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Abstract— In this paper, the differential calculus was used 

to obtain some classes of ordinary differential equations (ODE) 

for the probability density function, quantile function, survival 

function, inverse survival function, hazard function and 

reversed hazard function of the Frĕchet distribution. The 

stated necessary conditions required for the existence of the 

ODEs are consistent with the various parameters that defined 

the distribution. Solutions of these ODEs by using numerous 

available methods are a new ways of understanding the nature 

of the probability functions that characterize the distribution. 

The method can be extended to other probability distributions 

and can serve an alternative to approximation.                   

      

Index Terms— Quantile function, Frĕchet distribution, 

reversed hazard function, calculus, differentiation, probability 

density function. 

I. INTRODUCTION 

RȆCHET distribution is one of the mostly applied 

distributions in extreme value theory. Detailed 

information about the distribution can be obtained from the 

early works of [1] and [2] and book written by [3]. Different 

methods of estimation of the parameters of the distribution 

were discussed extensively by [4]. Some of the applications 

are as follows: Zaharim et al. [5] used the distribution to 

model wind speed data, Harlow [6] worked on the 

usefulness of the distribution in modeling engineering 

problems, Nadarajah and Kotz [7] discussed extensively on 

the application of the Fréchet random variables to 

sociological models. Vovoras and Tsokos [8] used the 

distribution to model and analyze precipitation data. Details 

on the application of the distribution in modeling extremal 

data can be found in [9].                                                     

 Many authors and researchers have proposed 

modifications or developed generalizations of the 

distribution. Some of them are: beta Fréchet distribution 

[10] [11], Kumaraswamy Fréchet distribution [12], 

transmuted Fréchet distribution [13], transmuted 

exponentiated Fréchet distribution [14], gamma extended 

Fréchet distribution [15], Marshall–Olkin Fréchet 

distribution [16], transmuted Marshall–Olkin Fréchet 
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distribution [17], Weibull Fréchet distribution [18], six-

parameter Fréchet distribution [19], beta exponential 

Fréchet distribution [20]                              

   The aim of this research is to develop ordinary differential 

equations (ODE) for the probability density function (PDF), 

Quantile function (QF), survival function (SF), inverse 

survival function (ISF), hazard function (HF) and reversed 

hazard function (RHF) of Fréchet distribution by the use of 

differential calculus. Calculus is a very key tool in the 

determination of mode of a given probability distribution 

and in estimation of parameters of probability distributions, 

amongst other uses. The research is an extension of the 

ODE to other probability functions other than the PDF. 

Similar works done where the PDF of probability 

distributions was expressed as ODE whose solution is the 

PDF are available. They include: Laplace distribution [21], 

beta distribution [22], raised cosine distribution [23], Lomax 

distribution [24], beta prime distribution or inverted beta 

distribution [25].   

              

II. PROBABILITY DENSITY FUNCTION 

 The probability density function of the Frȇchet 

distribution is given as;         
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To obtain the first order ordinary differential equation for 

the probability density function of the Frȇchet distribution, 

differentiate equation (1), to obtain; 
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The condition necessary for the existence of equation is 

, , 0.x                                                                                       

The first order ordinary differential equations can be 

obtained for the particular values of the parameters. The few 

cases are summarized in the Table 1.   
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Table 1: Classes of differential equations obtained for the 

probability density function of the Frȇchet distribution for 

different parameters.   

               

      ordinary differential equation 

1 1 2 ( ) (2 1) ( ) 0x f x x f x      

1 2 3 2( ) (3 2) ( ) 0x f x x f x     

2 1 2 ( ) (2 2) ( ) 0x f x x f x     

2 2 3 2( ) (3 8) ( ) 0x f x x f x     

                                  

Equation (3) is differentiated in an attempt to obtain 

ordinary differential equations that are not dependent on the 

powers of the parameters.        
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The condition necessary for the existence of equation (4) is 

, , 0.x                                                                          

The following equations obtained from equation (3) are 

needed in the simplification of equation (4);          
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Substitute equations (5), (8) and (11) into equation (4) to 

obtain;
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The second order ordinary differential equation for the 

probability density function of the Frȇchet distribution is 

given by;         
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III. QUANTILE FUNCTION 

The Quantile function of the Frȇchet distribution is given as;

    1
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(17) To obtain the first order ordinary differential equation 

for the Quantile function of the Frȇchet distribution, 

differentiate equation (17), to obtain;       
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Substitute equation (17) into (18);              
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The condition necessary for the existence of equation is 

, 0,0 1.p                                                               

Equation (17) can also be written as;                        
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Substitute equation (20) into (19);              
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The first order ordinary differential equations can be 

obtained for the particular values of the parameters obtained 

from equation (22). The few cases are summarized in Table 

2.  

