
 

 

 

Abstract— This paper introduces a machine learning 

priority rule for solving non-preemptive resource-constrained 

project scheduling problems (RCPSP). The objective is to find 

a schedule of the project’s tasks that minimizes the total 

completion time of the project satisfying the precedence and 

resource constraints. 

  Priority rule based scheduling technique is a scheduling 

method for constructing feasible schedules of the jobs of 

projects. This approach is made up of two parts: a priority rule 

to determine the activity list and a schedule generation scheme 

which constructs the feasible schedule of the constructed 

activity list. Different scheduling methods use one of these 

schemes to construct schedules to obtain the overall project 

completion time. Quite a number of priority rules are 

available; selecting the best one for a particular input problem 

is extremely difficult. We present a machine learning priority 

rule which assembles a set of priority rules, and uses machine 

learning strategies to choose the one with the best performance 

at every point in time to construct an activity list of a project. 

The one with better performance is used most frequently. This 

removes the problem of manually searching for the best 

priority rule amongst the dozens of rules that are available.   

We used our approach to solve a fictitious project with 11 

activities from Pm Knowledge Center. Four priority rules were 

combined. We used serial schedule generation scheme to 

generate our schedules. Our result showed that the total 

completion time of the project obtained with our approach 

competes favorably with the completion times gotten with the 

component priority rules. We then went further and compared 

our algorithm with 9 other available priority rules. Our results 

showed that the completion time got using our algorithm 

compete favorably with the total 13 priority rules available in 

the literature.  

 

Index Terms— machine learning, motion planning, network 

analysis, resource constraints, probabilistic roadmap planners. 

 

I. INTRODUCTION 

ROJECT scheduling involves the scheduling of the jobs 

of a project to obtain a feasible schedule which 

optimizes desired performance criteria. When the resources 
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required to execute the jobs are constrained, we have the 

resource-constrained project scheduling problem (RCPSP) 

and either single-mode RCPSP (Talbot and Patterson [9]) or 

multi-mode RCPSP (Talbot [8], Hartmann [3]). The Single-

Mode RCPSP involves scheduling the jobs of a project and 

putting into consideration the precedence and the renewable 

resource availability constraints. When a job is started it is 

either preemptive or non-preemptive. The typical objective 

which is what we are considering in this paper is usually to 

minimize the total completion time of a project. 

The multi-mode RCPSP is a generalization of the single-

mode RCPSP. Within the multi-mode RCPSP, a job can be 

performed in one out of a set of execution modes with a 

specific duration and resource requirements. Each mode 

represents another way of mixing different levels of 

resource requirements with a related duration (for example, 

2 electricians need 5 days to repair an electrical fault (mode 

1), while 3 electricians and 2 unskilled laborers may need 2 

days to repair the same electrical fault (mode 2)). 

The RCPSP has been shown to be an NP-hard optimization 

problem (Blazewicz [1]). Exact methods become intractable 

therefore as the number of activities and the number of 

modes for each activity increases (Sprecher and Drexl [7]).  

Hence, in practice heuristic algorithms to generate near-

optimal schedules for larger projects are of special interest. 

This problem has found application in many real life 

applications and industries, such as project management and 

crew scheduling, construction engineering, production 

planning and scheduling, fleet management, machine 

assignment, automobile industry and software development.  

  Priority rule based scheduling technique is a scheduling 

method for constructing feasible schedules of the jobs of 

projects. This approach is made up of two parts: a priority 

rule to determine the activity list and a schedule generation 

scheme which constructs the feasible schedule of the 

constructed activity list. Many priority rules exist 

(Vanhoucke [10]) for various tasks while basically there are 

two well-known generation schemes available: the serial 

schedule generation scheme (SSGS) and the parallel 

schedule generation scheme (PSGS) [6]. Different 

scheduling methods use one of these schemes to construct 

schedules to obtain the overall project makespan (project 

completion time). This can be seen in [3] who introduced a 

genetic algorithm approach that used latest finish time 

priority rule to obtain the activity list for an individual and 

then used the parallel generation scheme to get the schedule 

Machine Learning Priority Rule (MLPR) For 

Solving Resource-Constrained Project 

Scheduling Problems   

Patience Imoh Adamu and  Olufemi T. Aromolaran 

P 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II 
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14048-8-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018



 

 

for that individual. Also, Kadem and Mane [5] presented a 

genetic-local search algorithm for RCPSP. This algorithm 

uses priority base crossover, neighborhood mutation 

operator and neighborhood search procedure to combine 

elements from evolutionary and local search procedures. 

