba et al. Renewable and Sustainable Energy Reviews 91 (2018) 287–300

294



supported MCN catalysts and promoted by Co and K where the CNT act
as the carbon source. They studied the effect of K/Co and Mo/Co molar
ratios on the production of C2+–OH from syngas. Their report shows
that the products obtained using unpromoted catalyst during the con-
version of CO was predominantly hydrocarbons very at a low conver-
sion. The generation of hydrocarbon was suppressed to some extent
upon incorporation of K, thereby favoring formation of alcohol. When
Co was introduced at a fixed amount of K, the conversion of CO in-
creases appreciably (from 37.0% to 63.0%). The optimum selectivity to
C2+–OH was observed at K/Mo and Mo/Co molar ratios of 0.6 and
1.66, respectively. The enhanced selectivity of higher alcohols may be
ascribed to the formation of “Co3Mo3C” and “KMo-C” phases, which are
suggested to be active for alcohols formation. Table 3 presents the

catalytic performance of various promoted/supported MCN catalysts.
From the foregoing, it is tenable to say that careful selection of

supporter saves time, exhibits better rate than commercial Cu-Zn-Al
catalyst and most of the active oxide supported catalysts. Although the
incorporation of the support could incur extra cost of material and
process, but the additional cost is worthwhile since supported MCN
catalysts are more effective and function at a superior rate, thereby
saving time and lowering the cost of using the catalyst for sustainable
energy production.

6.3. oxygen-modified molybdenum carbide catalysts

MCN being an oxophilic catalytic materials from both a

Table 1
Preparation parameters of molybdenum carbides.

Crystal phase and size
(nm)

Mo-precursor Red. agent Carb. Agent (%–%) TpreT (K) β a (K s−1) Tcarb (K) tcarb (s) Application Ref.

α-Mo2C (-) MoO3 Magnesium Graphite 973 10 1373 [37]
Mo2C (11)b (NH4)6Mo7O24·4H2O air 20 CH4/80H2

(150mL/min)
773 1 973 3600 HDO of phenol [38]

Mo2C (24) c (NH4)6Mo7O24·4H2O air 20 CH4/80H2

(150mL/min)
773 1 973 3600 HDO of phenol

Mo2C (21) d (NH4)6Mo7O24·4H2O Hydrogen carbon black 473 10 1113 3600 [18]
Mo2C (15) e (NH4)6Mo7O24·4H2O Hydrogen carbon black 473 (10+3) 1113 300 [18]
α-MoC1− x (-) α-MoO3 5 n-C4H10–95H2 973 14,400 dehydrogenation of benzyl

alcohol
[34]

α -Mo2C (-) α-MoO3 20CH4–80H2 1123 14,400 dehydrogenation of benzyl
alcohol

[34]

