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Chapter 1 

Zeolites and their applications: review 
 

*HO SOONMIN 
Centre of Applied Chemistry and Green Chemistry, Faculty of Information Technology-Math & Science, 

INTI International University, Putra Nilai, 71800, Negeri Sembilan, MALAYSIA. 
* Tel.: +606-7982000; E-mail address: soonmin.ho@newinti.edu.my 

 
 
Abstract: 

A number of studies were carried out on different types of zeolites. Zeolites are used in a 

variety of applications such as adsorbents, catalysts, solar energy storage, thermal adsorption storage 

and in medicine industry due to their unique porous properties. Zeolites showed good adsorption 

capacities for removal of organic pollutants and heavy metals from wastewater.   

 

Keywords: zeolite, catalyst, adsorbent, porosity, surface area     

 

Introduction: 
Zeolites are three dimensional, crystalline solids, made from interlinked tetrahedral of 

alumina and silica. They form with many different crystalline structures and have a unique ability to 

act as molecular sieves. Generally, zeolites are grouped into two major categories, namely natural and 

synthetic zeolites. Volcanic rocks containing natural zeolites. Natural zeolites are rarely pure and are 

contaminated to varying degrees by other minerals. According to observation, there are more than 40 

natural zeolites have been successfully identified during the past 200 years. Some of the common 

natural zeolites such as mordenite, stilbite, clinoptilolite, analcime, chabazite and natrolite have been 

studied by several researchers [1-4]. On the other hand, synthetic zeolites such as zeolite A, petroleum 

catalyst ZSM-5, zeolite X and Y are prepared industrially on a large scale. These zeolites are 

manufactured in a uniform sizes and phase pure state in order to suit a particular application. 

Nowadays, there are more than 150 zeolites have been synthesized by many scientists [5-7] from 

around the world in an effort to discover more efficiency catalyst in petroleum industry.  

 In this review paper, applications of different types of zeolites (consist of natural and 
synthetic form) were studied.  
 
 

Literature survey: 
Solar energy is a renewable source, safe and available all over the world. Nowadays, zeolites 

can keep the stored energy long time [8] because of suitability of adsorbing and desorbing water 

without damage the structure [9]. Utilization of zeolite for solar energy storage has been reported by 

many researchers [10-13]. For example, natural zeolites can be used as storing solar energy material 
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completely instead of the 13X synthetic zeolite below 100°C. However, 13X synthetic zeolite has 

significant advantages in 100 to 200 ºC. On the other hand, beginning in ancient times up to present, 

zeolite has the potential to be used in thermal adsorption storage due to the large availability and low 

cost of zeolite. Two natural zeolites of different origin (Greece and Serbia) were studied by Janchen et 

al, (2015) for thermal adsorption storage application. They found that zeolites should be focused on 

building materials for environmental control [14].    

In recent years, zeolites are widely used in medicine industry (Table 1). Based on experts’ 

assessments, these materials are harmless, bactericidal and antioxidative effects. Zeolites eliminate a 

number of toxic substances from the organism. Zeolites adhere to pathogenic bacteria and therefore, 

they play great role as detoxicants. Natural zeolite (clinoptilolite) contains silica and alumina 

tetrehedra with complex formula, has been shown to display diverse biological activities by many 

researchers. Researchers conclude that clinoptilolite is safe and non-toxic based on their experimental 

findings.   

 
Table 1: Medical application of zeolites 
 

Reference Description  

[15]  A new anti-diarrheic drug for humans has been developed according to 
purified natural clinoptilolite.  

[16]  A powder of micronized zeolite (natural clinoptilolite) inhibited the viral 
proliferation of HSV 1, coxsackievirus B5 and echovirus 7 more efficiently 
than adenovirus 5. 

[17]  Micronized zeolite (natural clinoptilolite) reduced the metabolic rate of 
cancer cells and increased binding of 4-hydroxynonenal to albumin in vitro. 

[18]  Nano-sized clinoptilolite exerted a hypoglycemic effect in streptozocin-
induced diabetic rats  

 
 

Applications of natural zeolites in wastewater treatment and their properties have been 

studied by many scientists (Table 2). Researchers conclude that there are various natural zeolites 

around the world have shown good ion-exchange capacities for cations, and could be used as cost 

effective adsorbent for the removal of organic pollutants. These materials have unique porous 

behaviors and are environmentally friendly adsorbent. The recovery ability was evaluated by many 

researchers in order to investigate the reusability of the adsorbent. This process is quite important to 

reduce the need for extracting materials from the environment to be employed in the industrial 

processes.    

 
Table 2: Application of zeolites in water treatment 
 

Reference Description  

[19]  Removal of polyaromatic hydrocarbon (anthracene, phenanthrene, and 
pyrene) and azo dyes from wastewater using natural zeolite incinerator waste  



Zeolites: Synthesis, Characterisation & Practice     3 

Ideal International E- Publication 
www.isca.co.in 

[20]  Zeolite has 20-200 mesh size was employed to remove aluminum ion 
from polluted tap water. 

 The highest removal efficiency was found in different conditions, such 
as pH 6.5 (85 %), and 30 ºC (93 %). 

[21]  1-3 mm of clinoptilolite from Semnan mines was used. 
 The best conditions were 15 minutes, pH 4, adsorbent dosage of 1g per 

liter and concentration of 2.5 ppm cadmium.   
[22]  Zeolite has very high surface area (2762 cm2/gm). 

 The maximum biochemical oxygen demand removal about 31 % from 
the combined waste water of sugar industry (160 gm/L of zeolite)   

[23]  Removal of Mn2+ ions using zeolite consists of clinoptilolite and 
mordenite.  

 The surface area of adsorbent is 118 m2/g. The highest adsorption of 
Mn2+ at pH 6-6.8.   

 Modified zeolite (treated with NaCl, NaOH, Na2CO3 & NH4Cl) show 
increased its uptake ability when compared with the natural zeolite.  

[24]  The sizes and surface area of natural zeolite are 0.4 to 1.5 mm and 15 
m2/g, respectively.  

 Removal of phenol (0.21 g phenol/1 g clinoptilolite) and aniline (98 % 
sorption using clinoptilolite) in motor transportation and auto repair 
enterprises have been studied.   

[25]  Removal of ammonium ions from wastewater using clinoptilolite.  
 Adsorption capacity rises with decrease in particle size of zeolite from 

4-10 mm to 1-2 mm.   
[26]  Removal of lead ions using clinoptilolite mineral (25-140 mesh size) 

 The highest Pb2+ ions removal efficiency was under pH 5, 30 ºC and 200 
rpm shaking speed.  

[27]  The highest adsorption capacity of formaldehyde from waste water 
using 1-2 mm natural zeolite occurs at 8 hours, pH -3.  

[28]  Natural zeolite has a limited adsorption capacity for reactive dyes. 
 Modification of Heulandite with hexamethylenediamine can be easily 

performed.  
[29]  Adsorption of basic dye (methylene blue) by zeolites synthesized from 

fly ash.  
 Research findings show the highest adsorption capacity in zeolite X if 

compared to zeolite A.  
[30]  Zeolite ZX1 was produced from fly ash by alkali fusion and 

hydrothermal treatment for removal methyl orange. 
 Higher solution pH and lower temperature result in higher adsorption 

capacity.  
[31]  Adsorption of Crystal Violet Dye using zeolite A prepared from coal fly 

ash. 
 The best adsorption happens at pH 6, 45 minutes and room 

temperature.   
 

Zeolite catalysts play an important role in the petroleum refining and chemical manufacturing 

processes (Table 3) in order to reduce the costs associated with filtration and disposal of chemical 
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waste. These catalysts are employed in catalytic crackers which turn petroleum (hydrocarbon 

molecule) into useful products and chemicals. Zeolite synthesis technology offers great promise for 

petrochemicals include phenol alkylation, oxygenate production, isobutene alkylation, alkane 

isomerization, alkene interconversion and ethoxylation of glycol. This is due to vigorous trapping of 

molecules in pores and chemical reactions readily take place.  

 
Table 3: Industrial applications of zeolite catalysts  
 

Reference  Description  

[32]  Zeolite supported catalysts are the most suitable for the hydrocracking of 
vegetable oil to produce bio jet fuel.  

 Non sulphide zeolite catalysts such as ZSM-5 and beta zeolite were used to reduce 
pollution and greenhouse effect.  

[33]  The pore structure and acidities of zeolite catalyst were important factors in the 
isobutylene amination process.  

 Pore diameter with less than 0.5 nm and strong acid strength were not conductive 
to the process 

[34]  The influence of magnesium impregnated NaY zeolite catalysts for the glucose 
isomerization into fructose has been studied.  

 Glucose conversion improves (6-49 %) with magnesium addition (0-15 %) because 
of an increase on the number of basic sites. 

[35]  Conversion yield of triolein to biodiesel (93 %) using zeolite LTA under optimal 
conditions such as 146 minutes, 62.9 ºC, catalyst loading at 72 % of triolein used. 

[36]  FAU-type zeolite was synthesized from hydrothermal of shale rock and served as a 
catalyst in the liquid phase oleic acid esterification process.  

 These zeolites have a high surface area (571 m2/g), reaching a maximum of 78 % 
conversion after 90 minutes.   

[37]  Zeolite based catalysts were treated with HCl and NaOH, then were used for 
transesterification of waste sunflower vegetable oil in order to produce biodiesel.   

 The maximum biodiesel yield of 97 % could be found in 2 hours reaction time, 800 
rpm, 335 catalyst particle size and 50 ºC. 

[38]  Cycloaddition of dimethylfuran for renewable p-xylene with zeolite beta 
nanosponge prepared using hydrothermal process.  

 The better catalytic activity of this zeolite than commercial beta zeolite due to 
mesoporous (4.5 nm) and many external Bronsted acid sites.    

[39]  Development of mesoporous ZSM-15 zeolite and its application for methanol to 
hydrocarbon reactions.  

 The results show that the propene/ethane ratio as high a 9.1 from the methanol 
to hydrocarbon reaction was reached.  

[40]  They reported that the large pore zeolite beta and mesoporous MCM 36/56 
exhibited the highest phenol conversions (99-100 %).   

 This process represents transformation of lignocellulose derived compounds to 
automotive and jet fuels.  

[41]  Conversion of methanol to propylene over mesoporous ZSM-15 zeolites produced 
under hydrothermal conditions.  

 The high yield production (44 %) of propylene could be seen with TPOAC/CTAB 
=3, in 76 hours.  

[42]  Vanadium and molybdenum supported zeolite catalyst produced using solid state 
ion exchange.  
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 These catalysts exhibited good activity and selectivity in the ammoxidation of 
ethylene to acetonitrile due to the catalytic performances depend on the zeolite 
structure.   

 
 
Conclusion: 
The zeolite materials have been extensively studied by many researchers. The adsorption process for 

the removal of organic pollutants is favored by the employ of low cost materials that display unique 

porous structure.   
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Introduction 

 

Cancer refers to the condition of an uncontrolled growth of cells which will invade and destroy 

the cell functions, particularly the main organs. It has been one of the major causes of deaths in the 

world. There are many factors that may contribute to the rise of cancer cases such as genetic 

hereditary, tobacco, unhealthy diet, lack of physical activities, ultraviolet (UV), radiation and 

prolonged exposures to carcinogens (Vogelstein and Kinzler, 2004; Ezzati et al., 2005; Sankpal et al., 

2012). Historically, surgery was the only way to treat cancer but now it is limited to certain cases like 

primary tumor treatment, metastases resection and staging purposes. 

Cancer staging is essential in order to identify the extent of the disease and in selecting the best 

treatment regime for the patient. The most common staging system is the tumor node metastasis 

(TNM) system (Edge and Compton, 2010). Cancer diagnosis and staging is normally confirmed by 

biopsy. The samples obtained will be sent to the laboratory where they will be examined, processed 

and stained using immunohistochemistry method. A pathologist will generate a cytology and 

histopathology report before the oncologist can decide and initiate the necessary treatment.  

There are many available choices of treatment nowadays besides surgery such as chemotherapy, 

radiotherapy, targeted therapy, hyperthermia, stem cell transplant and photodynamic therapy. The 

choice of treatments, however, depends on the type of cancer and its classification (World Health 

Organization, 2008; Ministry of Health Malaysia, 2002 and 2003). Combined treatments may be 

arranged through neoadjuvant therapy or adjuvant therapy to ensure the effectiveness of the main 

treatment. Neoadjuvant therapy is normally given prior to surgery in order to shrink the tumor 

beforehand. On the other hand, adjuvant therapy is a systemic therapy that is given to the patients 

after the main treatment particularly for those with a high risk of recurrence. The objective is to 

prevent tumor cells progression and boost the immune system so the patients will be able to live long 

and comfortable life despite the disease. 

Even with ample choices given, there are restrictions to the available treatments. One example 

is the possibility of recurrence after surgery (Snyder and Greenberg, 2010), meaning that cancer may 

come back after treatment at the same site (local) or at a different site (distant). Another major 

concern is drug resistance in chemotherapy through adaptation of the tumor cells to the given drugs 

mailto:niknizam@fbb.utm.my
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(Casanovas, 2012). Cancer treatment by radiotherapy is useful for localized cancer but may affect the 

normal cells nearby, while treatments by hyperthermia and stem cell transplant have yet to prove their 

effectiveness in clinical studies. With all the limitations at hand and no definite cure as yet, the use of 

adjuvant therapy is very much relied on, although it means that patients have to suffer the immediate 

side effects or the delayed late toxicity. Therefore, an effort on new potential anticancer adjuvant that 

possesses good anticancer activity with fewer side effects or toxicity is very much anticipated. 