The solution is an activity list which uses SSGS for 

generation of results. 

In the literature, because quite a number of priority rules are 

available, selecting the best one for a particular input 

problem is extremely difficult.  This is the motivation of this 

study. 

In this paper, we present a machine learning priority rule 

(MLPR) approach which uses machine learning to 

dynamically decide which priority rule to use. It assembles a 

set of priority rules and uses machine learning to identify 

the best rule automatically when constructing an activity list 

of a project. This approach is inspired by Hybrid PRM (Hsu 

et al.[4]), and adaptive neighbor connections (ANC) for 

PRMS [2].  

Hybrid PRM (Hsu et al. [4]) assembles a number of 

component samplers and uses machine learning approach to 

identify the best component samplers to use at every stage 

while ANC for PRMS (Ekenna [2]) assembled a list of 

neighbor finders and uses the same machine learning 

approach to identify the best component to use for 

generating PRM roadmaps in a heterogonous environment.                                                                          

What MLPR approach essentially does is to find a schedule 

of a project that minimizes its completion time even though 

available resources are constrained. It does this by 

assembling a set of priority rules. Observe their success 

rates and costs and then choose the one with the best 

performance to construct an activity list. Having obtained 

the activity list, a SSGS is then employed to construct the 

schedule which gives the completion time of the project.                                     

We used an example project network with 11 jobs from Pm 

Knowledge Center for our experiment. We compared 

MLPR with 13 priority rules available and it competed 

favorably with them in finding the completion time of the 

example project. WE first of all used four of the rules as 

component rules for MLPR and compared their completion 

times.  MLPR was found to minimize the completion time 

of the project better than 3 of them and in the same level 

with the fourth one. When we compared with the 

completion times using 9 more priority rules, the finished 

time of all the 13 rules, ranges from 24 – 29 weeks while 

that of MLPR is 24, the minimum value in the range. Hence 

instead of looking for the best priority rule to use, MLPR 

may be used. This implies that it eases the burden of trying 

to find the best priority rule amongst rules. 

The main contribution of this work is to propose a new 

machine learning priority rule for finding the minimum 

schedule that minimizes the completion time of a resource-

constrained project scheduling problem. 

 

II. PRELIMINARIES RELATED WORKS 

A. Hybrid PRM  

Probabilistic Roadmap Methods (PRMs) are sampling 

based motion planning algorithms. PRM divides planning 

into two phases: the learning phase, during which the 

roadmap is built; and the query phase, during which the 

user-defined query configurations are connected with the 

recomputed roadmap. The nodes of the roadmap are 

configurations and the edges of the roadmap correspond to 

free paths computed by a local planner. Hybrid PRM 

brings together a number of sampling strategies and then 

uses machine learning approach to know the best strategy 

to use at every point in time in sampling the nodes to 

generate the roadmap in the learning phase. We use the 

same approach, but applying it to priority rules for the 

construction of activity list. 

 

B. Adaptive Neighbor Connections for PRMS  

Like the Hybrid PRM, the authors of ANC introduced a 

strategy that adaptively combines multiple neighbor finding 

strategies for generating PRM roadmaps. It is mainly for 

heterogeneous environments which facilitates parallelism. 

This framework learns which strategy to use by examining 

their success rates and costs. 