α-Mo2C (9.1) (NH4)6Mo7O24·4H2O 20CH4–80H2 473 1 903 18,000 Hydrogenation of CO [39]
α-Mo2C (12) (NH4)6Mo7O24·4H2O 20CH4–80H2 473 1 973 18,000 Hydrogenation of CO [39]
α-Mo2C (13.1) (NH4)6Mo7O24·4H2O 20CH4–80H2 473 7 973 18,000 Hydrogenation of CO [39]
α-Mo2C (10.9) (NH4)6Mo7O24·4H2O 50CH4–50H2 473 1 973 18,000 Hydrogenation of CO [39]
α-Mo2C (16.2) (NH4)6Mo7O24·4H2O 20CH4–80H2 473 1 1073 18,000 Hydrogenation of CO [39]
α-Mo2C (10.8) (NH4)6Mo7O24·4H2O 10C2H6–90H2 473 1 973 18,000 Hydrogenation of CO [39]
α-Mo2C (11.3) (NH4)6Mo7O24·4H2O 10C2H6–90H2 473 7 973 36,000 Hydrogenation of CO [39]
α-Mo2C (7.3), α-MoC1− x (NH4)6Mo7O24·4H2O 5C4H10–95H2 473 1 973 18,000 Hydrogenation of CO [39]
α-Mo2C (9.5), α-MoC1− x (NH4)6Mo7O24·4H2O 5C4H10–95H2 473 1 973 36,000 Hydrogenation of CO [39]
α-Mo2C (14) (NH4)6Mo7O24·4H2O ethylene glycol 10C2H6–90H2 473 1 1073 18,000 Hydrogenation of CO [39]
α-Mo2C (14) (NH4)6Mo7O24·4H2O ethylene glycol 10CH4–90H2 573 5 833 14,400 [32]
α-MoC1− x(14) MoO3 5C4H10–95H2 1 823 3600 [40]
α-Mo2C (-) MoO3 20CH4–80H2 1 1023 3600 [40]
α-Mo2C (-) MoO3 10C2H6–90H2 1 9023 3600 [40]
α-Mo2C (-) MoO3 20CH4–80H2 1 1023 3600 Partial oxidation of methane [40]
α-MoC1− x(14) MoO3 10C2H2–90H2 1 903 14,400 Partial oxidation of methane [40]
β -Mo2C (10–20) Molybdenum powder Carbon black 1033 3600 [41]
α-Mo2C (16.6) (NH4)6Mo7O24·4H2O Hydrogen 1 973 10,800 CO hydrogenation [42]
η-MoC f (-) (NH4)6Mo7O24·4H2O Hydrogen Glucose 473 5 1073 600 HER [35]
α-Mo2C (20) g (NH4)6Mo7O24·4H2O Hydrogen Glucose 473 5 1073 1200 HER [35]
α-Mo2C (18) MoCl5 Hydrogen Activated carbon 3 873 7200 [24]
α-Mo2C (16) MoCl5 Hydrogen Activated carbon 3 823 1440 [24]
α-Mo2C (10) MoCl5 Hydrogen Activated carbon 3 823 7200 [24]
α-Mo2C (5) MoCl5 Hydrogen Activated carbon 3 723 28,800 [24]
α-Mo2C (7) MoCl5 Hydrogen Activated carbon 3 723 388,800 [24]
α-Mo2C (8) h MoCl5 Hydrogen Activated carbon 3 873 7200 [24]
α-Mo2C (14) h MoCl5 Hydrogen Activated carbon 3 873 1440 [24]
α-Mo2C (12) MoCl5 Hydrogen Ethanol 1023 HER [36]
α-Mo2C (26) MoCl5 Hydrogen Ethanol 1123 HER [36]
α-Mo2C (27) MoCl5 Hydrogen Ethanol 1223 HER [36]
α-Mo2C (31) MoCl5 Hydrogen MoCl5 Hydrogen Ethanol 1423 HER [36]
α-Mo2C (52) MoCl5 Hydrogen Ethanol 1523 HER [36]
α-Mo2C (-) (NH4)6Mo7O24·4H2O 15CH4–85H2 623 863 7200 HDO [43]
α-Mo2C (-) Mo-M-SiO2 methyl in silica (5+1) 973 14,400 CO Hydrogenation [44]
α-Mo2C (-) (NH4)6Mo7O24·4H2O Aniline 2 1023 18,000 Hydrogen production from

methanol
[45]

α-MoC1− x(-) (NH4)6Mo7O24·4H2O Aniline 863 2 948 18,000 Hydrogen production from
methanol

[45]

HDO: hydrodeoxygenation; (NH4)6Mo7O24·4H2O: ammonium heptamolybdate; a: Heating rate; b: 6.8 wt% Mo loading; c: 15 wt% Mo loading, d: 50 wt% Mo
loading; e: 20 wt% Mo loading; f: 10 min reduction time; g: 20min reduction time; h: Sample was inserted into pre-heated furnace and kept for the indicated time;
HER: Hydrogen Evolution Reaction.
α-MoC1− x: FCC; α-Mo2C: hexagonal closest-packed (hcp); β-Mo2C: orthorhombic; γ-MoC: Hexagonal, η-MoC.
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fundamental point of view and for any potential acid catalysis such as
HDO, could be modified with oxygen (O*) to enhance the amount of
Brønsted acid sites on its surface without altering the bulk structure of
the carbide crystals. The source of O* may be alcohol, H2O, CO, CO2 or
direct O2 co-feed at reaction conditions, which dictates the consistent
and persistent nature of acid site [125]. O* modified MCN was pre-
dicated on deposition of oxygen on the active sites of metallic catalysts
during HDO reaction, which poisons the active sites and/or forms
Brønsted acid sites [126,127]. Lee et al. [126] observed deposition of
carbon and oxygen during an initial transient detected during HDO of
anisole over bulk β-Mo2C to form cyclohexane. The formation of cy-
clohexane was inhibited by oxygen deposition until finally stopped,
leading to formation of benzene. Chen et al. [10] also reported this
effect during hydrogenation of benzene and toluene on MCN, which