 
Adjuvant Therapy for Cancer 

 
Adjuvant therapy is an additional treatment that helps to improve the benefits of a primary 

cancer treatment and reduce the probability of a recurrence. It plays an important role in the 

management of cancer patients and provides an impact on their survival rates. There are many types 

of adjuvant therapy offered for the time being such as radiation therapy, chemotherapy, hormone 

therapy, immunotherapy and targeted therapy. An adjuvant radiation therapy is sometimes 

recommended after surgery to decrease local recurrence (Jabbour and Thomas, 2010). Another type of 

adjuvant therapy that is normally considered for certain cancer patients is chemotherapy (Verrill, 2009; 

Gray et al., 2007). It is a systemic treatment in which drugs are delivered into the body by intravenous 

injection or oral consumption. It often consists of two or three types of drugs combination for a 

certain period of time with intervals between each cycle. A decision on the treatment regimens 

generally depends on the cost and the level of toxicity. Besides radiation and chemotherapy, hormone 

therapy, immunotherapy and targeted therapy are among the usual adjuvant therapies considered for 

cancer patients (Widmer et al., 2014; Scott et al., 2012; Gonzalez and Lage, 2007). These therapies 

mainly involved the manipulation of inhibitors in blocking the receptors that are involved in the 

growth of the cancer cells. Table 1 listed the examples of adjuvant therapy that are administered for 

various types of cancers. 

 
Table 1: Examples of adjuvant therapy for various types of cancer 
 

Types of cancer Adjuvant therapy  Reference 

Breast Chemotherapy (Paclitaxel, Docetaxel)  
Hormone therapy (Tamoxifen, Letrozole) 

Sparano et al. (2008)  
Goss et al. (2005) 

Cervical Radiation therapy 
Chemotherapy (Cisplatin, 5-fluorouracil) 

Peters et al. (2000) 

Pancreatic Radiation therapy (chemoradiotherapy, 
intraoperative radiation therapy (IORT), 
brachytherapy) 
Chemotherapy (5-fluorouracil, Gemcitabine, 
Raltitrexed, Irinotecan, Oxaliplatin, Paclitaxel, 
Doclitaxel) 

Neoptolemos et al. 
(2003) 

Colon Chemotherapy (5-fluorouracil, Leucovorin, 
Capecitabine, Tegafur-uracil (UFT), tegafur-
gimeracil (S1), Irinotecan, Oxaliplatin) 

Andre et al. (2009), 
Carrato (2008) 
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Targeted therapy (Cetuzimab, Bevacizumab) 

Rectal Radiation therapy 
Chemotherapy (5-fluorouracil, Leucovorin, 
Oxaliplastin) 

Carrato (2008) 

Prostate Radiotherapy 
 
Hormone therapy (Goserelin) 

Thompson et al. 
(2006) 
Messing et al. (1999) 

 
 

 

The use of adjuvant therapy had been proven to benefit many patients with various cancer types. 

Primary radiation therapy that was followed by adjuvant hormone therapy in appropriately selected 

prostate cancer patients had increased the overall survival (OS) when compared to treatment using 

radiation therapy alone (Bossi, 2009). Patients with stage III and stage II colon cancer was proven to 

obtain benefits after adjuvant chemotherapy (Andre et al., 2009; Carrato, 2008). Similarly, breast 

cancer patients who were given adjuvant chemotherapy showed improvement for disease-free and 

overall survival (Sparano et al., 2008). A study made by Neoptolemos et al. (2003) agreed that the use 

of adjuvant therapy after the primary treatment had indeed showed benefits to pancreatic cancer 

patients. Nonetheless, a combination of adjuvant therapies did not present any significant difference to 

using a single adjuvant therapy. In order to achieve maximum benefits, the grade or stage of cancer 

was the most important prognostic and predictive factor when considering adjuvant therapy for a 

cancer patient (Italiano et al., 2010; Vanderveen et al., 2009).  Likewise, the method and timing of 

administration play a role in determining the safety of the given adjuvant therapy (Chau and 

Cunningham, 2006). 

 
 

Limitations of Current Adjuvant Therapy for Cancer 
 

 

Even though there are many advantages of adjuvant therapy, it still has some limitations to it. 

Various side effects that may affect the quality of life (QOL) of the cancer patients are the main 

limitation for current cancer adjuvant therapy. Some of the common side effects of current adjuvant 

therapies are listed in Table 2. These side effects may appear immediately, may develop after a few 

weeks or some may present late toxicity. Most of the side effects are usually mild but they can be 

severe depending on the response from the individual patient. Based on 5 years follow-up review, 

many cancer patients would delay the time in seeking for treatment or avoid further treatment totally 

(Radzniwan et al., 2009). Although further explanations on the reasons were not included in the 

review, fear and anxiety of chemotherapy, prolonged depression and adjustment disorder were the 

probable reasons for the trend. Nonetheless, Leong et al. (2009) reported that the majority of the 

cancer patients would rather choose traditional or alternative therapy than receiving hospital treatment. 



Zeolites: Synthesis, Characterisation & Practice     11 

Ideal International E- Publication 
www.isca.co.in 

 
 

Table 2: Some common side effects of current adjuvant therapies 
 

Types of treatment Side effects Reference 

Radiation therapy 
 

Mouth and throat changes (dental caries, infection) 
Mental retardation, learning disorder  
Pain, nausea and vomiting, anorexia, diarrhea, 
constipation, mouth sores, fatigue, urinary infection, 
headache 
Neuropathy (nerve damage)  

Schiff and Ben-
Arye (2011) 
Duffner (2006) 
Alzabaidey (2012) 
Backes and Martin 
(2015) 

Chemotherapy Anxiety, depression 
Cardiac effects (irregular heartbeat, heart inflammation, 
heart failure) 
Oral mucositis, nausea and vomiting 
 
Pain, nausea and vomiting, anorexia, diarrhea, 
constipation, mouth sores, fatigue, urinary infection, 
headache 
Neurotoxicity (sensory problems) 

Lua et al. (2011) 
Monsuez et al. 
(2010) 
Schiff and Ben-
Arye (2011) 
Alzabaidey (2012) 
 
 
Pasetto et al. 
(2006) 

Hormone therapy 
 

Weight gain, sexual dysfunction, hot flashes, anemia, 
fatigue, diabetes 
Possible cardiac effects (heart failure)  

Nguyen et al. 
(2015) 
Edelman et al. 
(2014) 

Targeted therapy 
 

Cardiac effects (heart failure, hypotension) 
Fatigue, pain, depression, dementia, urinary infection 

Monsuez et al. 
(2010) 
Storey et al. (2011) 

 
 

Another limiting factor to the current adjuvant therapy is drug resistance in chemotherapy, 

targeted therapy and hormone therapy (Mitsuhashi et al., 2015; Groenendijk and Bernards, 2014). 

According to Whiteside (2010), the resistance is most likely caused by immune editing, where 

molecular alterations in tumor cells eliminate the malignant cells that are sensitive to therapy and 

allows for the survival of the resistant variants. Recurrence is also another limitation to the current 

adjuvant therapy administration. Most of the recurrences happened when the specific genes that 

mediate the metastasis process were not identified with generic treatment, when serosal invasion was 

present or when lymph nodes involvement were detected (Teh et al., 2012; Carrato, 2008; Yoo et al., 

2000; Peters et al., 2000). 

 

With all the limitations, there is no doubt that research on cancer is still relevant and very much 

needed. Furthermore, due to the complex interactions between biological and environmental factors 

such as genetic diversity, socioeconomic disparities and regional preferences that resulted in 

differences in the outcome of anticancer therapy, all researchers are encouraged to focus on cancer 

therapy development (Ma et al., 2010). 
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Current Research on Adjuvant Therapy for Cancer 
 

 

Cancer research has been a broad and current interest for scientists. Several success researchers 

had come out with drugs for prevention and treatment of the diseases. Among those that stood out was 

the introduction of prophylactic human papillomavirus (HPV) vaccine (Pagliusi and Aguado, 2004). 

The vaccine with the trade name Gardasil® (Merck and Co.) was intended for the prevention of 

cervical cancer and some other related cancers such as vulvar, anal, vaginal and oropharyngeal 

cancers (Barr and Sings, 2008). Administration of human papillomavirus (HPV) vaccine (HPV16 L1 

VPL) recorded a 94% efficacy in cervical cancer prevention and could last for at least 3.5 years after 

immunization (Mao et al., 2006).  

Other than finding new methods for cancer prevention, researchers have been focusing on 

improving cancer diagnostics, finding a better combination of available adjuvant therapies and 

introducing new adjuvants for cancer therapy. Studies on new adjuvants for cancer therapy have been 

made on various agents, from natural compound to inorganic materials, in order to look for possible 

anticancer properties and inhibition activities on the proliferation of cancer cells. Table 3 listed some 

of the recent and ongoing researches on new anticancer adjuvants. 

 

Table 3: Recent and ongoing researches on new anticancer adjuvants 
 

Study Agent Relevant findings 

Youssef et al. 
(2015) 
 

Zeolite Na-A  Ag-substituted micronized zeolite Na-A (Z-Ag) showed 
cytotoxic activity against lung carcinoma (A549), breast 
adenocarcinoma (MCF7), hepatocellular carcinoma 
(HepG2) and colon carcinoma (HCT116) cell lines 

Bojko et al. 
(2015) 
 

Cucurmin and 
Tyrphostins 
(tyrosine-kinase 
inhibitors) 

The mixture showed anticancer effects towards human 
brain cancer cells (LN229) through viability, cell cycle, 
apoptosis, ROS and genotoxicity studies 

Li et al. (2015) 
 

Hedyotis diffusa 
Willd (Chinese 
herb)  

Ethanol extracts of HDW (EEHDW) significantly reduced 
the cell viability of multidrug-resistant colorectal cancer 
cell line (HCT8/5-FU) 

Chu et al. (2014) 
 

Rubus idaeus 
(raspberry) 

Treatment with extract of raspberries by ethyl acetate 
(RIAE) inhibited the highly metastatic human lung 
cancer cells (A549) in both in vitro and in vivo studies 

Merzouk et al. 
(2012) 

Leech saliva 
extracts (LSE) 

LSE has cytotoxic activity against small cell lung cancer 
cell line (SW 1271) 

Bhattacharya et 
al. (2012) 
 

MFI-type zeolite 
nanoparticles 

MFI-type zeolite nanoparticles induced oxidative stress 
and cause genotoxicity towards human lung alveolar 
cells (A549)  
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Zeolites 
Zeolites are inorganic materials that are consist of hydrated silicates and aluminium, known as 

aluminosilicates. The three-dimensional frameworks of zeolites are built of SiO4 and AlO4 in 

tetrahedral composition, bound by oxygen bridges and formed microporous structures that could 

accommodate cations such as sodium, calcium, and magnesium (Breck, 1974). The cations are usually 

present in the pores and voids in order to compensate for the negative framework charge created by 

aluminium substitution. Water molecules are also present in the pores and voids as solvent or guest 

molecules. The structural formula for zeolites is represented as: 

 
Mx/n [(AlO2)x (SiO2)y]. wH2O 

where: 
M = an alkali or alkaline earth cation 
n = the valence of the cation 
x + y = the total number of tetrahedral per unit cell 
w = the number of water molecules per unit cell 
[ ] = the framework composition 
 

Zeolites can be obtained naturally or by chemical synthesis (Jeannette, 1980). Some examples 

of common natural zeolites are clinoptilolite, chabazite and mordenite while the examples for 

synthetic zeolites are zeolite A, zeolite X and zeolite Y. Natural zeolites are obtained from the 

uncontrolled environment after some natural processes such as from volcanic sediments, whereas 

synthetic zeolites are produced in a closed environment at the laboratory. Therefore, natural zeolites 

often have impurities and irregularities in the structures that may limit their application while 

synthetic zeolites are usually high in purity and regular in crystallinity. Additionally, the structure and 

properties of a synthetic zeolite can be tailored according to the intended application (Sherman, 1999). 

 
 
Zeolites in Cancer Therapy 
 

The application of micronized clinoptilolite as an anticancer adjuvant was first revealed by 

Pavelic et al. in 2001. From the same research group, Zarkovic et al. (2003) continued to study on the 

effect of micronized clinoptilolite at several different concentrations on in vitro cell proliferation 

using a number of human cell lines including HeLa (cervical carcinoma), MiaPaCa-2 (pancreatic 

carcinoma), Caco-2 (colon carcinoma), MCF-7 (breast carcinoma), Hef522 (diploid fibroblasts), 

SW620 (colon carcinoma) and Hep-2 (laryngeal carcinoma). The antiproliferative activity of the 

micronized clinoptilolite against cancer cells was described as the result of the attenuation of survival 

signals and induction of tumor suppressor genes. Additionally, the micronized clinoptilolite was 

proven to produce some positive effects in cancer therapeutics through in vivo experiments using dogs 

and mice that were infected with several types of tumor cell line. Their findings supported the work 
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by Pavelic et al. (2001) where overall health status improvement with the prolongation of life span 

was reported and tumors size were found to decrease in some of the animals tested. 

Pavelic et al. (2002) suggested that zeolites would activate macrophages that would stimulate 

the cellular immune response, which was proven by the increase in reactive oxygen species (ROS) 

production as well as other stimulants of the T cells such as TNF-α and cytokines. It acts as 

immunoactivator by inducing the translocation of the NFκB p65 subunit to its nucleus (Pavelic et al., 

2002). According to Taraphdar et al. (2001), the activation of transcription factor NF-kB involving its 

translocation to the nucleus has been linked to apoptosis. Figure 1 summarized the stimulation of 

cellular immune response induced by zeolites. 

 

 
Figure 1: Stimulation of cellular immune response induced by zeolites (Pavelic and Hadzija, 2003) 

 

Meanwhile, Katic et al. (2006) reported on the changes in the ion concentration of the cellular 

microenvironment after treatment with clinoptilolite. It was found that the clinoptilolite could affect 

the activity of signaling pathways as the silicates and aluminosilicates could interact directly with 

particular cells, leading to the regulation of critical genes. The most significant changes reported in 

the analysis of signaling pathways was in the activities of key proteins involved in regulating the cell 

survival or apoptosis (PKB/Akt) and cell division (ERK1/2). DNA synthesis was found to decrease in 

parallel with the increase in apoptosis thus, the cell viability was reduced. Further investigation by 

Katic et al. (2006) showed that antitumor effect on cells in vitro was partly due to the adsorption of 

growth factors from serum in the cell culture medium that was added with clinoptilolite. Inhibition of 
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protein kinase B/Akt by clinoptilolite treatment was shown only in the presence of serum indicating 

that the mechanisms of zeolite action may relate to the adsorption of serum components. 