C. Priority Rules  

A Priority rule approach is a method for constructing 

activity lists of the activities of a project.  
The calculations of priority rules are often based on the four 

major information of the project and their network. They are 

as follows: 

Activity Information, e.g. duration of the activities: An 

example of priority rules that use this information is shortest 

processing time (SPT). It arranges the activities in such a 

way that the one with minimum duration comes first in the 

list. 

Network Structure Information: Examples are most 

immediate successors (MIS) and least non-related jobs 

(LNRJ). MIS puts the activities which has more direct 

successors first in the activity list while LNRJ puts activities 

with least number of non-related activities first in the list. 

Scheduling information: An example is earliest finish time 

(EFT). It lists the activities by putting first the ones with 

minimum earliest finish time in the list. 

Resource information:  An example is greatest resource 

work content (GRWC). It puts the activities in a decreasing 

order of their work content in the list. Work content is 

duration multiplied by its renewable resource demand 

(duration x resource demand) of a job. 

D. Schedule Generation Scheme (SGS) 

Quite a number of heuristic algorithms for resource-

constrained project scheduling problems (RCPSP) use SGS. 

It constructs feasible schedule from the priority list of the 

project activities. This, it does by removing activities from 

the priority list one at a time and assigning a starting time to 

each of them (i.e. partial schedule). This removal continues 

until starting time is assigned to the entire project activities 

(this is called a schedule).  Basically there are two different 

types of SGS available: The serial schedule generation 
scheme (SSGS) and the parallel schedule generation scheme 

(PSGS). The SSGS uses activity-incrementation principle 

while the PSGS uses time- incrementation principle. 

E. Serial Schedule Generation Scheme (SGS) 

This scheme uses the activity-incrementation principle 

which schedules activities of a project one at a time and in 
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its earliest precedence and resource feasible completion 

time. There are N stages in this scheme if there are N 

activities. In each stage the scheme scans the priority list, 

selects the next activity and schedules it at its earliest 

starting time making sure that the precedence and resource 

constraints are not violated. There are three sets of activities 

associated with each stage: the scheduled set, which consist 

of the already scheduled activities; the eligible set, which 

consist of all the activities that are eligible for scheduling 

and the ineligible set, which consist of all the activities not 

yet scheduled and cannot be scheduled in that stage.  

 

III. MACHINE LEARNING PRIORITY RULE (MLPR) 

The proposed priority rule (MLPR) uses a set of priority 

rules  to construct an activity list of 

the activities of a project. This is done in stages. Each 

priority rule maintains a probability . In 

every stage the MLPR observes the success rates and costs 

of all the priority rules and chooses the one with better 

performance to input an activity into the activity list.  

How to measure the performance of the priority rules and 

update the probabilities are for the discussion of the next 

subsections?  

 

(A) Performance Measures: 

The performance measure of the priority rules is the 

measure of their success rates. Success rates of priority rules 

are measured by the total rewards received. If the chosen 

priority rule is able to input a job into the activity list that is 

being constructed successfully, it receives a reward which is 

the duration of the scheduled job. Successful in the sense 

that the job put into the activity list, does not violate any 

precedence and resource constraints. This makes the 

probability to increase in the next stage. Otherwise, the 

priority rule is punished and its probability decreases in the 

next stage. The cost of a priority rule is the cost of the 

scheduled job. That is the resource demand of that job. A 

high cost reduces the probability of a priority rule to be 

chosen in the next pick.  

Algorithm 1: Machine Learning Priority Rule (MLPR) 

Input: a) A project with  number of jobs 

( . 

           b) A set of n priority rules, 

 .                   

Output: A feasible schedule of the Project’s makespan 

(completion time). 

Require: 

Let   be a set of probabilities 

where is the probability of choosing a priority rule.  

Initialize  

i) Initial weight of each priority rule is one ( ). 

ii) Initial cost of each priority rule is assumed to be one 

( ).. 

iii) Let AL =  be the activity list under 

construction. 

for Step t = 1, 2, … do 

1)  Write out the set of Eligible activities. 