 

Table 2: Classes of differential equations obtained for the 

quantile function of the Frȇchet distribution for different 

parameters.         

  

      ordinary differential equation 

1 1 2( ) ( ) 0pQ p Q p    

1 2 22 ( ) ( ) 0pQ p Q p    
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1 3 23 ( ) ( ) 0pQ p Q p    

2 1 32 ( ) ( ) 0pQ p Q p    

2 2 38 ( ) ( ) 0pQ p Q p  
 

2 3 318 ( ) ( ) 0pQ p Q p  
 

3 1 43 ( ) ( ) 0pQ p Q p  
 

3 2 424 ( ) ( ) 0pQ p Q p  
 

3 3 481 ( ) ( ) 0pQ p Q p  
 

Equation (18) is differentiated in an attempt to obtain 

ordinary differential equations that are not dependent on the 

powers of the parameters.        
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                                                                                 (23) 

The condition necessary for the existence of equation is 

, 0,0 1.p                                                                       
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Equation (19) can also be written as;                 
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Substitute equation (25) into (24);              
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The second order ordinary differential equation for the 

Quantile function of the Frȇchet distribution is given by; 
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Some cases can be considered such as:                                                                                                              

When 1,   equations(27)-(29) become;              
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IV. SURVIVAL FUNCTION 

 The survival function of the Frȇchet distribution is given as;
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(33) To obtain the first order ordinary differential equation 

for the survival function of the Frȇchet distribution, 

differentiate equation (33), to obtain;       
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The condition necessary for the existence of equation is 

, , 0.t                                                                   

Equation (33) can also be written as;         
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Substitute equation (36) into equation (35);                
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The first order ordinary differential equations can be 

obtained for the particular values of the parameters obtained 

from equation (37). The few cases are summarized in Table 

3. 

 

Table 3: Classes of differential equations obtained for the 

survival function of the Frȇchet distribution for different 

parameters.  

 

     Ordinary differential equation 

1 1 2 ( ) ( ) 1 0t S t S t     

1 2 2 ( ) 2 ( ) 2 0t S t S t     

1 3 2 ( ) 3 ( ) 3 0t S t S t     

2 1 3 ( ) 2 ( ) 2 0t S t S t     

2 2 3 ( ) 8 ( ) 8 0t S t S t   
 

2 3 3 ( ) 18 ( ) 18 0t S t S t   
 

3 1 4 ( ) 3 ( ) 3 0t S t S t   
 

3 2 4 ( ) 24 ( ) 24 0t S t S t   
 

3 3 4 ( ) 81 ( ) 81 0t S t S t   
 

Equation (35) is differentiated in an attempt to obtain 

ordinary differential equations that are not dependent on the 

powers of the parameters. 
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The condition necessary for the existence of equation is 

, , 0.t                                       
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Equation (37) can also be written as;         
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Substitute equation (41) into equation (40);                
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The second order ordinary differential equation for the 

survival function of the Frȇchet distribution is given by;
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Some cases can be considered such as:                                                                                                              

When 1,   equations(43)-(45) become;           
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V. INVERSE SURVIVAL FUNCTION 

The inverse survival function of the Frȇchet distribution is 

given as;          
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To obtain the first order ordinary differential equation for 

the inverse survival function of the Frȇchet distribution, 

differentiate equation (49), to obtain;      
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The condition necessary for the existence of equation is 

, 0,0 1.p                                                               

Equation (49) can also be written as;                        
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Substitute equation (52) into (51);              
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The first order ordinary differential equations can be 

obtained for the particular values of the parameters obtained 

from equation (54). The few cases are summarized in Table 

4. 

 

Table 4: Classes of differential equations obtained for the 

inverse survival function of the Frȇchet distribution for 

different parameters . 