The use of zeolite as anticancer adjuvant has been debated by the experts in the Memorial Sloan 

Kettering Cancer Centre (2016). They discussed profoundly on the efficacy of using zeolite as an 

alternative adjuvant in cancer therapy and listed several precautions that should be acknowledged by 

patients, caregivers and healthcare professionals regarding the usage of zeolite for cancer treatment. 

Many companies marketed zeolite as a product that can treat or cure cancer without providing any 

published scientific reports to support their claim. This raised a lot of concern among medical 

practitioners and health regulators. Thus, the Food and Drug Association (FDA) issued warning letters 

to several distributors for the misleading information in their marketing claims and false 

advertisement. Other than the published studies by Pavelic and his research group, there had been no 

other clinical data or human trials reported on the efficacy of zeolites as anticancer drugs. The 

implications of consuming zeolite for cancer treatment are still unclear. 

Currently, there are many dietary supplements derived from zeolites such as Natural Cellular 

Defense (Waiora), ZETOX (Global Health Products) and Destroxin (ZEO Health). Therefore, the 

review by Memorial Sloan Kettering Cancer Centre (2016) included several guides on the use of 

zeolite as a supplement as well as some warnings of the possible effects upon its consumption. 

Among the emphasized effects were the possibilities of zeolites interference with other medications 

upon overexposure such as premature disintegration of enteric coated drugs, decreased bioavailability 

of antibiotics, decreased effectiveness in chemotherapy drugs and rejection in transplant patients. 

Nonetheless, zeolite has not been regarded as a toxic substance with the FDA categorized zeolite as 

Generally Recognized as Safe (GRAS). Furthermore, several types of zeolites have been reported for 

other biomedical application such as in hemodialysis, antidiarrhea, antacid and drug support system. 

These zeolite products have been patented (Cerri et al., 2004), studied in vitro (Pellegrino et al., 2011), 

underwent clinical trials (Kee et al., 2015; Rodriguez-Fuentes et al., 1997 and 2006) and approved by 

the health regulators for use as new drugs in the pharmaceutical industry (Rodriguez-Fuentes et al., 

1997 and 2006). Hence, it was substantially proven that zeolite can be consumed with proper 

guidance and under safety precautions. 

 

Effects of Zeolites in Gastric and Intestinal Fluid 
 

Most anticancer adjuvants are administered through intravenous (i.v.) either by bolus injection 

or continuous intravenous infusion. The direct route ensures immediate and complete bioavailability 

of the treatment as well as overcomes the variable absorption patterns of the gastrointestinal tract 

(Mazzaferro et al., 2013). However, a study performed by Borner et al., (2002) on colorectal cancer 

patients on the preferred type of treatments revealed a clear preference towards oral treatment than 

intravenous treatment. Convenience and toxicity consideration are among the main reasons stated. 
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Nevertheless, the bioavailability of oral anticancer drug depends on the sensitivity of the drug towards 

the condition of the gastrointestinal tract (Mazzaferro et al., 2013). The stomach and the intestine are 

the two main organs of the gastrointestinal tract. Thus, the bio-relevant simulated media involved for 

developing predictive in vitro models for orally administered drugs are the simulated gastric fluid 

(SGF) and the simulated intestinal fluid (SIF) (Jantratid and Dressman, 2009). These simulated media 

can be used in the studies for the assessment of a drug product development. 

The pH in normal stomach condition is between 1 and 3. This is because the gastric acid that is 

produced as digestive fluid in the stomach is mainly composed of the hydrochloric acid (HCl). The 

acidic environment of the stomach may have some effects on zeolites. Hartman and Fogler (2007) 

studied the dissolution and precipitation of zeolite A (LTA), analcime (ANA) and zeolite Y (FAU) in 

hydrochloric acid. It was reported that zeolite A dissolved rapidly in the HCl solution, analcime was 

partially dissolved while zeolite Y did not appear to dissolve with the silicate framework remain intact. 

Previously, Hartman and Fogler (2006) had demonstrated the influence of Si/Al ratio in the 

mechanism for dissolution of zeolites.  Based on their study, dissolution of zeolite by hydrogen ion 

attack was found to be highly dependent on the number and arrangement of Al atoms within the 

crystal structure. The removal of Al was selective and subsequently resulted in the release of Si atoms. 

As a result, the crystal structure disintegrated and collapsed. Figure 2 illustrates the mechanism of a 

zeolite dissolution in hydrochloric acid as described by Hartman and Fogler (2006). 

 

 

 
Figure 2: Mechanism of a zeolite dissolution in hydrochloric acid (Hartman and Fogler, 2006) 

 
 
According to the results from the experiment performed by Kavak and Ulku (2013), the 

presence of zeolites in the gastrointestinal fluid did not show substantial interaction such as in the 

chemical composition of the zeolites and in the amount of enzyme levels in the fluid. A change in the 
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pH and ionic strength could be due to the protonation of the negative and neutral surface hydroxyl 

groups of the active sites on the zeolites (Kavak and Ulku, 2013).  

 

Cytotoxicity of Zeolites 
 

 

Several cytotoxicity studies of the zeolites or nanozeolites had been performed by other 

researchers. Adamis et al. (2000) had studied the cytotoxicity for clinoptilolite and mordenite against 

peritoneal macrophages by the LDH (Lactate dehydrogenase) assay method. The LDH released after 

the incubation were found to be statistically insignificant to the negative control, indicating that both 

clinoptilolite and mordenite were not cytotoxic. Then, Petushkov et al. (2009) investigated the 

cytotoxicity of silicalite-1 nanoparticles using human embryonic kidney cells (HEK-293) and 

macrophage cell lines (RAW264.7) with different concentrations of silicalite-1 (0.25 mg/ml, 0.5 

mg/ml and 1 mg/ml). From the investigation, it was found that the cytotoxicity of silicalite-1 depends 

on the dose, particle size, surface functional group and type of cell line. However, at lower 

concentrations of between 0.05 mg/ml and 0.2 mg/ml, silicalite-1 showed no toxicity towards the 

human cervical carcinoma (HeLa) cells (Kihara et al., 2011). In the study by Kihara et al. (2011), the 

cytotoxicity of zeolite Soconil Mobil-5 (ZSM-5), zeolite A (LTA) and zeolite L (LTL) against HeLa 

cells was found to be dose and size dependent. 

 
Meanwhile, Laurent et al. (2013) studied the cytotoxicity of LTL- and EMT-type zeolites 

against the HeLa cell lines. Various concentrations of the zeolites were used ranging from 0.05 to 0.4 

mg/ml. The results showed negligible cytotoxicity as the viability of HeLa cells was not significantly 

affected by both types of zeolites. Earlier, Thomassen et al. (2012) investigated the cytotoxicity of 

nanozeolite A and Y by the LDH and MTT (tetrazolium dye) assay methods. Three types of human 

cell lines (alveolar epithelial (A549), umbilical vein (EA.hy926) and monocytic leukemia (THP-1) 

cells) were exposed to various doses of the nanozeolites (0.025, 0.05, 0.1, 0.25, 0.5, 1.0 and 2.0 

mg/ml). There was no LDH leakage observed after 24-hour exposure to both nanozeolite A and Y at 

all concentrations while a significant decrease in the mitochondrial activity was only observed at 2 

mg/ml for both nanozeolites. Table 4 summarized the cytotoxicity studies of the zeolites and 

nanozeolites that had been performed by other researchers. 

 
Table 4: Previous cytotoxicity studies of the zeolites and nanozeolites 

Study Agent Cells Relevant Findings 

Laurent et al. 
(2013) 

LTL-type and 
EMT-type 
zeolites 

Cervical cancer cells (HeLa) No significant 
cytotoxicity 

Thomassen et 
al. (2012) 

Nanozeolites A 
and Y 

Alveolar epithelial cells 
(A549), umbilical vein cells 

Cytotoxicity was dose 
dependent 
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(EA.hy926) and monocytic 
leukemia cells (THP-1) 

Kihara et al. 
(2015) 

Silicalite-1, 
ZSM-5, Zeolite 
A, Zeolite L 

Cervical cancer cells (HeLa) Cytotoxicity was dose 
and size dependent 

Petushkov et al. 
(2009) 

Silicalite-1 Human embryonic kidney 
cells (HEK-293), 
macrophage (RAW 264.7) 

Cytotoxicity was 
dependent on dose, 
particle size, surface 
functionalization group 
and type of cell lines 

Adamis et al. 
(2002) 

Clinoptilolite, 
Mordenite 

Peritoneal macrophage No cytotoxicity observed 
 

 
 
Selection of Zeolite: Overview 
 

Zeolite was first discovered by Cronstedt in 1756 with the discovery of stilbite (Breck, 1974). 

The term zeolite comes from two Greek words, “zeo” (to boil) and “lithos” (stone). Zeolite is an 

aluminosilicate with a relatively open framework due to its porous structure. The zeolite framework 

consists of Si-O tetrahedral complex and at some places in the framework Si4+ is replaced by Al3+. 

This results in a negative framework charge which is due to the deficiency of an electron at the Al-O 

tetrahedral (Maesen and Marcus, 2001). Charge-compensating cation from the alkali or alkaline earth 

metals, enters the pore as extraframework to maintain the electroneutrality of the overall zeolite 

framework. However, the molecules entering the pore would be selectively sieved by the size of each 

molecule. These unique properties contribute to the major function of zeolites as catalysts, ion 

exchangers and adsorbents with vast application in many industries. 

The revelation of natural zeolite, clinoptilolite, as an anticancer adjuvant that is able to inhibit 

the growth of cancer cells and promotes longer lifespan with low side effects is appreciated (Pavelic 

et al., 2001). However, natural zeolites contain impurities from the open environment. Variation in the 

mineral composition of the natural zeolite may result in diverse levels of anticancer activity which 

will make dosage determination difficult. Therefore, a purification process of natural zeolites is 

necessary before any biomedical application. Unfortunately, it does not ensure complete extraction of 

the unwanted minerals (Tomasevic-Canovic, 2005). Unless a complete preliminary characterization is 

made and the zeolite material is standardized, the use of natural zeolites in biomedical application 

should be reconsidered as natural zeolites are poor materials to begin with (Colella, 2011). A possible 

alternative to natural zeolites is the synthetic zeolites. Synthetic zeolites will ensure standardization in 

the matter of purity, size distribution, cationic composition and the production procedures. Synthesis 

of zeolite generates zeolites that are engineered to the desired form and provides rooms for 

modification in order to enhance the capability of the zeolites for the intended application. For 

example, decreasing the size of the zeolites to nanoscale will create larger surface area, expose more 

active sites and reduce diffusion path lengths and thus, will increase the activity of the zeolites 
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(Mintova et al., 2013). Napierska et al. (2009) had proven the inverse relationship between particle 

size and cytotoxicity of monodisperse silica nanoparticles. Most methods for the preparation of 

synthetic nanozeolites, however, require the use of huge quantity of organic templates which is not 

environmentally friendly and costly. Modification through green methods by fine controlling the 

nucleation and adjusting the growth steps through chemical or physical conditions may help to reduce 

the use of environmental hazards in the synthesis process (Mintova et al., 2013; Ng et al., 2012a). 

Each type of zeolites has different Si/Al ratio. Zeolite with a low Si/Al ratio would have a 

high negative charge due to the high number of aluminium, and thus a high number of exchangeable 

cations in the extraframework (Meinander, 2014). It was hypothesized that the mechanism for zeolite 

antiproliferation activity against the cancer cells might be related to the adsorption of serum 

components since the activity was detected only in the presence of serum (Katic et al., 2006). As an 

adsorbent, the mechanism for the adsorption of cations by zeolites is through ion exchange 

(Meinander, 2014). Therefore, zeolites with low ratio of Si/Al were selected as they have higher 

cation exchange capacity compared to zeolites with high Si/Al ratio (Breck, 1974). Besides that, the 

pore size of the zeolites was also considered. Zeolites with large pores such as zeolites X and Y (0.6-

0.8 nm) would allow large molecules to be adsorbed into their pores while zeolite with small pore size 

such as zeolite A (0.35-0.45 nm) might prevent large molecules from entering its pore (Flanigen, 2001; 

Breck, 1974). Zeolites in the sodium form would give an advantage due to the low electronegativity 

of the sodium ion, which means it could be easily replaced by other cations (Meinander, 2014). 

The efficacy of the application through oral consumption is of the main concern once the 

selected nanozeolite is synthesized. The nanozeolite is expected to be unstable in the acidic 

environment of the stomach due to the alkaline nature of the nanozeolite. The structure of the 

nanozeolite may collapse as the extraframework cations of the nanozeolite would be replaced by the 

hydronium ions and followed by dealumination (Colella, 2011). On the other hand, the basic 

condition of the intestinal tract would favor the dissolution of nanozeolite releasing the silicate and 

aluminate from the nanozeolite framework (Colella, 2011). It is also important to ensure that the 

application of zeolite will not interfere with the biological environment that will affect the 

physiological aspect. Thus, the challenge is to attain the concentration that is structurally stable, 

tolerable to the gastrointestinal condition and capable of inhibiting the proliferation of cancer cells. In 

order to ensure the stability of the zeolite structure, zeolite NaY could be used instead of zeolite NaX 

or zeolite NaA, due to its higher Si/Al ratio. Dissolution or disintegration of the framework is highly 

dependent on the Si/Al ratio of the zeolite, where zeolites with higher Si/Al ratio such as zeolite Y 

were found to be more stable in acidic solution when compared to zeolites with low Si/Al such as 

zeolite A (Hartman and Fogler, 2007). 