2) Choose a priority rule   using   

3) Run the chosen rule  to get the appropriate 

activity from the set of eligible activities. 

4) Put the activity  into the activity list AL that is 

being constructed. 

5)  Get the reward of the chosen priority rule. 

6) Update success rates 

7) Update costs 

8) Update Probabilities of all the priority rules. 

 

9) If the activity list is finally got, use SSGS to 

construct feasible schedule of the activities 

which gives the completion time of the project. 

B   Probability update: 

In the initial stage of MLPR, all the assembled priority rules 

are given the same probability of been chosen (i. e. for n 

number of priority rules,  

 so that anyone can be randomly chosen for a start. 

Therefore, in subsequent steps the probabilities have to be 

updated for subsequent picks. We use the same probability 

update similar to Hybrid PRM.  

To be able to record the past performance of component 

rules, weights for each of the rules are introduced. Initially, 

weight for each rule is set equal to one. 

A weighted probability  based on the weights is 

computed for each of the rules in every step t: 

 

where is a convex combination of the exploitation and 

exploration probabilities of the priority rules. The first 

component keeps track of the probability of exploitation of 

a rule and the second one records the probability of 

exploration of the rule. The probability of exploitation of a 

priority rule varies directly with the rate at which that rule is 

been chosen while the probability of exploration of a rule is 

the same for all priority rules, giving each, the same chance 

of being chosen. The weighted probability balances the 

exploration and exploitation probabilities in each iteration 

that is   

Putting the cost of each priority rule into consideration in 

each step t, the costed probability is calculated as 

follows:  

 

is the average of the costs each priority rule 

incured over time? This is the probability of choosing a 

priority rule in step t.  

           C     Weight Update: 

In step t, the chosen priority rule has a reward , 

and all the other priority rules have zero rewards  

The weighted  reward is defined as: 
                                                              

 Now the weight update for all the rules in the next step is 

defined as follows: 
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This implies that;    

 

This shows that, the weight of each rule depends on the 

reward received. The exponential factor of the reward 

exposes how quickly   the weight changes as the reward 

changes.  

D     Reward and Cost update: 

The reward  of each priority rule is the duration of the  

job that has been successfully put in the activity list while 

the cost  of each priority rule is the resource demand of 

the job. The duration of the scheduled job is chosen as the 

reward for that priority rule used because the time of 

completion of the project is directly proportional to the 

duration of each job. When a job is scheduled, what it gives 

to the system is its duration. And the cost of the of the 

priority rule naturally follows as the resource demand of the 

job. 

 The new reward (cost) is the average of rewards (costs) as t 

increases. 

  

  

  . 

IV. EXPERIMENTS 

We used the fictitious project network from PM Knowledge 

Center (Vanhoucke [10]) as an example to find the 

completion time of the project and compare our algorithm 

with 13 other priority rules. It has eleven activities and 

finish-start precedence relations. We assume each time 

period to be one week. 

Fig 1: A Project network  

 

The numbers above the nodes are the estimated duration of 

each job and the number below are the renewable resource 

demands. The maximum availability of the renewable 

resource is equal to 6 units. 

Experimental Setup 

We used EFT, SPT, MIS, GRWC and LNRJ priority rules 

for our experiment. The following are what we did: 

i. We assembled SPT, MIS, GRWC and LNRJ for our 

algorithm (MLPR), then used each of the priority rules 

differently to find the activity list of the project.  

ii. We used SSGS to find the schedule of EFT’s activity list 

when the resource is not constrained. (Fig 2). This gives the 

earliest time the project can be completed.  

iii. We then used SSGS to find the schedule of the 

activities using the other priority rules when the resource is 

constrained (6 units per period). (Fig 3 – Fig 7). 

iv. We compared the probabilities in each step of the 

assembled rules as the steps (iterations) increases to see 

how each of the priority rules learns (Fig 8). 

v. We compared the schedule of our algorithm with earliest 

finished time schedule (Fig 9). To check how well MLPR 

can minimize project completion times. 

vi. We then finally compared the schedule of our 

algorithm with the schedule of all the component rules. (Fig 

10). This is to check how our algorithm compares with its 

component algorithms in minimizing project’s completion 

times. 

vii. In Pm Knowledge Center (Table 1) the authors used 13 

different priority rules to find the activity list of this project and 

they used SSGS and PSGS to find their schedules. The 

completion times ranges from 24 – 29 units.  