engenders irreversible inhibition of the reaction when methanol or
water was co-fed. From the foregoing, it is clear that oxygen deposition
under reaction conditions alters the composition and function of MCN
catalysts. Therefore, oxygen deposition on MCN prior to utilization for
the reaction is promising towards selectivity of a particular product. For
instance, [126] compared fresh formulation of MCN with that of O2-
modified MCN catalyst during HDO of anisole to form benzene. Their
catalytic activity was almost similar with turnover frequency [128] of
∼ 1.7×10− 3mol molCO−1 s−1 for the fresh MCN and ∼
1.5×10–3molmolCO−1 s−1; O/Mo bulk (molar ratio) = 0.075.
However, the rate of formation of benzene per gram of catalyst was
about three times higher on the fresh MCN than the modified MCN,
revealing a reduction in the number of sites responsible for benzene
formation on MCN. The surface oxidation of MCN takes place in a TPR
synthesis technique where O2 at high pressure is co-feed under certain
reaction conditions as dehydration rates increased until a stable value is
reached [129].

Sullivan et al. [127] reported a ∼ 30-fold increase in the rate of
propylene production per gram MCN catalyst from dehydration of
isopropyl alcohol at 142 °C when O2 was co-feed at a pressure range of
0–13.5 kPa. The high rate of isopropyl alcohol dehydration was at-
tributed to the presence of Brønsted acid sites on the catalyst due to
modification with oxygen co-feed (0–13.5 kPa). This was confirmed by
in situ by 2,6-di-tert-butylpyridine titeration. Sullivan et al. [125] in-
vestigated the effect of O*modification on MCN during isopropanol
(IPA) dehydration at 142 °C either with 13 kPa O2 co-feed or under inert
He/Ar atmosphere. Their report shows that O2 co-feed boosted rate of
dehydration per gram due to enhancement of the Brønsted acid site
resulting from the oxophilicity of MCN.

The source of oxygen plays a vital role on product selectivity on
oxygen modified MCN. Chen and Bhan [130] studied the effects of
oxygen modification on MCN for HDO of m-cresol over MCN catalysts
modified with 1 kPa of H2O, CO2, or O2 at 60 °C. Their report shows that

Table 2
Catalytic performance of various unsupported MCN catalysts.

Samples BET surface
area (m2/g)/
Pore size (nm)

Reaction T (K)/ P
(MPa)

Performance Ref.

α-MoC1-x 71.6/2.2b dehydrogenation 393/- 80b [36]
β-Mo2C 88.9/2.3b dehydrogenation 393/- 100b [36]
MoC550 4.5/- Hydrogenation of CO 333/3.1 0.071a [43]
MoC630 22.1/- Hydrogenation of CO 553/3.1 0.074a [43]
MoC700 20.7/- Hydrogenation of CO 553/3.1 0.078a [43]
MoC760 27.1/- Hydrogenation of CO 553/3.1 0.081a [43]
Mo2C 151/- Hydrogenation of CO 473/4 69c [117]
α-MoC1-x – Hydrogenation of CO 473/2 74c [117]
β -Mo2C – Hydrogenation of CO 473/2 29c [118]
Mo2C – Hydrogenation of CO 473/6 32.4c [119]

a TOF (s−1).
b Conversion (%).
c Selectivity of ROH.

Table 3
Catalytic performance of various promoted/supported MCN catalysts.

Samples BET surface area (m2/g)/ Pore size (nm) Particle size (nm) Reaction T (K)/P, MPa Performance Ref.