The antiproliferative activity of nanozeolites is normally cell type-dependent and dose-

dependent (Petushkov et al., 2009). They were found to be non-toxic to the cells at low concentrations 

(Laurent et al., 2013), but cytotoxicity at concentrations above 0.5 mg/ml had been reported 



Zeolites: Synthesis, Characterisation & Practice     20 

Ideal International E- Publication 
www.isca.co.in 

(Thomassen et al., 2012). Therefore, the question whether the antiproliferative activity of the 

synthesized nanozeolite will remain after passing through the gastrointestinal tract is an additional 

concern. A study by Kavak and Ulku (2013) showed an insignificant decrease in the antiproliferative 

activity of digested zeolite. Thus, a slight decrease in the antiproliferation activity would be expected, 

but most importantly the synthesized nanozeolite must have low toxicity against the normal cells for it 

to function as an anticancer adjuvant alternative to the clinoptilolite. 

The efficiency of the zeolites either synthetically produced or naturally occurring zeolites as 

anticancer adjuvant could be assessed by studying its stability in simulated gastrointestinal fluid and 

measuring its cytotoxicity via in vitro tests. Figure 3 shows the possible contribution of the zeolite in 

the vicinity of all the research for cancer treatments. 

 

 
 

 
 

Figure 3: Contribution of zeolite in cancer treatment 
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Introduction 
 

Zeolite is an inorganic crystal material with three dimensional structure of hydrated 

aluminosilicate which consists of cations and water molecules in its framework structure. The cations 

are presented in zeolite to compensate the negative charges of the zeolite framework which are 

obtained from aluminium. The cations are from group I and/or group II in the periodic table (e.g. 

sodium (Na), potassium (K), magnesium (Mg) and calcium (Ca)). The water molecules in the zeolite 

are reversible where it can enter or left the zeolite framework without affecting the zeolite framework 

structure (Breck, 1974). Zeolite consists of SiO2, and Al2O3 as its backbone which functions as the 

main building unit of the framework and attributed to the framework charge, respectively. The 

alkaline cations present in the zeolite are counter ions of the framework charge.  a ter is the solvent 

of the zeolite, while      is the mineralizer present in the zeolite. The  l 4 and SiO4 tetrahedra of the 

zeolite framework are linked together with oxygen, forming an infinitely extended three-dimensional 

framework structure of the zeolite. Zeolites have high cation exchange capacity (CEC) and high 

specific surface area (Khalil, 2013) mainly due to its structures which have high porosity (Breck, 

1974). The crystalline unit cell of the zeolite can be described as follows: 

 

Mx/n((AlO2)x(SiO2)y).wH2O 

 

Where, M is the cation, n is the valence of cation, w is the ratio of the tetrahedral silica to alumina and 

portion ( ) is the framework composition.   

Zeolite is known as molecular sieves due to the microscopically small size of the zeolite pores 

which are in the molecular size dimensions. The different sizes of the guest molecules and cations are 

discriminated by the zeolite through its windows and channels (Chen et al., 1994). Zeolites are 

applied as catalyst, ion exchanger and adsorbent material. In the zeolite structure, Si exists in 4+ 

linked with two molecules of oxygen, forming Si-O tetrahedral which is electrically neutral. 

Meanwhile, Al exists in 3+ oxidation state linked with two molecules of the oxygen, forming Al-O 

tetrahedral left deficient of one electron. This condition causes zeolite framework to have negative 
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charge which can be compensated by the cations to maintain the zeolite framework to be in neutral 

charge (Breck, 1974).  

Synthetic zeolite is pure and uniform in composition and it is suitable to be used in many 

purposes, mainly for research and industrial applications (Breck, 1974). However, the usage of 

synthetic zeolite such as NaY zeolite is expensive due to the expensive chemical reagents as reported 

by Matti and Surchi (2014), and a longer production period is needed as it is synthesized in the 

laboratory in a small amount at one time. The production of nanosized zeolites for the 

commercialization purpose is generally new due to the limited machines and expensive chemical 

reagents (Willis and Benin, 2007). Besides, the cost for characterization of the materials is expensive 

as zeolite has to be characterized in every batch. Thus, it limits the tendency to produce nanosized 

zeolites for commercialization purposes. Thus, the nanosized zeolite could be synthesized with 

minimal production cost using agro-waste such as rice husk ash as the silica source in large-scale 

production at one time.   

 

Synthesis of Zeolites 
 
 

Zeolites can be synthesized under hydrothermal conditions from gel containing silica, 

alumina, source of cations and water. According to Breck (1974), general requirement for the 

synthesis of zeolites includes reactive starting materials such as a freshly prepared gel or amorphous 

solids, a relatively high pH that is introduced in the form of an alkali metal hydroxide, low 

temperature hydrothermal conditions with concurrent low autogenous pressure at saturated water 

vapor pressure and a high degree of supersaturation of the components that will lead to the nucleation 

of the desired crystals. Most zeolites are synthesized by dissolving a source of alumina and a source 

of silica in a strongly basic aqueous solution (Maesen and Marcus, 2001). Figure 1 illustrates general 

procedure required for the synthesis of a zeolite using the example of Na2O-Al2O3-SiO2-H2O system. 
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Figure 1: Gel preparation and crystallization step in the synthesis of zeolites (Breck, 1974) 

 

Synthesis of Nanozeolites 
 

 

Modern researches are focusing on nanozeolite synthesis as nanosized zeolites provide 

important and improved characteristics such as larger surface areas, controlled pore size and easier 

functionalization for advance application (Tosheva and Valtchev, 2005). Among key factors that 

would influence the synthesis of nanozeolites are the use of organic templates or structure-directing 

agents (OSDA), type of precursor of synthesis gel or suspension, initial silicon and aluminum sources, 

synthesis conditions such as temperature, pressure and time and heating methods for examples 

conventional, microwave and sonication (Mintova et al., 2013). The abundant use of organic 

templates in order to obtain a homogeneous precursor solution system makes the method cost-

ineffective (Wong et al., 2012). Further needs for the removal of the organic templates at the end of 

the process makes the procedure more unfavorable. Therefore, a method for the preparation of 

nanozeolite without the use of organic templates is highly desirable as to avoid any problem related to 

the excess waste of organic solvent. 

The use of rice husk ash as an alternative silica source has been acknowledged by many 

previous researchers. Hamdan et al. (1997) reported more than 98% silica powder production whereas 

Della et al. (2002) reported a 95% silica powder production after thermal treatment of the rice husk 

ash. Several types of zeolites have been successfully synthesized using rice husk ash as the silica 

source such as zeolite beta (Prasetyoko et al., 2006; Loiha et al., 2009), zeolite A (Bhavornthanayod 

and Rungrojchaipon, 2009; Katsuki and Komarneni, 2009; Yusof et al., 2010; Azizi and Yousefpour, 

2010; Tan et al., 2011), zeolite X (Dalai et al., 1985; Katsuki and Komarneni, 2009; Yusof et al., 

2010) and zeolite Y (Rahman et al., 2009; Yusof et al., 2010; Saceda and Leon, 2011; Tan et al., 

2011). A few reports have been made on the synthesis of nanosodalite, nanozeolite NaA, nanozeolite 
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NaX, nanocrystalline zeolite L and EMT-type zeolite nanocrystals from rice husk ash without the use 

of organic templates, but none was reported on the synthesis of nanozeolite NaY from rice husk ash. 

Table 1 summarizes some of the previous researches on the synthesis of nanozeolites. 

 
Table 1 : Previous researches on the synthesis of nanozeolites 

Product Size Procedures Reference 

Nanosodalite 30 - 60 nm 
 
 
50 - 100 nm 

Low temperature, without organic 
templates, rice husk ash as silica 
source, 5 hours of crystallization time 
Low temperature, without organic 
templates, rice husk ash as silica 
source, 3 hours of crystallization time 

Ghasemi et al. 
(2011) 
 
Rusmili et al. 
(2012) 

Nanozeolite 
A 

40 - 80 nm 
 
50 - 120 nm 

Reverse microemulsion-microwave, 
without organic template 
Room temperature, without organic 
templates, rice husk ash as silica 
source, crystallization under shaking 
condition 

Chen et al. (2005) 
 
Ghasemi and 
Younesi (2011) 

Nanozeolite 
X 

40 - 150 nm 
 
 
40 - 120 nm 

Hydrothermal crystallization in 
temperature-controlled shaker, without 
organic template 
Without organic template, rice husk ash 
as silica source, crystallization under 
shaking condition 
 

Fathizadeh and 
Aroujalian (2011) 
 
Ghasemi and 
Younesi (2012) 

Nanozeolite 
Y 

20 - 31 nm 
 
 
59 nm 
 
 
50 nm 
 
10 - 15 nm 

Periodically removing the synthesis 
products and recycling the unused 
reagents, using organic templates 
Bentonite as the starting material, 
without organic templates, 20 hours of 
aging time, crystallization at 97°C 
Using organic templates 
 
Without organic templates, low 
temperature at 4°C 

Song et al. (2005) 
 
 
Faghihian and 
Godazandeha 
(2009) 
Taufiqurrahmi et 
al. (2011) 
Awala et al. 
(2015) 

EMT-type 
nanozeolite 

15 nm Ambient temperature, without organic 
templates, rice husk ash as silica source 
 

Ng et al. (2015) 

 
 

NaY Zeolite 
 
 

X and Y zeolites are synthetic zeolites in the group of FAU-type zeolite which has similar 

structure as the framework structure of the naturally occurring faujasite type zeolite, but with 

differences silica and alumina ratio (Bhatia, 1990). The Y zeolite has Si/Al ratio almost similar to the 

Si/Al ratio of the faujasite type zeolite, while the Si/Al ratio of X zeolite is lower than Y and faujasite 
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zeolites (Bhatia, 1990). Hence, both of the zeolites (X and Y) have different physicochemical 

properties (Bhatia, 1990). The FAU-type zeolite is a group of zeolite, which has the most open 

framework among the zeolites and has 51% of void volume (Szostak, 1992). The unit cell of the 

faujasite structure of zeolite has a cubic form structure with a large cell dimension which possess 192 

(Si/Al)O4 tetrahedra (Szostak, 1992). The information regarding the Si/Al ratio of the zeolite and the 

zeolite framework structure is crucial in order to evaluate the zeolite materials that are suitable to be 

used as adsorbent material. As the negative charge of the zeolite exchange sites are obtained from the 

aluminium in the zeolite framework, the zeolite which has more aluminium (low Si/Al ratio) would 

have more exchange sites which reflect high cation exchange capacity of the zeolite, and thus able to 

adsorb high amount of any compound on its surface and in its framework. NaY zeolite is a good 

carrier system since it possesses relatively high ion exchange capacity and lattice stability (Cheng et 

al., 2012). According to Hagiwara et al. (1990), zeolite which has a specific surface area at least 150 

m2/g and the Si/Al ratio below 14 is suitable to be applied as an adsorbent.   

The Y zeolite consists of secondary building units of 4, 6 and 6-6 with a three-dimensional pore 

structure which perpendicular to each other and located in the x, y and z planes similar to LTA (Linde 

Type-A). The pore diameter of the Y zeolite is about 7.4 Å (0.74 nm) exists from a 12-member 

oxygen ring continues to the large cavity with a diameter of 12 Å. The large cavity is surrounded by 

ten truncated octahedral of the sodalite cages connected with each other by hexagonal faces. The unit 

cell of the Y zeolite is in cubic form (a=24.7 Å), Fd-3m symmetry, 0.48 void volume fraction (Bhatia, 

1990) and 0.53 cm3 pore volumes (Barrer, 1982). The Y zeolite has Si/Al ratio about 2.43 and 

thermally decomposed at 793°C (Rahman et al., 2009). The framework structure of Y zeolite is 

shown in Figure 2.   

 

 
Figure 2: The framework structure of Y zeolite (Gu et al., 2000) with three types of cation sites.   
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The secondary building unit (SBU) is the smallest unit of the zeolite framework with three-

dimensional structure which is formed from the tetrahedron TO4 (T=Si or Al) (Breck, 1974). The 

SBU is one of the important characteristics used to differentiate the zeolites. The cations are located at 

three different sites in the zeolite framework, namely at the centre of the hexagonal prism (site I), at 

the six membered rings (site II) and at the walls of the channels (site III). The amount of sodium ions 

occupies the sites in a unit cell of Y zeolite is about 56 (16 cations in site I, 32 cations in site II and 8 

cations in site III), while 86 sodium ions occupy the X zeolite (16 cations in site I, 32 cations in site II 

and 38 cations in site III) (Breck, 1974). Zeolites are divided into six groups based on the number of 

the oxygen atoms in the largest ring of each zeolite. The Y zeolite is grouped into 12-membered ring 

systems (Chen et al., 1994), which is known to have large pores. The Y zeolite was discovered by 

Breck and his co-workers in 1961 when they tried to synthesize X zeolite with Si/Al ratio of 4.7. 

However, the synthesized zeolite showed different physicochemical properties from the X zeolite 

when the Si/Al ratio of the zeolite was above 3.0. The synthesized zeolite was eventually defined as Y 

zeolite. According to Robson and Occeli (1988), the X zeolite is a zeolite with Si/Al ratio between 2.0 

to 3.0, while Y zeolite is a zeolite with Si/Al ratio of 3.0 to 6.0. The chemical formula of Y zeolite in 

moles of oxides is as follows (Breck, 1974): 

0.9 ± 0.2 Na2O: Al2O3: wSiO2: xH2O 
 
 
In the chemical formula, the value of w is in the range of more than 3 and up to 6, whereas the 

value of x may be up to 9. Among the synthetic zeolites, the Y zeolite has been used in various 

applications, for example as the cracking catalysts in the petroleum cracking industry in the 1960s to 

replace the X zeolite because Y zeolite has extra thermal stability which was contributed by its higher 

Si/Al ratio compared to X zeolite (Smart and Moore, 1993).   