V. RESULTS 

A. The Project Schedules 

Below are the project schedules (Fig 2 to Fig 7) of the 

priority rules EFT, SPT, MIS, GRWC, LNRJ and MLPR of 

the project network in Fig 1. 

 
EARLIEST FINISH TIME (EFT) PRIORITY RULE

      Activity list using EFT priority rule is { 1, 2, 3. 4, 6, 5, 7, 8, 9, 10, 11}

      Resource Availability - Unconstrained 

     Schedule = {3, 8, 10, 12, 15, 13, 17, 18, 20, 20, 22}

      Completion time  = 22 weeks

Durations of each job  
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Fig. 2 : ETF priority rule Schedule using SSGS with unconstrained resource 

 
                             SHORTEST PROCESSING TIME (SPT)  PRIORITY RULE

       Activity list using SPT priority rule is { 1, 2, 3. 6, 4, 7, 5, 8, 10, 9,  11}

        Resource Availability - 6 units per period 

       Schedule = {3, 8, 10, 17, 15, 13, 22, 20, 24, 22, 26}

       Completion time  = 26 weeks

Durations of each job  
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Fig. 3 : SPT priority rule schedule using SSGS with constrained resource 

level (6 units)  

 
 MOST IMMEDIATE  SUCCESSORS (MIS)  PRIORITY RULE

        Activity list using MIS priority rule is { 1, 2, 4. 3, 5, 6, 7, 8, 9, 10, 11}

        Resource Availability - 6 units per period 

      Schedule = {3, 8, 10, 12, 17, 15, 20, 18, 24, 20, 26}

       Completion time  = 26 weeks

Durations of each job  
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Fig. 4 : MIS priority rule schedule using SSGS with constrained resource 

level (6 units) 
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GREATEST RESOURCE WORK CONTENT (GRWC) PRIORITY RULE

      Activity list using GRWC priority rule is { 1, 2, 4. 5, 7, 8, 3, 6, 9, 10, 11}

      Resource Availability - 6 units per period 

     Schedule = {3, 8, 14, 12, 15, 20, 17, 18, 27, 22, 29}

     Completion time  = 29 weeks

Durations of each job  
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Fig. 5 : GRWC priority rule schedule using SSGS with constrained resource 

level (6 units) 
 

LEAST NON-RELATED JOB (LNRJ)  PRIORITY RULE

      Activity list using LNRJ priority rule is { 1, 2, 4.3, 5, 8, 10, 6, 9,7,  11}

     Resource Availability - 6 units per period 

     Schedule = {3, 8, 10, 12, 17, 15, 20, 20, 22, 22, 24}

     Completion time  = 24 weeks

Durations of each job  
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Fig. 6 : LNRJ  priority rule schedule using SSGS with constrained resource 

level (6 units) 
 

 MACHINE LEARNING  PRIORITY RULE (MLPR)

       Activity list using MLPR priority rule is { 1, 2, 4.3, 5, 6,9, 7, 8,10,  11}

       Resource Availability - 6 units per period 

       Schedule = {3, 8, 10, 12, 17, 15, 20, 20, 22, 22, 24}

        Completion time  = 24 weeks

  Durations of each job           
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Fig. 7 : MLPR  priority rule schedule using SSGS with constrained resource 

level (6 units) 
 

B. Checking how the rules learns 

In Fig 8, Series 1 to Series 4 are SPT, MIS, GRWC and 

LNRJ priority rules respectively. 
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Fig 8: shows the success rates of the rules in each step. 

The four priority rules SPT, MIS, GRWC and LNRJ started 

with probability 0.25.  