15 MoO3/TiO2 65/- 22 HDO 623/2.5 0.0039a [120]
15 Mo2C/TiO2 66/- 24 HDO 623/2.5 0.0092a [120]
6.8 Mo2C/TiO2 74/- 11 HDO 623/2.5 0.0036a [120]
PtMo2C - – Water Gas Shift 513/- 1.423g [121]
NiMoC-La 142.68/ 7.31 – methane tri-reforming 1523/- 93.95b [122]
NiMoC-Mg 119.51/ 6.94 – methane tri-reforming 1523/- 96.05b [122]
NiMoC-K 103.67/ 6.24 – methane tri-reforming 1523/- 7.32b [122]
NiMoC-Co 129.53/7.42 – methane tri-reforming 1523/- 99.30b [122]
NiMoC-Ce 132.32/7.26 – methane tri-reforming 1523/- 98.60b [122]
Co/MoC – – Hydrogenation of CO 603/3.3 4.8c [14]
0.2K/Co-MoC 112/13.12 – Hydrogenation of CO 603/3.3 42.2c [124]
0.4K/Co-MoC 101/13.39 – Hydrogenation of CO 603/3.3 44.6c [124]
0.6K/Co-MoC 88/13.53 – Hydrogenation of CO 603/3.3 48.6c [124]
0.8K/Co-MoC 72/13.76 – Hydrogenation of CO 603/3.3 41.3c [124]
K/b-Mo2C/GMCd – 10.8 ± 6.3 Hydrogenation of CO 573/3.0 29.5, 71f [123]
β-Mo2C/ACd 951/< 2.0 14.3 ± 3.1 Hydrogenation of CO 573/3.0 29.5, 15f [123]
Rh-Mn-Li-Fe/GMCe – – Hydrogenation of CO 573/3.0 24.5, 46f [123]
Mo2C 151 – Hydrogenation of CO 473/4 69f [113]
Cu/Mo2C 135 – Hydrogenation of CO 473/4 76f [117]
α-MoC1-x – – Hydrogenation of CO 473/2 74f [117]
β -Mo2C – – Hydrogenation of CO 473/2 29f [118]
Cu/Mo2C 135 – Hydrogenation of CO 493/6 22f [118]

15 Mo2C/TiO2=Mo2C/TiO2 with ca. 15 wt% of Mo loadings.
a TOF (s-1).
b WaterGas Shift (mol CO/ molPt•s).
c H2 yield at a feed flow rate of 4600mL h−1.
d Selectivity of ROH at varying K/Co molar ratio (from 0.2 to 0.8) and MoCo=1.66.
e 1 wt% Rh, Rh/Mn/Li/Fe= 1/1.9/1.1/0.1.
f C2+–OH Selectivity (mol-C%, CO2-free), Space time yield (mg (h gcat)−1).
g 5 wt% β-Mo2C, K/Mo=0.1.
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O2 exhibits a higher proclivity to deposit oxygen (O/Mobulk prior to
HDO is 0.23 ± 0.02) on fresh MCN, as compared with H2O and CO2

(O/Mobulk prior to HDO is ~ 0.036), as determined by H2 temperature
programmed surface reaction. Excess O/Mobulk (above ∼ 0.06 ± 0.01)
poisons the active sites of the catalyst, thereby declining toluene for-
mation as high as 10-fold for O2 modified MCN compared to the fresh
MCN and CO2 modified MCN. However, the value of TOF is in-
dependent of the source of oxygen.

6.4. Effect of temperature and pressure

Temperature and pressure play a vital role in the progress and the
product distribution in chemical reaction. Chen et al. [117] investigated
the effect of temperature during a low-temperature CO2 hydrogenation
Mo2C supported metal catalysts. The reaction progressed feeding 10 bar
CO2 and 30 bar H2 through a dip tube after removing the dissolved
oxygen by purging the solvents with H2 for 15min at temperatures of
135–200 °C. The report showed a significant increase in conversion and
improved product distribution when the temperature was increased
from 135 to 200 °C (Table 4). The remarkable improvement in perfor-
mance is due to increase in the solubility of H2 from 0.14 to 0.18mol/L
as the temperature increased from 135 to 200 °C [131,132].

Boullosa-Eiras et al. [120] studied the effect of pressure on the
equilibrium composition. Their report shows a low consumption of H2
at a pressure less than 30 bar, which favors a rather larger amount of
benzene. N-hexane rather than benzene was favored at higher pressure.
The report of Chen and Bhan [130] on the effect of pressure on m-cresol
HDO shows that the TOF of toluene increases as the H2 pressure was
raised from 10 to 110 kPa. However, the performance was independent
of m-cresol pressure.

7. Conclusion

Definitely, hydrogenation and hydrogen production reactions are
the modern research hotspot towards renewable and sustainable energy
production and have, therefore, inspired extensive interests in rational
design and synthesis of cheap, noble metal-free, thermal/hydrothermal
stable and active catalysts. This will offer a remarkable relief to the
renewable and sustainable energy community. One of such materials is
MCN, which is a promising replacement for noble metals. Factors like
carbon source, pre-treatment temperature TpreT, heating rate, Mo
loading, carburization temperature (Tcarb), carburization time (tcarb),
Mo-precursor and crystalline phases significantly influence the design
of MNC by varying the crystalline Mo-phases of MNC.