 

Nanosized NaY Zeolites 
 

 

In order to reduce the cost and facilitate the synthesis of the zeolites, natural sources from 

industrial by-products and certain agro-wastes could be used as the silica source. Zeolites have been 

synthesized from various natural silicate sources such as fly ash (Tosheva et al., 2012), rice husk ash 

(Yusof et al., 2010) and clay minerals (Ngoc et al., 2013; Matti and Surchi, 2014). In Malaysia, there 

are abundant of rice husk ash which can be obtained from paddy fields after harvesting season 

(Hamdan and Keat, 1993). The decomposed rice husk ash generates environmental problems such as 

haze, as most decomposition procedure is normally carried out by open burning on the fields (Yusof 

et al., 2010). In order to solve the problem, rice husk ash has been used as a source of silica in the 

synthesis of NaY zeolite (Hamdan and Keat, 1993).  
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Based on previous works on the synthesis of nanosized NaY zeolite, the synthesis conditions 

such as crystallization temperature is one of the important parameters that need to be controlled (Sang 

et al., 2006; Ghasemi et al., 2011). At low temperature, it will prolong the aging condition and form 

enormous amount of viable nuclei; considering that low concentration of silica and aluminium gel 

mixture are left and thus, limiting the size of the zeolite formed. For other types of nanozeolites such 

as sodalite (Zhan et al., 2002; Rusmili et al., 2012), the crystallization time was found to affect the 

nanosized zeolite. Zhan et al. (2002) synthesized NaX zeolite (size of 20-800 nm) by changing the 

crystallization temperature and include the agitation process. Shorter crystallization time and low 

crystallization temperature have resulted in the formation of zeolite with small crystal size, whereas 

the agitation would induce the formation of large amounts of viable nuclei, and thus producing zeolite 

with small crystal.   

According to Tago and Masuda (2010), high concentrations of Si and Al source in the gel 

mixture would increase nucleation rate and result in decreasing the zeolite crystal size. The gel 

mixture of Si and Al was prepared with high amount of synthesis reagents at one time with the 

remaining ratio of Na2O/SiO2. The homogeneous distribution of the reactive species during the gel 

preparation will influence uniform nucleation in the system and hence, producing narrow particle size 

distributions of zeolite crystals (Awala et al., 2015). On the other hand, the non-homogeneous gel 

mixture during gel preparation results in the formation of zeolite with impurities (Masih et al., 2007).  

The nanosized NaY zeolite can be synthesized using chemical reagents aided by organic 

template as the structure directing agent (Charkhi et al., 2012; Sharma et al., 2015). However, the 

organic-template approach has several disadvantages such as non-environmentally friendly, non-

recyclable and costly. In addition, the thermal method of removing the template from the nanosized 

zeolite contributes to the irreversible aggregation forming larger particles. After the zeolite has been 

synthesized using the structure directing agent, the structure directing agent need to be removed from 

the zeolite by calcination leaving zeolite with porous structure. However, calcination of the zeolite 

with structure directing agent at high temperature resulted in the formation of irreversible aggregation 

between the nanosized zeolite particles caused by the formation of Si-O-Si bridges (Tosheva and 

Valtchev, 2005) and eventually lost the advantages of small particles properties. Besides, it was 

reported that the highest yield of the FAU nanocrystals was approximately 6-10 wt.% which is still 

below the amount of commercially obtained micrometre-sized zeolite (80 wt.%). Ultimately, the 

synthesized nanosized zeolite showed a microporosity and specific surface area lower than the 

microsized zeolites (the highest micropore volume of nanosized FAU zeolite synthesized in the 

presence of tetramethyl ammonium cations is about 0.12 cm3/g and Brunauer-Emmett-Teller (BET) 

specific surface area is about 448 m2/g) (Awala et al., 2015). Thus, the synthesis of nanosized NaY 

zeolite with low synthesis cost, but able to produce high yield of high zeolite purity and crystallinity is 

greatly desirable.   
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The synthesized nanosized NaY zeolite is not as pure as commercial NaY zeolite because the 

silica source used in synthesizing the zeolite is from the agro-waste of rice husk ash that contained a 

small amount of impurities such as Fe2O3, TiO2, Al2O3, and others (Yusof et al., 2010). However, a 

small amount of the impurities present in the rice husk ash is expected not to give much effect to the 

zeolite structure as these impurities only act as inert materials in the zeolite synthesis (Juan et al., 

2007).   

 

Rice Husk Ash as the Silica Source 
 

There are many methods could be used to extract silica from the rice husk, for example 

chemical treatment, biological treatment, hydro thermo-baric and thermal treatment at 400-700°C 

(Soltani et al., 2015). Most previous works using thermal treatment (400-700°C) as well as chemical 

treatment with alkaline treatment and acid leaching to produce an amorphous form of rice husk ash 

from the rice husk residues. The amorphous rice husk ash is a reactive form of silica that is used to 

synthesis pure zeolites (Paya et al., 2001). Using thermal treatment at 600°C for one hour can yield 

rice husk ash (Yusof et al., 2010). Based on previous study, the synthesized zeolites (NaA, NaX and 

NaY) were calcined to remove the impurities from the zeolites (Malek, 2011). If the rice husk ash pre-

treatments have no effect to the purity and crystallinity of the synthesized zeolites, the pre-treatment 

steps can be avoided to simplify the procedure of zeolite synthesis.   

The purpose of treating rice husk ash with acid or alkali is to remove the metallic impurities 

(Rahman et al., 2009) that could influence the purity and crystallinity of the synthesized zeolite (Zi et 

al., 1988). According to the research performed by Rahman et al. (2009), treating rice husk ash with 

10% H2SO4 could produce amorphous form of silica which contained 95.85% SiO2, while the 

untreated rice husk ash (without acid wash) only produced 90% SiO2. Moreover, according to Ali et 

al. (2016), the acid treated rice husk ash needs a short time to be decomposed by calcination 

compared to the untreated rice husk ash. Although the acid treated rice husk ash produces amorphous 

form with a better yield of SiO2, the acid treated rice husk ash contains amorphous form of silica with 

SiOH on its surface which is unreactive in the synthesis of zeolites (Hamdan et al., 1997). Thermal 

treatment of rice husk at temperature <800°C produces amorphous form of silica in the form of 

Si(OSi)4 tetrahedral units which is more reactive silica source in the synthesis of Y zeolite (Hamdan et 

al., 1997). Thermal treatment of rice husk at 1000°C produces crystalline form of silica (e.g. 

cristobalite and trydimite phases) which is unreactive in zeolite synthesis (Hamdan et al., 1997).   

 

 
Summary 
 

The NaY nanozeolite could be synthesized using rice husk ash rice husk ash as the silica source. 

Rice husk ash contain more than 90% silica (Yusof et al., 2010) and is only agriculture waste that has 
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high silica content in dry form (Jain et al., 1994). According to the statistic compiled by the 

Malaysian Ministry of Agriculture, in Malaysia, it was more than 400,000 metric tons of rice husk 

generated annually after every paddy harvesting season (Wong et al., 2003). This rice husk material is 

decomposed by burning them on the field (Yalcin and Serinc, 2001) and by rotting (Rahman et al., 

2009) which could affect the environment and human health. Thus, by using rice husk ash as the silica 

source in zeolite synthesis, beneficial products (e.g. zeolites) can be produced from the agricultural 

waste and also, it can solve the problems occur due to the deposited of rice husk on the field (Rahman 

et al., 2009).   
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SUMMARY 

This paper provides an updated review on synthesis of hierarchical mesoporous Zeolite. The 

hierarchical structure enhances the zeolite’s structure based on pore volume and size without severe 

penalization of the micropore volume, making it more efficient. Hierarchical mesoporous zeolites 

allow diffusion of bulky molecules compared to microporous zeolites. They are more stable 

hydrothermally than conventional mesoporous zeolites. They are widely used in fast pyrolysis of 

biomass and product upgrading such as zeolite cracking and hydrodeoxygenation as well as catalysis 

in general. We discussed synthesis routes including template and template free methods, factors 

influencing mesophase formation and zeolite crystallization, metal modification, hierarchy factor etc. 

Moreover, future developments such as scale-up, cheaper synthesis catalyst design as well as eco- 

friendly processes were also discussed. 

 

Key words: Hierarchichal, Zeolite, Catalyst, Mesoporous, Hierarchy factor 

 

1. Introduction 
 

Modern industrial processes make use of zeolites being a crystalline molecular sieve. These 

processes include adsorption and catalysis, especially in petrochemical and biodiesel industry (Alaba 

et al., 2016b). This is simply because zeolites materials possess high thermal and chemical stability, 

high surface area and adjustable pore size (Alaba et al., 2016). However, the major limitation of 

zeolites is their micropore size between ~0.5 and 1.5 nm (Alaba et al., 2016). This pore size limitation 

prevents large molecules from reacting effectively over these microporous materials. To proffer 

solution to the diffusion problem of reactants in zeolites matrix, synthesis of aluminosilicate materials 

with flexible mesopore size, such as SBA-15 (Zhao et al., 1998) and MCM-41 (Kresge et al., 1992) 

have been successful since around 1990s. Mesoporous zeolites allow diffusion of bulk molecules 

because of their large pore size there by overcoming the drawback of microporous zeolites (Zheng et 
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al., 2013). Nevertheless, they exhibited lower hydrothermal stability and acid sites than conventional 

zeolites, which restricts their usage in several of industrial applications and reactions. Some scientists 

later made immense effort at improving the framework crystallinity of these mesoporous materials for 

industrial applications. However, but all the efforts at improving the hydrothermal strength and the 

acid sites of the structural framework proved abortive (Liu, 2012).  

Some scientists yet made efforts to incorporate the outstanding qualities of microporous and 

mesoporous zeolites to synthesize mesoporous zeolite materials with improved crystalline structure.  

These includes carbon materials (Kim et al., 2003; Tao et al., 2003); zeolite products hydrolysis or 

zeolite seeds assemblage to an ordered mesoporous phase (Liu et al., 2000, 2001; Ooi et al., 2004; 

Wang et al., 2006; Zhang et al., 2001); simultaneous treatment of the mixture of microporous and 

mesoporous (Prokešová et al., 2003a, 2003b); acid and alkaline leaching (Corma et al., 1999; J. Groen 

et al., 2004; Groen et al., 2006; Groen, Peffer, et al., 2005; Groen et al., 2007); partial 

recrystallization of pre-assembled mesoporous walls of the materials into zeolitie structure (Campos 

et al., 2006); zeolites primal building units coating on the wall of the pores of pre-synthesized 

mesoporous aluminosilicate (Trong On & Kaliaguine, 2001, 2003). However, some of the synthesized 

materials were far from the expected, morphology-wise (Na et al., 2010).  

Recently, incorporation of the outstanding qualities of microporous and mesoporous zeolites 

to synthesize mesoporous zeolite has been tremendously improved. The recently successful routes 

include post synthesis and direct synthesis (Zhao et al., 2011). This could be achieved be with or 

without the use of organic template which serves as a structural directing agent (SDA). The post 

synthesis method used are hydrothermal and alkali treatment. The hydrothermal treatment is made 

successful by introduction of zeolite seed (such as silicalite-1 or ZSM-5) in small amount in a 

template free synthesis (Liu et al., 2012). Alkali treatment could be via template or template free route 

(Li et al., 2014; Rahimi & Karimzadeh, 2011; Zhao et al., 2011). However, a better mesoporous 

zeolite could be achieved by combination of alkali and hydrothermal treatment (Shi et al., 2013). Dual 

template method is commonly used for direct synthesis route to achieve meso and micro pore 

simultaneously (Choi et al., 2006; Coriolano et al., 2013). Dual functional template can also be used 

in a direct synthesis route. This template can direct both micro and meso pore simultaneously (Na et 

al., 2013; Jo et al., 2011a). The synthesized materials from this route can exhibit dual merit of micro 

and meso pore structure. The micropore takes care of shape or size selectivity while the mesopore 

takes care of facile diffusion pathway inside the pore wall.    

Hence, in this chapter, we deeply look into post-synthesis modification routes for synthesis of 

hierarchical mesoporous zeolites and dual templating and dual functional surfactant mechanism. 

Moreover, we look into metal modification, hierarchy factor, hydrogen adsorption capacity of 

mesoporous zeolites. 

 
2. Zeolites with hierarchical mesopores 
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Hierarchical mesoporous zeolites are synthetic zeolites that possess more than one level of 

porosity. They are carefully synthesized in such a way that increase in the mesoporosity does not 

severely penalize the micropore volume (Alaba et al., 2015). They show better catalytic performance 

than microporous zeolites. This is attributed to the fact that they are less affected with diffusion 

limitation, making them a better alternative for reactions that involve large substrates, thereby 

increasing selectivity towards bulky molecules (Alaba 2016a; Alaba et al., 2016). In fact, diffusion 

through hierarchical zeolite crystals are faster in a manner that is closely related to Knudsen regime, 

since the diffusion through mesoporous materials proceeds by molecule to molecule interaction as 

well as molecule to pore interaction (Serrano & Pizarro, 2013; Solsvik & Jakobsen, 2012). Therefore, 

they prevent secondary reaction because of the short residence time that they offer. This is capable of 

reducing deactivation rate especially in thermal cracking since no intermediate is formed (Hartmann, 

2004; Perez-Ramirez et al., 2008; Serrano & Pizarro, 2013).   

  (Liu et al., 2012) investigated hierarchical mesoporous zeolite. They show that most reported 

mesoporous zeolites exhibit unsatisfactory thermal stability, low strong acid sites and inability to 

retain acid centers because of their amorphous walls, although they possess regular and periodic pores. 

While conventional zeolites are strong acids and have good structural stability, there limitation is low 

molecular diffusion, which so much affects their catalytic activity and selectivity. However, 

hierarchical mesoporous zeolites combined the strengths of microporous zeolites with efficient 

diffusion property of mesoporous materials. Recently, scientists synthesized hierarchical porous 

zeolites with the aid of templates. The templates used are amphilic organosilane (Liu et al., 2012), 

carbon nanotubes (Schmidt et al., 2001), starch, nanosized CaCO3, polymers such as Polyvinyl 

butyral (PVB)and Polydiallyldimethylammonium chloride (PDDA), carbon black (Christensen et al., 

2003). After hydrothermal crystallization of the aluminosilica-templates composite, the product is 

zeolite with blocked pore. Calcination is used to open the composite zeolite pores by removing the 

template inside. Another route to synthesis of hierarchical mesoporous zeolites crystal is re-

crystallization of the wall of mesoporous zeolites such as MCM-41 and SBA-15 zeolites in the present 

of molecular templates (Fan et al., 2008). 