 

      ordinary differential equation 

1 1 2(1 ) ( ) ( ) 0p Q p Q p    

1 2 22(1 ) ( ) ( ) 0p Q p Q p    

1 3 23(1 ) ( ) ( ) 0p Q p Q p    

2 1 32(1 ) ( ) ( ) 0p Q p Q p    

2 2 38(1 ) ( ) ( ) 0p Q p Q p  
 

2 3 318(1 ) ( ) ( ) 0p Q p Q p  
 

3 1 43(1 ) ( ) ( ) 0p Q p Q p  
 

3 2 424(1 ) ( ) ( ) 0p Q p Q p  
 

3 3 481(1 ) ( ) ( ) 0p Q p Q p  
 

VI. HAZARD FUNCTION 

  The hazard function of the Frȇchet distribution is given as; 

 

( 1) e
( )

1 e

t

t

t
h t







 




 
 

   

 
 
 





                      (55)

 

( 1)

( )

e 1t

t
h t 

 



  

 
 
 





                                  (56) 

To obtain the first order ordinary differential equation for 

the hazard function of the Frȇchet distribution, differentiate 

equation (56), to obtain;       
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( 2)

( 1)

1

2

2

1

( 1)

( ) ( )e (e 1)

(e 1)

t t

t

t

t

h t h t

t t

 







 





 

 

 

    
       

 
   

 
 
 
 

        
 

 

  (57) 

The condition necessary for the existence of equation is 

, , 0.t         

 

( 1)( 1) e
( ) ( )

(e 1)

t

t

t
h t h t

t







 



 
 
    

 
 
 

 
 

    
 

 

     (58)

 
( 1)

( ) ( )e ( )th t h t h t
t





 
 
 

 
    
 
 

           (59) 

Equation (56) can be simplified as;        

 

( 1) ( 1) ( )
e 1

( ) ( )

t t t h t

h t h t


     
     
 
 


        (60) 

Substitute equation (60) into equation (59);                

 
( 1)( 1)

( ) ( ) ( )h t t h t h t
t

 
   

     
 

        (61) 

 
2( ) ( ) ( ( 1)) ( ) 0th t h t t h t                 (62) 

Differentiation is carried out again in order to obtain an 

ordinary differential equation that does not contain the 

powers of the parameters.;    

 

1

2 2

( 1)
( ) ( )e ( )

( 1)
( )e e ( ) ( )

t

t t

h t h t h t
t

h t h t h t
t t t



 



 



  

 
 
 

   
   
   

  
    

  

   
    

   

 

                                                            (63) 

The condition necessary for the existence of equation is 

, , 0.t                                                                                        

The following equations obtained from equation (59) are 

needed to simplify equation (63);                                       

 
( ) ( 1)

( )e
( )

th t
h t

h t t





 
 
 

 
                          (64)

    
( ) ( 1)

( )e
( )

t h t
h t

h t t





 
 
 

 
                         (65)

    
1

e ( )
( )

t h t
th t





 
 
 


                                     (66) 

Substitute equations (64) and (66) into equation (63);            

 

2

2

2

1

( ) ( 1)
( ) ( )

( )

1
        ( ) ( ) ( )

( )

1
        ( ) ( )

( )

h t
h t h t

h t t

h t h t h t
th t

h t h t
t th t









 


 
  

 
   

 

 
  

 

                       (67) 

When 1,  equation (67) becomes;       

 

2

2

2

2

( ) 2 ( )
( )

( )

2
        ( ) ( ) ( )

( )

2
        ( ) ( )

( )

h t h t
h t

h t t

h t h t h t
th t

h t h t
t th t




  

 
   

 

 
  

 

                           (68) 

                                                             

VII. REVERSED HAZARD FUNCTION 

 The reversed hazard function of the Frȇchet distribution is 

given as;             

 
( 1)( )j t t                                      (69)

 

( 1)
( 2) ( 1)

( ) ( 1)
t

j t t
t

 
   

 
 

  
        

                                                                              (70) 

The condition necessary for the existence of equation is 

, , 0.t                                                                              

Substitute equation (69) into equation (70) to obtain;                              

 
( 1)

( ) ( )j t j t
t

 
                                       (71) 

The first order ordinary differential equation for the 

reversed hazard function of the Frȇchet distribution is given 

by;    ( ) ( 1) ( ) 0tj t j t                                    

(72) (1)j                                                

(73)   

The ODEs of all the probability functions considered can be 

obtained for the particular values of the distribution. Several 

analytic, semi-analytic and numerical methods can be 

applied to obtain the solutions of the respective differential 

equations [26-40]. Also comparison with two or more 

solution methods is useful in understanding the link between 

ODEs and the probability distributions.  

VIII. CONCLUDING REMARKS 

 In this work, differentiation was used to obtain some 

classes of ordinary differential equations for the probability 

density function (PDF), quantile function (QF), survival 

function (SF), inverse survival function (ISF), hazard 

function (HF) and reversed hazard function (RHF) of the 

Frȇchet distribution. The work was simplified by the 

application of simple algebraic procedures. Interestingly, the 

ODE of the RHF yielded simple result compared with 
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others. In all, the parameters that define the distribution 

determine the nature of the respective ODEs and the range 

determines the existence of the ODEs.          
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