SPT was chosen in the first step but its cost was too high 

and it was punished, so its probability was greatly reduced 

in the next step. MLPR continued exploring each of the 

rules until the fifth iteration when GRWC came out with the 

best success rate and MLPR exploited it to the end. This 

graph shows that GRWC had higher rewards from the 5th 

run to the end. 

C. Checking to what extent MLPR can minimize project 

completion time. 

We compared the schedule of MLPR with that of EFT of 

the project in Fig. 9. The critical path analysis under which 

ETF of the project is calculated assumes that resources are 

available in abundance. Comparing MLPR (with resource 

unavailability) with ETF (with available resource) is to 

check how good MLRP is, in minimizing the completion 

time of the project. Series 1 is the graph of ETF’s schedule 

and Series 2 is the graph of MLPR’s schedule. 
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Fig 9: Comparing MLPR with EFT in jobs and project completion time 

From the graph of Fig. 9 you see that the first four jobs were 

completed in their earliest finish times when MLPR was 

used. And the completion time of this project using our 

algorithm MLPR with constrained resource is 24 which is 

close to the earliest finish time of the project which is 22. 

D. Comparing MLPR with Component Rules (SPT, MIS, 

GRWC and LNRJ) 
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Fig 10: Comparing MLPR with its component priority rules 

From Fig 10, the range of completion times of the 

component rules is from 24 – 29 weeks that of MLPR is 24 

weeks.  Hence MLPR minimizes the project completion 

time better than most of the component priority rules. Using 

MLPR makes the project to finish in 24 weeks which is 

minimum of all the 4 completion times in the chart. This 

shows that MLPR competes favorably with its component 

rules. 
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E. Comparing MLPR with other priority rules 

In Pm Knowledge Center, 13 priority rules were used to 

find the activity list of the project example above (Fig 10) 

and the jobs were scheduled using serial and parallel 

generation schemes. The Table 1 below shows their results. 

 Table 1: Priority rules and their completion times using SSGS and PSGS 

for the example project of Fig. 1 
No. Priority Rules Finish Times  

of Project in Fig 10 

 SSGS PSGS 

1 Shortest Processing Time (SPT) 24 24 

2 Longest Processing Time (LPT) 29 29 

3 Most Immediate Successors (MIS) 24 24 

4 Most Total Successors (MTS) 24 24 

5 Least Non-Related Jobs (LNRJ) 24 24 

6 Greatest Rank Positional Weight (GRPW) 27 27 

7 Earliest Start Time (EST) 24 24 

8 Earliest Finish Time (EFT) 24 24 

9 Latest Start Time (LST) 24 24 

10 Latest Finish Time (LFT) 24 24 

11 Minimum Slack (MSLK) 26 26 

12 Greatest Resource Work Content (GRWC) 29 29 

13 Greatest Cumulative Resource Work Content (GCRWC) 26 27 

 
 

We see from Table 1 that the completion times of the 

project using SSGS and PSGS with the 13 priority rules 

range from 24 – 29 weeks. This implies that the minimum 

time this project can be completed with 6 units’ available 

renewable resource is 24 weeks.   Fig 7 shows that the 

completion time of the same project using SSGS with 

MLPR is 24 weeks. This shows that MLPR competes 

favorably with other priority rules in the literature. 

 

VI. CONCLUSION 

This paper introduces a machine learning priority rule 

(MLPR) which assembles a set of priority rules and 

intelligently combines them using their success rates and 

costs. Results show that our algorithm competes very 

favorably with its component priority rules (Fig 10), in 

terms of finding the schedule that minimizes the completion 

time of a project.  Further results got in comparing our 

algorithm with 9 other priority rules, making a total of 13 

priority rules available (Table 1) also shows that our 

algorithm competes favorably with a total of 13 available 

priority rules in literature. Hence MLPR removes the burden 

of deciding which method to use because it leverages each 

priority rule’s strengths, and is extendable to include more 

rules.  
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