Hierarchical porous zeolites offer better catalytic performance in transalkylation of heavy 

aromatics (Liu et al., 2012); alkylation of benzene with ethylene (Christensen et al., 2003); superficial 

toluene disproportion (Liu, 2009); 1,3,5-tri-isopropylbenzene catalytic cracking (Wang et al., 2009); 

cracking of vacuum gas oil (VGO) (Ishihara et al., 2012); fast pyrolysis of biomass (Li et al., 2014); 

etc. Therefore, hierarchical mesoporous zeolites are essential in bulky molecule catalysis or in 

catalytic reaction in aqueous medium in the future. 
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3. Synthesis Strategies 

3.1.Desilication and re-assembly strategy  

 

Desilication has recently gained significant attention because it is straightforward. This 

method has been applied to various zeolites such as FER, MFI, BEA and MOR (Groen et al., 2004; 

Groen et al., 2005; Groen et al., 2004; Groen et al., 2006; Yoo et al., 2012). In an aqueous alkali 

solution, the less reactive aluminol sites help to maintain the zeolite structure, while the alkali leached 

some parts of the silica layer increase the pore size of the materials. Recently, (Li et al., 2014) 

developed a hierarchical mesoporous ZSM-5 zeolites by desilication with NaOH solutions for fast 

pyrolysis of biomass. They reported that carefully controlled desilication of zeolite can increase 

conversion of lignocelluloses to valuable aromatic hydrocarbons with low coke formation, thus 

improving the product distribution in the CPF of lignocellulose. 

Desilication offers more adjustable pores and conserves the Brønsted acid sites, while 

dealumination which is a well-known post-synthesis method for increasing the pore size zeolite 

framework (Alaba et al., 2016). A well-tailored mesoporousity is obtained by changing the Si/AL 

ratio of the main zeolites, reaction time, the reaction temperature, and concentration of the alkali via 

desilication. However, this method reduces the crystallinity of the materials by ~30% as estimated by 

X-ray diffraction (XRD) and nitrogen sorption measurement. The external surface area enhancement 

is because of pores size lager than 10 nm (Alaba et al., 2016; Yoo et al., 2012).  

However, according to (Yoo et al., 2012), strategic re-assembly method could be used to 

improve crystallinity. This method is adopted from pseudomorphic transformation concept. 

Hydrothermal treatment with the aid of surfactant was used to reunite the extracted species of silicates, 

aluminol and ZSM-5 zeolite crystals fragments to the main zeolite structure (Fig. 1). Scanning and 

transmission electron microscopy (TEM and SEM), solid state 27Al and 29Si magic-angle-spinning 

(MAS) NMR, nitrogen sorption measurements, elemental analysis by inductively coupled plasma 

spectroscopy (ICP), temperature programmed ammonia desorption (TPD) and XRD are used to 

characterize the physicochemical characteristics of the synthesized mesoporous zeolites. The 

synthesized product exhibits a dual-mesopore size distribution of ~3 nm and ~10-30 nm. The external 

surface area increases with ~ 83% of the original zeolite matrix based on the calculated micropore 

pore volumes from nitrogen sorption measurements, and ~ 77% computed from XRD measurements. 

The XRD and TEM of the products indicate that desilication and re-assembly took place 

simultaneously to synthesize a dual-pore material. Re-assembling the extracted Si atom and other 

fragments by micellization of a surfactant leads to formation of smaller pore size of ~ 3nm, whereas 

desilication leads to formation of larger pore size of ~10-30 nm in the zeolite matrix. 
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Fig. 1. A schematic diagram illustrating mesoporous zeolite formation through desilication (upper 
right) and desilication and re-assembling process (bottom right) (Yoo et al., 2012).  

 

 

3.2.Dual template mechanism 

 

The dual template mechanism is the synthesis method that employs two different templates to 

generate micro and meso pore in the zeolite materials. One of the templates is to generate mesopore 

and the other to generate micropore simultaneously (Choi et al., 2006; Yang et al., 2004). Fig. 2 

below shows a typical dual mechanism, where both CTMA+ (cetiltrimethylammonium) and TPA+ 

(tetrapropylammonium) ion act as templates for the mesoporous MCM-41 and microporous ZSM-5 

structure, respectively. The hybrid MCM-41/ZSM-5 formation is because of the charge compensation 

caused by the TPA+ ions on the MCM-41 structure (Coriolano et al., 2013). 

In a study of (Coriolano et al., 2013), they prepared a reactive hyrogel of ZSM5, aged for 40 

h at ~25 oC, and crystallized at 90 oC for the zeolite seed generation before synthesis using dual 

template.  The mesopore was formed by adding cetiltrimethylammonium bromide (CTMABr) and 

water solution to the seeds, leading to formation of new micelles. They heated the mixture in an 

autoclave at 125 oC, between 6 - 12 days, and obtained the highest order of hybrid ZSM-5/MCM-41 

on day 7 of the synthesis. The hybrid materials obtained at day 8 and 9 of the synthesis are not 

hierarchical mesoporous zeolite crystal, while the product of day 12is predominantly ZSM-5 zeolite. 

Therefore, the synthesis of ZSM-5 zeolite combined with MCM-41 must not exceed seven days to 

preventing the second step of crystallization. By increasing the synthesis time, we can synthesize 

ZSM-5 crystal and further impregnate it into MCM-41 already synthesized. Therefore, we can 
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synthesize a blend of ZSM-5 and MCM-41 zeolite in the hybrid system fixing microporous ZSM-5 

zeolite particles on the cylindrical wall of the MCM-41 mesopore (Fig. 2). 

In the hybrid ZSM-5/MCM-41 material obtained on the day 7, a little micropores volume 

emerged; the ZSM-5 framework structure formation in the mesoporous MCM-41 framework core. 

The amorphous silica has been deposited on the obtained ZSM-5 crystals, which blocked nitrogen 

molecules from accessing their micropores. (Frunz et al., 2006), also discovered deposition of 

amorphous silica during the mesoporous ZSM-5 zeolite formation. 

 

 

 

 

Fig. 2. Proposed dual templating mechanism for hybrid micro-mesoporous ZSM-5/MCM-41 material 
synthesis (Coriolano et al., 2013). 

 

3.3. Direct synthesis by dual-functional surfactant approach 

 

Dual-functional surfactants are single surfactants that can simultaneously generate micro and 

mesopores. Example of dual functional surfactant is a Gemini surfactant, which functionally played a 

dual role as both microporous zeolite SDA and mesopore template simultaneously (Liu et al., 2012). 

Gemini surfactants, also known as dimeric surfactants, they possess two hydrophobic head units and 

two hydrophilic units in the molecules. This is in contrast to conventional surfactants that possess a 

single hydrophobic head unit and a single hydrophilic unit (Na et al., 2011a). Gemini surfactants can 

be about ten to a thousand times more active on the surface than commercial surfactants with similar 

but single hydrophilic and hydrophobic units in the molecules. Their design is to support both 

formation of nanocrystaline and liquid crystal-like meso-structural order of the zeolite structure (Na et 

al., 2011). In the studies of (Choi et al., 2009; Jung et al., 2012; Na et al., 2011a; Na et al., 2011) the 
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dual role of the Gemini dual-porogenic are illustrated by nuclear magnetic resonance spectroscopy 

and 2D heteronuclear correlation (Vega, 1988). This simplifies the molecular proximity of the 

surfactant to specific structural moieties. The 2D 29Si(1H) HETCORNMR spectrum shows the 

important role of the AlIV units in directing the zeolite structures crystallization. A separately acquired 

1D 29Si cross polarization (Polderman et al.) magic-angle-spinning (MAS) spectrum (horizontal axis) 

exhibit broad signal attributed to Qn 29Si aluminosilicate structure (Barrett et al., 1951; Janicke et al., 

1998; Jin et al., 2012; Saito & Foley, 1995) with increasing condensation rate. A single-pulse 1H 

MAS spectrum (vertical axis) indicated partial resolution of 1H signal from the porogen molecules 

with its proton chemical shift assignments shown in 2d 13C(1H) HETCOR NMR spectrum. 

In dual-porogenic driven synthesis scheme, the porogen aggregates generated the mesopores, 

while, microporous zeolite crystal structure is formed by multiple AlIV units. We can use surfactants 

with different gemini-like head units to control wall size and structural topology. The pore size is 

designed according to addition of hydrophobic growth increase agents or by the tail end of the 

surfactant (Na et al., 2011a). The porous structure and strong zeolite framework acid sites leads to 

substantial enhancement of the catalytic performance of several organic reactions that involves large 

molecules unlike conventional zeolite or amorphous MMSs (Choi et al., 2006; Kruk & Jaroniec, 2001; 

Lee et al., 2005; Na et al., 2011a).  

 

3.4. Hydrothermal synthesis 

This is a conveniently meso-scale template free route for hierarchical structured ZSM-5 

zeolite synthesis. It could be done by steaming with or without zeolite or silicalite-1 seed. Introduction 

of seed to hydrothermal synthesis helps to reduce crystallization time. It also helps to increase purity 

and yield to obtain crystalline zeolite products enriched with large surface area as well as large pores 

(Wang, Li, et al., 2010).  There is a special intersecting channel system in the framework of ZSM-5 

zeolite with a straight 10-member ring (10MR) channel parallel to the b-axis and a zig-zag 10MR 

channel protruding towards the a-axis (Anthony, 1996; Krishna & Paschek, 2001; Wang, Li, et al., 

2010; Yu et al., 2006). Therefore, the prepared hierarchical ZSM-5 zeolites with c-axis-oriented nano-

rods is of vital importance because of their enriched and large pore opening as well as shortened 

channels. Hierarchical ZSM-5 zeolites with enhanced surface area as well as enriched mesopores are 

produced through this method. The improvement on the catalytic properties of the product because of 

its ease of access to the active sites. This is caused by the few microporous channels and openings of 

intra-crystal mesopore which remarkably widened zeolite field of application (Wang, Li, et al., 2010). 

The pre-added seeds in the synthesis solution play a vital role of inducing formation of 

hierarchical porous ZSM-5 zeolite structure. The added seeds function as the initial crystal core to 

initiate secondary nucleation and growth of the nano-sized ZSM-5 zeolite crystal along their preferred 

plane using 1,6-hexylenediamine (Bell et al., 2008; Cundy & Cox, 2005; Davis et al., 2006; Kumar et 

al., 2007; Na, Jo, et al., 2011b; D. Wang, Liu, et al., 2010). This leads to formation of a new 
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hierarchical porous zeolite through partial intergrowth of ZSM-5 nano-rod in similar direction. Such 

oriented aggregation had been reported as mechanism for crystal growth, producing mono-crystalline 

frameworks (Niederberger & Cölfen, 2006; D. Wang, Li, et al., 2010; Yuwono et al., 2010; 

Zhongping Zhang et al., 2005). (D. Wang, Li, et al., 2010) confirmed that because of c-axis oriented 

ZSM-5 zeolite nano-crystal bundle of arrays, a novel mesoporous material was synthesized as inter-

crystal pores. The improved surface area and mesopore volume in the hierarchical mesoporous ZSM-

5 zeolite will improve the reactivity and diffusivity of the reacting molecules (Wang et al., 2010). 

 

3.5. Combined hydrothermal and alkaline leaching synthesis strategy   

This is another template free route for hierarchical structured zeolite synthesis, which 

involves combined effort of hydrothermal and alkaline treatment. This could be achieved by steaming 

of the zeolite material followed by alkaline leaching of the zeolite material followed by steaming. (Shi 

et al., 2013) reported that alkaline treatment after heat treatment exhibits triple effects on the 

synthesized ZSM-5 zeolite, which involves silicate extraction, re-deposition of aluminum atom and 

aluminum extra-framework removal; while the heat treatment after alkali modification has binary 

effect, which involves aluminum atom extraction and stabilization. However, heat treatment after 

alkali modification is more effective in adjusting the zeolites acidity and mesopores creation. The 

catalyst derived from ZSM-5 zeolite modified through incorporation of steam and alkali treatment, 

which exhibits enhanced isomerization activity, better aromatization activity and high stability in the 

hydro upgrading of gasoline via fluid catalytic cracking. Fig. 3 & Fig. 4 shows the details of this 

scheme.  

 

 
 
Fig. 3. Mesopores creation in the HZSM-5 zeolite upon alkali treatment (Shi et al., 2013). 
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Fig. 4. Evolution of the porosity and composition of the HZSM-5 zeolite upon the various post-
treatments (Shi et al., 2013). 
 
 

4. Factors affecting mesophase formation and zeolite crystallization 

 

(Li et al., 2012) studied the pH value effect and ethanol quantity on the mesophase formation. 

In reacting solution with addition of ethanol, the solubility of CTAB template increases with decrease 

in dielectric constant. This change leads to enhancement in the electrostatic repulsion between the 

template ions within micelles to decrease micelle size as well as boosting the value of critical micelle 

concentration (CMC) (Zheng, 1997). Excess ethanol prevents formation of micelles in the mixture of 

Hp-E(X) (synthesized mesoporous zeolite with ethanol additives and X being the ethanol volume).  

Essentially, the pH effect on meso porosity can be associated with the concentration of OH- 

ions of the micelles. The OH- compressed the double layer of micelles. This leads to reduction in the 

electrostatic repulsion between the template ions of the micelle by recompensing for the CTAB 

positive charges while accessing the core of the micelle, making the micelle more stable (Li et al., 

2012). Therefore, addition of NaOH in the reacting medium helps to produce hierarchical mesoporous 

structure even with excess ethanol {Hp-Na(17) (synthesized mesoporous zeolite with ethanol 

additives of 17 ml and pH controlled by NaOH)}. This is due to the improvement in the micelle 
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stability. Beside this, the Vmicro/Vtotal ratio decreases while the pore size increase with the increase in 

ethanol quantity (Li et al., 2012).  