High pretreatment temperature favors formation of MNC rather

than low temperature as there is the formation of a large amount of
crystalline MoO2 phase at a low pretreatment temperature rather than
MCN due to incomplete carburization of the precursor. The reverse is
the case with a high pretreatment temperature, which leads to the
formation of a large amount of MCN resulting from a high reduction
rate of MoO2.

Lowering the heating rate favors early carburation leading to lower
carburation temperature and formation of a larger particle size when
compared with a higher heating rate. At a higher heating rate, the
carburation temperature becomes high leading to sintering of the car-
bide phase of the sample. The increase in carburation temperature leads
to increase in the carburation of the precursor, which favors formation
of MCN. Low carburation temperature exhibits predominantly crystal-
line MoO2 phase. Therefore, for rational design of MCN, it is required to
employ a long chain hydrocarbon as the carbon source and a combi-
nation of high pretreatment temperature, lowered heating rate, high
carburation temperature and high carburation time.

The operating condition, as well as preparation method, is also re-
sponsible for the structural diversity. Therefore, the understanding of
this diversity is also vital to the suitability of MCN for industrial ap-
plication. MCN is classified into α-MoC1–x, α-Mo2C, β-Mo2C, γ-MoC,
and η-MoC. α-Mo2C, γ-MoC and η-MoC exhibit hcp structure, α-MoC1–x
is fcc, while β-Mo2C is orthorhombic. Out of the MCN, are α-MoC1–x
and β-Mo2C are more stable and exhibit a remarkable electrochemical
performance due to their large ionic contribution. β-Mo2C is a viable
substitute for the commercial Cu-based catalysts used in Water-Gas-
Shift (WGS) reaction while α-Mo2C is highly suitable for dehy-
drogenation process. The functionality of these structures largely de-
pends on the surface properties.

The reaction mechanism of MCN is better explained by multiscale
reaction model (QM/MM), which combines quantum mechanical (QM)
density functional tight-binding (DFTB) technique with a molecular
mechanical (MM) force field. However, the computational cost has been
the challenge. To reduce the computation cost of multiscale model
while maintaining high numerical accuracy and reusability of the
functional form for other systems, neural-network (NN) is considered
suitable for representation of the ab initio potential energy surface
(PES). NN PES has the capacity to produce a similar result with that
DFT at a small fraction of the computational costs. A more promising
approach is the use of extreme learning machine (ELM), which was
developed from NN. ELM is extremely faster in learning, suitable for
high-dimensional potentials, and better in term of generalization cap-
ability, making it more cost-sensitive and efficient.

The catalytic activity of MCN based catalyst (both unsupported and
supported/promoted) was investigated, showing the need for support/

Table 4
CO2 hydrogenation rates and selectivities over Mo2C and M/Mo2C catalysts.a

Catalysts Trxn (K) CO2 conv.rate/TOFb Selectivity (%)c,d Ref.

µmol/m2/s·104 s−1·104 MeOH EtOH CO CH4 C2H4 C2H6 C3+

Mo2C 408 1.7 0.6 79 0 16 5.3 0 0 0 [133]
473 55 20 53 16 4.9 17 0.8 5.0 3.0 [133]

Cu/Mo2C 408 4.6 2.1 93 0 4.1 2.6 0 0 0 [117]
473 90 41 63 14 8.6 9.8 0.3 3.7 1.9 [117]

Pd/Mo2C 408 5.9 2.3 95 0 3.6 1.6 0 0 0 [117]
473 97 39 68 11 9.6 7.6 0.3 2.5 1.3 [117]

Co/Mo2C 408 4.8 1.9 84 0 5.7 9.4 0 1.1 0.1 [117]
473 86 35 46 25 9.5 9.5 0.6 5.6 1.4 [117]

Fe/Mo2C 408 3.9 1.5 87 0 4.1 7.2 0 1.2 0.6 [117]
473 99 38 58 16 6.8 8.1 0.4 6.3 3.8 [117]

a 10 bar CO2, 30 bar H2, 37.5 mL 1,4-dioxane and 200mg catalyst.
b Calculated at 2 h.
c Calculated at ~ 1.0% CO2 conversion at 135 °C and ~ 10% CO2 conversion at 200 °C. The selectivities were calculated on a C1 basis.
d C3 contains C3H6 and C3H8, and C4 contains C4H8 and C4H10.
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promoter. Addition of support/promoter enhanced the catalytic per-
formance of MCN based catalyst with respect to conversion, TOF as well
as product distribution.
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