 

5. Hierarchy factor 

 

Hierarchy factor is a viable tool that we can use to measure the degree of structural order of 

materials. It also helps to correlate and to make quantitative comparison of various zeolite materials 

produced from different synthesis methods (Alaba et al., 2015; Alaba et al., 2017b).  

(Pérez‐Ramírez et al., 2009) proposed a model as a tool for classification of hierarchy 

mesoporous zeolites as derived from the conventional N2 adsorption analysis. From the effect of the 

micropore volume on the total pore volume and the effect of the mesopore specific surface area on the 

total specific surface area of the weighed sample, they defined hierarchy factor (HF) as follows: 

 
   

           

          
          (1) 

 
To maximize the value of HF, the mesopore surface area must be enhanced without 

penalizing the micropore volume severely. This shows that rather than playing a competition role, 

both porosity levels must complement each other. While the micropores play the active sites, the 

auxiliary mesopores solved the problem of mass transfer limitation. It is also important to note that 

two or more different zeolite catalysts prepared through different synthesis routes but with the same 

value of hierarchical factor may not necessarily exhibit the same catalytic performance in the same 

reaction because of varying acid strength and distribution. For instance, the one with highest number 

of Brönsted-acid sites will surely exhibit the best performance (Alaba et al., 2017a).  

 

However, (Zheng et al., 2013) reported that HF seldom show linear relationship with catalytic 

performance as expected when they tested it with catalytic cracking of isopropylbenzene. For instance, 

sample MFZ-8 with high mesopore volume but low total specific surface area and micropore volume, 

possesses a high value of HF (0.13) because HF is defined as a function of total pore volume. To 

make more reasonable quantitative comparison of the degree of structural order of composite 

materials, (Zheng et al., 2013), therefore revised hierarchy factor as  F ’ and 
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Therefore, 

       (  
      

     
)         (4) 

 

Table 1 show several samples of hierarchical mesoporous zeolites and their corresponding HF, 

 F’ Brönsted-acid sites and catalytic cracking performance. It is therefore, clearly seen that  F’ is 

more reasonable in determining degree of hierarchy of composite zeolites that have similar 

compositions and acidities in reactions with bulky reactants. It is also important to know that 

crystallization parameters of the synthesized mesoporous materials have effect on the hierarchy factor. 

(Koekkoek et al., 2011) synthesized mesoporous zeolites MesoZSM-5(T, y) where T, is the 

crystallization temperature and y, is the crystallization time (Table 1). From their report, we could see 

on Table 1 that hierarchy factor increase with increase in crystallization temperature and y is the 

crystallization time. 

 
6. Conclusions and outlook 

Synthesis of hierarchical mesoporous zeolite has been successful by various methods 

including template and template free method. It has proved a better alternative to microporous zeolite 

in that it takes care of the shortcomings of microporous and mesoporous zeolite. The hierarchical 

mesoporous zeolites synthesized exhibit high catalytic activities in cracking of large molecule, high 

hydrogen adsorption and high hydrothermal stability. As a solid acid catalyst, the pore walls of the 

porous materials synthesized could facilitate molecular transfer through the catalyst matrix, resulting 

in significant increase in catalyst lifetime. In addition, the improved surface acidity favors large 

molecules catalytic conversion that was constrained in the conventional zeolites micropores. The 

synthesized mesoporous zeolites can be used as catalyst support or co-catalyst with metal nano 

particles. These attributes of hierarchical mesoporous zeolite enabled it as an important absorbent and 

catalyst used in several fields such as catalytic cracking, deoxygenation and hydrodeoxygenation. 

Economic and environmental advantages give the hydrothermal synthesis routes with the aid 

of zeolite/silicalite1 seed as well as combined hydrothermal and alkaline leaching synthesis route 

more chances for scale-up. Synthesis method using starch-derived bread as template is also a 

promising green synthesis method.  Moreover, by investigating the early stages of zeolite synthesis, 

hierarchical mesoporous zeolite can be synthesized in a greener way to neglect the commonly used 

organic reagents to stabilize the desired phases or to recycle the organic template. In these cases, it is 

possible to remove and extract organic templates from the zeolite pores under mild conditions. 

Therefore, in the quest for solid acid catalysts that exhibits little or no mass transfer limitation, strong 

acidity, pore volume and high specific surface area, hierarchical mesoporous ZSM-5 zeolites can 

replace commercial microporous zeolites. The synthesis technologies allow a great control of the 

crystal size, pore size, morphology, acidity, and porosity. 
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Table 1 Effect of hierarchical factor, Bronsted acidity on mesoporous zeolites catalytic performance. 

Zeolites Vmeso Vtotal Smeso SBET m HF HF' B site
 a

 Reaction  
   

Ref.   

sample 
(cm

3
 g

-

1
) 

(cm
3
 g

-

1
) 

(cm
3
 g

-

1
) 

(cm
3
 g

-

1
)   

(mmol/g) Type 
Time 
(h) 

T (
o
C) 

Conv. 
wt.%  

  

ZRP-1 0.131 0.22 128.7 305.2 0.1706 0.2865 1093 n-Heptane 
cracking 

- 650 100.00 (Chen et al., 2012)   

HZSM-5 0.034 0.186 52.2 368 0.1159 0.6341 197 n-Heptane 
cracking 

- 650 99.79 (Chen et al., 2012)   

HZ (10.0)
 b

 0.063 0.185 102.1 338.1 0.1991 0.5848 177 n-Heptane 
cracking 

- 650 99.41 (Chen et al., 2012)   

HZ (25.0)
 b

 0.077 0.19 111.7 333.5 0.1992 0.4915 696 n-Heptane 
cracking 

- 650 98.68 (Chen et al., 2012)   

HZ (40.0)
 b

 0.133 0.245 109.4 328.4 0.1523 0.2805 836 n-Heptane 
cracking 

- 650 97.91 (Chen et al., 2012)   

HZ (50.0)
 b

 0.243 0.344 104.9 305.2 0.1009 0.1429 984 n-Heptane 
cracking 

- 650 97.50 (Chen et al., 2012)   

Hp-Na(0)
 c
 0.13 0.22 242 418 0.2368 0.4008  Esterification  of 

lauric acid 
23.5

 d
 78 77.00 (H. Li et al., 2012)   

MFZ-17
 e

 0.11 0.36 91 515 0.1227 0.4016  isopropylbenzene 
cracking 

0.1 300 100.00 (Zheng et al., 2013) 

MFZ-16
 e

 0.16 0.42 128 576 0.1376 0.3611  isopropylbenzene 
cracking 

0.1 300 98.79 (Zheng et al., 2013) 

MFZ-14 0.1 0.36 86 546 0.1138 0.4095  isopropylbenzene 
cracking 

0.1 300 99.31 (Zheng et al., 2013) 

MFZ-12
 e

 0.07 0.32 45 497 0.0707 0.3234  isopropylbenzene 
cracking 

0.1 300 99.00 (Zheng et al., 2013) 

MFZ-8
 e

 0.13 0.23 74 242 0.1330 0.2352  isopropylbenzene 
cracking 

0.1 300 98.00 (Zheng et al., 2013) 

Y+M
 f
 0.02 0.27 6 524 0.0106 0.1431  isopropylbenzene 

cracking 
0.1 300 99.00 (Zheng et al., 2013) 

MFZ-17
 e

 0.11 0.36 91 515 0.1227 0.4016  isopropylbenzene 
cracking 

8 300 98.10 (Zheng et al., 2013) 

MFZ-16
 e

 0.16 0.42 128 576 0.1376 0.3611  isopropylbenzene 
cracking 

8 300 82.07 (Zheng et al., 2013) 

MFZ-14
 e

 0.1 0.36 86 546 0.1138 0.4095  isopropylbenzene 
cracking 

8 300 93.28 (Zheng et al., 2013) 
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MFZ-12
 e

 0.07 0.32 45 497 0.0707 0.3234  isopropylbenzene 
cracking 

8 300 74.66 (Zheng et al., 2013) 

MFZ-8
 e

 0.13 0.23 74 242 0.1330 0.2352  isopropylbenzene 
cracking 

8 300 43.28 (Zheng et al., 2013) 

Y+M
 f
 0.02 0.27 6 524 0.0106 0.1431  isopropylbenzene 

cracking 
8 300 43.28 (Zheng et al., 2013) 

BFZ-1.30
 g

 0.21 0.4 80 486 0.0782 0.1489  Methanol cracking 2 250 77.20 (Zheng et al., 2011) 

BFZ-1.35
 g

 0.22 0.37 112 432 0.1051 0.1768  Methanol cracking 2 250 89.70 (Zheng et al., 2011) 

BFZ-1.40
 g

 0.22 0.4 130 454 0.1289 0.2343  Methanol cracking 2 250 91.30 (Zheng et al., 2011) 

BFZ-1.45
 g

 0.24 0.43 172 520 0.1462 0.2619  Methanol cracking 2 250 97.20 (Zheng et al., 2011) 

BFZ-1.45
 g

 0.24 0.43 172 520 0.1462 0.2619  Methanol cracking 72
 
 250 72.00 (Zheng et al., 2011) 

BFZ-1.50
 g

 0.27 0.46 130 514 0.1045 0.1780  Methanol cracking 2 250 88.10 (Zheng et al., 2011) 

BFZ-s
 h

 0.08 0.33 45 495 0.0689 0.2841  Methanol cracking 2 250 17.40 (Zheng et al., 2011) 

FAU-BEA
 i
 0.13 0.32 64 530 0.0717 0.1765  Methanol cracking 2 250 71.10 (Zheng et al., 2011) 

FBZ
 j
 0.11 0.34 72 578 0.0843 0.2605  Methanol cracking 2 250 82.10 (Zheng et al., 2011) 

BEA 0.04 0.22 29 517 0.0459 0.2524  Methanol cracking 2 250 84.70 (Zheng et al., 2011) 

FAU 0.02 0.38 9 738 0.0116 0.2195  Methanol cracking 2 250 53.60 (Zheng et al., 2011) 

MesoZSM-
5(150, 0)

 k
 

0.18 0.189 93 435 0.0102 0.0107 3 n-Heptane 
cracking 

2 353 40.00 (Koekkoek et al., 2011)  

MesoZSM-
5(150, 6)

 k
 

0.41 0.444 555 684 0.0621 0.0673 9 n-Heptane 
cracking 

2 350 40.00 (Koekkoek et al., 2011)  

MesoZSM-
5(150, 72)

 

k
 

0.3 0.36 387 569 0.1134 0.1360 51 n-Heptane 
cracking 

2 267 40.00 (Koekkoek et al., 2011)  

MesoZSM-
5(150,120)

 

k
 

0.28 0.355 266 519 0.1083 0.1373 80 n-Heptane 
cracking 

2 255 40.00 (Koekkoek et al., 2011)  
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MesoZSM-
5(170, 6)

 k
 

0.25 0.25 360 360 0.0000 0.0000 6 n-Heptane 
cracking 

2 350 40.00 (Koekkoek et al., 2011)  

MesoZSM-
5(170,120)

 

k
 

0.11 0.22 90 388 0.1160 0.2320 71 n-Heptane 
cracking 

2 252 40.00 (Koekkoek et al., 2011)  

BFZ-28
 l
 0.245 0.475 130 604 0.1042 0.2021  Hydrogenation of 

benzene 
2.964 400 98.46 (Zheng et al., 2010) 

BFZ-24
 l
 0.21 0.43 101 580 0.0891 0.1824  Hydrogenation of 

benzene 
   (Zheng et al., 2010) 

BFZ-18
 l
 0.19 0.39 102 507 0.1032 0.2118  Hydrogenation of 

benzene 
2.964 400 98.46 (Zheng et al., 2010) 
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Abstract  
 

Inefficient use of chemical fertilizers such as phosphatic fertilizer which are usually applied to 

sustain crop production can also cause environmental pollution. Clinoptilolite zeolite with its 

characteristically large surface area, high CEC and alkalinity can be exploited to increase the retention 

of basic cations, reduce soil acidity and metal ions solubility (Fe and Al) leading to reduced P fixation 

in acid soils. An incubation study was conducted to determine the effects of reducing the amount of N, 

P and K fertilizers amendment with three rates of clinoptilolite zeolite on phosphorus availability and 

selected soil chemical properties of an acid soil. The treatments were incubated for 30 days, 60 days, 

and 90 days. Standard procedures were used to determine soil pH, exchangeable cations, soil acidity, 

total P, available P and inorganic P. Reduced rate of fertilizers with increasing rate of clinoptilolite 

zeolite significantly increased soil pH. This resulted in a reduction of exchangeable Al which caused a 

reduction in soil titratable acidity. The results were comparable to that of the recommended fertilizer 

rates. Retention of Ca and Mg in the treatments with 85% clinoptilolite zeolite and 25% fertilizer 

reduction (T2, E2 and C2) was comparable to the standard fertilizer recommendation. However, 

treatments with clinoptilolite zeolite neither significantly reduced exchangeable Fe, P fixation (Al-P, 

Fe-P, Ca-P, Red-P, and Occl-P) nor increased soil total P and availability of P. Clinoptilolite zeolite 

effect was not significant because of the reduction in fertilizer rate in the treatments used.  

 

Keywords: Inorganic phosphorus, phosphorus availability, clinoptilolite zeolite, nutrients retention, 

environmental sustainability  
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Introduction  
 

Phosphorus (P) is one of the essential nutrients required by crops. Adequate supply of P from 

early crop growth stage is vital for optimum crop production. However, P availability in acid soils is 

often limited due to the soil’s inherent characteristics. In tropical acid soils, P reacts with predominant 

Al and Fe ions to form insoluble complexes (precipitated) which are not readily available for plant 

uptake (Elser et al., 2000; Wardle et al., 2004; Vitousek and Howarth, 1991). The application of large 

amounts of P fertilizers to saturate the soil sorption sites of P is uneconomical and environmentally 

unfriendly. The over application of P could pollute water bodies if surface runoff occurs (Grant et al., 

2005; Schindler, 1977). Moreover, finite world reserves of P need to be properly utilized (Cordell et 

al., 2009) as scarcity may increase cost of producing agricultural products. Due to the 

aforementioned, an effective management of P fertilizers is important to attain optimum crops yield, 

reduce cost of production, conserve finite resources, and at the same time ensure that the environment 

is not degraded. 

Many efforts have been made to sustain soil quality and resources as well as improving 

agricultural productivity under intensive production systems. Each approach is different in terms of 

cost, efficiency, and practicality. The use of soil amendments in agriculture is not new. According to 

David and Wilson (2005), a soil amendment is any material which is not necessarily a fertilizer that is 

added to soils to improve their physical and chemical properties such as moisture and nutrients 

retention, permeability, water infiltration, drainage, aeration, structure, cation exchange capacity and 

pH. It can be either natural or synthetic, and can contribute significantly to providing a reservoir of 

soil water to crops on demand in the upper layers of soils where their root systems normally develop 

by reducing evaporation through restricting movement of water from the sub-surface to the surface 

layers of the soil (Yangyuoru et al., 2006).   

Liming acid soils is one of the most common practice used to improve soil pH, reduce soil 

acidity, and thus increase P availability in soils. Liming acid soils helps to alleviate soil pH and 

decreases Al toxicity for optimal crop growth. However, higher pH attributed to increase of 

exchangeable Ca in soils is conflicting as it had been reported that exchangeable Ca in soils 

sometimes increase, decrease, or had no effect on P availability (Curtin and Syers, 2001; Anjos and 

Rowell, 1987; Mahler and McDole, 1985). Thus, this study attempted to exploit the alkaline nature of 

the zeolites which could be beneficial to reduce P fixation and improve P availability by increasing 

soil pH and thus reducing soil acidity and solubility of metal ions (Fe and Al). 

Zeolites are natural aluminosilicates with an infinite three-dimensional crystal structure, a 

polyedric shape, with a great open cavity (Ajirloo et al., 2013; Ramesh and Raddy, 2011; Daković et 

al., 2007). It was first identified by Alex Fredrik Cronsted (a Swedish mineralogist) in 1756. To date, 

about 50 species of these natural volcanogenic sedimentary mineral has been recognized. The one 
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used in this study is clinoptilolite zeolite, the most abundant in soils and sediments (Ramesh et al., 

2010; Mumpton 1999). The structure of zeolites has been characterized based on its tetrahedron 

framework, the center of which is occupied by a silicon atom with four oxygen atoms at the vertices. 

Substitution of Si4+ by Al3+ provides the negative charge of the framework, which is balanced by 

monovalent or divalent cations located at the surface (Geiger, 2012; Khomami, 2011; Polat et al., 

2004). These abundant and cheap minerals are extensively used in agriculture as soil conditioners, 

slow-release fertilizers, and cleansing agents for contaminated soils (Ming and Allen, 2001). Zeolites 

are not easily degraded over time which causes them to remain in soils to improve retention of 

nutrients and control nutrient release for crop use (Ramesh et al., 2010; Eberl, 1993; Zelazny and 

Calhoun, 1977).  

The inclusion of zeolites in fertilization programmes induces dissolution of rock phosphate 

(RP) and also producing NH4
+ as by-product by exchange-induced dissolution system (Pickering et al., 

2002; Allen et al., 1993; Barbarick et al., 1990; Lai and Eberl, 1986). Studies have shown that 

clinoptilolite zeolite can reduced ammonia loss by inhibiting microbial nitrification (Rabai et al., 2012; 

Lija et al., 2012) and can improve nutrients uptake and use efficiency of Zea mays cultivated on acid 

soils (Omar et al., 2016; Omar et al., 2011; Ahmed et al., 2010). The use of zeolites also improved 

rice grain yield, N recovery, and use efficiency (Palanivell et al., 2015; Kavoosi, 2007). Zeolites have 

also been shown to effectively reduce salinity stress and improve nutrient balance in a sandy soil (Al-

Busaidi et al., 2008). Mixing zeolites with urea and TSP also enhances phosphorus uptake in plants 

(Pickering et al., 2002). Bernardi et al. (2013) reported that concentrated zeolite enriched with N, P, 

and K enables slow-release of nutrients for crop use. The application of zeolite with urea improved N 

use efficiency and when applied with phosphate rock it increased the P availability to crops and also 

increased water retention and available water capacity of a sandy soil (Omar et al., 2015; Bernardi et 

al., 2013; Pickering et al., 2002; Barbarick et al., 1990).  

Although zeolites have been extensively used in agriculture, there is a dearth of information 

on the use of zeolites such as clinoptilolite zeolite on P sorption and fixation in highly weathered 

tropical soils as well as reduction of N, P, and K fertilizers use in agriculture. Thus, the use of reduced 

amounts of fertilizers amended with clinoptilolite zeolite was investigated to evaluate the effects of 

this approach on phosphorus dissolution and selected soil chemical properties of an acid soil in a 

controlled environment, without crop interference (i.e incubation study).   

 

Materials and methods 

Characterization of the mineral acidic soil  

 

The mineral acidic soil used was Bekenu series (Typic Paleudults) and it was sampled from 

an uncultivated area at Universiti Putra Malaysia, Bintulu Campus Sarawak, Malaysia at 0-15 cm 
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depth. The coordinates of the soil sampling site are latitude 03˚ 12.241’ N and longitude 113˚ 04.270’ 

E. The soil was air-dried, ground, and sieved to pass a 2.0 mm sieve for initial characterization and 

the incubation experiment. Soil texture was determined by measuring the amount of each particle 

group (sand, silt, and clay) using the hydrometer method (Soil Survey Staff, 2014). The pH of the soil 

and clinoptilolite zeolite was determined in a 1:25 ratio (soil: distilled water) using a digital pH meter 

(Seven Easy pH, Mettler-Toledo GmbH, Switzerland) (Peech, 1965). Soil organic matter and total 

carbon were determined using the loss-on-ignition method (Piccolo, 1996), and soil bulk density was 

determined using the method described by Soil Survey Staff (2014). The inorganic P associated with 

Al, Fe and Ca in soil were fractionated and determined following the method described by Kuo 

(1996). Soil total P (extracted using aqua regia) and available P (extracted using Mehlich No.1) (Tan, 

2005) were determined using a spectrophotometer (Lambda 25, Perkin Elmer) after blue color 

development (Murphy and Riley, 1962). Soil cation exchange capacity (CEC) was determined using 

the ammonium acetate method (Cottenie, 1980) whereas exchangeable cations (K, Ca, Mg, and Fe) 

were extracted using double acid as extractant following the method of Mehlich No.1 (Mehlich, 1953). 

Cations concentrations were determined using atomic absorption spectrometry (Perkin Elmer 

AAnalyst 800). Exchangeable soil acidity and Al were extracted using 1 M KCl (1:10 soil/solution) 

and determined using colorimetric method (Rowell, 1994). 

The selected physico-chemical properties of Bekenu series are shown in Table 1. The soil 

used was acidic (pH=4.32), low in CEC (5.33 cmol(+) kg-1) and total N (0.06%). Soil total carbon, 

exchangeable K, Ca, and Mg were slightly higher than the standard range for this soil type 

(Paramananthan, 2000) because of litter decomposition with time at the soil surface as the soil used in 

this study was taken from an uncultivated area.  

Inorganic P fractions have remarkable differences in mobility, bioavailability, and chemical 

behavior in soils. Inorganic P distribution in the soil used in this study is in the following order: Fe-P > 

Al-P > Red-P > Occl-P > Ca-P > Sol-P (Figure 1). Approximately 70% of the inorganic P recovered 

were associated with Fe and Al. The higher content of Fe-P among the active inorganic P fractions 

suggests high content of Fe-oxides, low pH, and advanced stage of weathering (Table 1). This finding 

is consistent with a study by Bidin (1986) who reported that Fe-P was dominant and constituted 79% 

of inorganic P fractions of Malaysian mineral soils.  

Reductant P in the soil constituted the third largest portion (14%) and this is related to various 

forms of P occluded in poorly crystalline Fe and Al oxides (Delgado and Torrent, 2000; Ruiz et al., 

1997). The lower content of Ca-P is consistent with the acidity and advanced pedogenesis of the soil 

used in this study, which suggests that native apatite is being weathered. Soil Occl-P and Soi-P were 

only 7% and 1%, respectively. Lower availability of Sol-P indicates the need for P fertilization.  
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Table 1: Selected physico-chemical properties of Bekenu soil series (Typic Paleudults) before the 
incubation study 

Soil properties 
Soil 

Clinoptilolite zeolite 
Value obtained Standard range* 

pH (water) 4.32 4.6-4.9 8.54 
Bulk density (g cm-3) 1.01 Nd Nd 
CEC (cmol(+)kg-1) 5.33 3.86-8.46 75.4 
Total N (%) 0.06 0.04-0.17 0.22 
Total P (%) 0.005 Nd 0.01 
Available P (mg kg-1) 2.48 Nd Nd 
Organic matter (%) 5.60 Nd Nd 
Total carbon (%) 3.25 0.57-2.51 Nd 
Total Fe    7.51 Nd 0.11 
Total acidity    1.38 Nd Nd 
Exchangeable Al    0.9 Nd Nd 
Exchangeable H  

(cmol(+)kg-1) 
0.48 Nd Nd 

Exchangeable K  0.24 0.05-0.19 6.16 
Exchangeable Ca    0.76 0.01 22.30 
Exchangeable Mg    0.45 0.07-0.21 2.36 
Exchangeable Na   3.60 0.01 18.99 
Texture SL SL Nd 

Note: Nd= not determine, SL= sandy loam,  asterisk (*) subjected to the soil development, standard 
data range by Paramananthan (2000)  

 
 
 
 
 

 
Figure 1: Percentage of inorganic phosphorus fractions distribution in an acid soil. Note: Sol = solution 

and Occl = occludded 
 

 

Characterization of clinoptilolite zeolite  
 

The clinoptilolite zeolite used in this study was imported from Indonesia by MB Plus Sdn 

Bhd, Johore, Malaysia, in granular form (2-5 mm). Standard procedures as mention in 

characterization of soil were used to analyse pH, total N, total P, and cations content of clinoptilolite 

zeolite.  However, the cation exchange capacity of the clinoptilolite zeolite was determined using the 

CsCl method (Ming and Dixon, 1986) followed by steam distillation (Bremner, 1965). This method 
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was used to avoid under-estimation of CEC of the zeolites as it does not lead to entrapment of 

ammonium ions in its channels. Based on the clinoptilolite zeolite’s basic characterization (Table 1), 

the pH of the clinoptilolite zeolite was indeed high as expected (pH 8.54). However, compared to the 

attested (by MB Plus Sdn Bhd, Johore, Malaysia), the CEC and total N content of the clinoptilolite 

zeolite were lower than 160 cmol (+) kg-1 and 1.37%, respectively. 

Characterization of phosphorus fertilizers 
 

The pH, total P, and total cation content of P fertilizers were determined using standard 

procedures aforementioned for the soil characterization. The total P2O5 in triple superphosphate (TSP), 

Christmas Island rock phosphate (CIRP), and Egypt rock phosphate (ERP) were 41%, 24%, and 27% 

respectively (Table 2). Calcium in TSP, ERP, and CIRP were 4%, 47%, and 51%, respectively. The 

higher amount of Ca in ERP and CIRP were due to inherent contents of Ca in the parent materials of 

the fertilizers. High Ca in the apatite of the rock phosphates contributes to alkalinity of these 

phosphate fertilizers compared to the acidulated TSP. 

 
Table 2:  Selected chemical properties of phosphorus fertilizers 

Property TSP ERP CIRP 

pH (water) 2.46 7.42 7.93 

Total P (%) 18.09 11.96 10.62 

Total P2O5 (%) 41.12 27.19 24.15 

Total K (%) 0.42 0.25 0.31 

Total Ca (%) 4.88 47.55 51.73 

Total Mg (%) 0.35 0.17 0.24 

Total Fe (%) 0.38 0.61 0.52 

 

Incubation study  

 

A laboratory incubation study was conducted at Universiti Putra Malaysia Bintulu Sarawak 

Campus, Malaysia. An amount of 250 g of soil was weighed into a polypropylene container and 

moistened to 60% of moisture content. The caps of the polypropylene containers were perforated to 

allow good aeration. The soil moisture content was maintained using distilled water when necessary 

throughout the incubation experiment. The experimental design was a factorial completely 

randomized design.  

The treatments evaluated for 30, 60, and 90 days are summarized in Table 3. The treatments 

were surface applied and incubated at room temperature (26 ˚C) for 90 days.  t 30, 60 and 90 days of 

incubation, soil samples were mixed and air-dried for pH, exchangeable cation (K, Ca, Mg, Fe, and, 

Al), total P, available P, and inorganic P fractionation determination. The recommended rates of N, P, 

and K fertilizers used were 60 kg N ha-1 (130 kg ha-1 urea), 60 kg P2O5 ha-1 (130 kg ha-1 TSP: 214 kg 
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ha-1 ERP: 200 kg ha-1 CIRP), and 40 kg K2O ha-1 (67 kg ha-1 MOP). The rates of the fertilizers applied 

in this study were scaled down to per plant basis which were equivalent urea (4.85 g plant-1), ERP 

(7.95 g plant-1), CIRP (7.42 g plant-1), TSP (4.84 g plant-1), and MOP (2.47 g plant-1) from the 

standard fertilizer recommendation (Malaysian Agricultural Research and Development Institute, 

1990).  

 

Table 3: Treatment evaluated in laboratory incubation study 

Treatments 
 

P fertilizer  Urea  MOP  
Clinoptilolite 
zeolite 

 ------------------------- (g pot-1)  ------------------------ 

 T0 250 g soil  

TSP 

T1 250 g soil  + 4.85 + 4.85 + 2.47    
T2 250 g soil  + 3.64  + 3.64  + 1.85  + 10.34 
T3 250 g soil  + 2.43 + 2.43 + 1.24   + 12.17 
T4 250 g soil  + 1.21  + 1.21  + 0.62   + 14.00 

ERP 

E1 250 g soil  + 7.95 + 4.85 + 2.47    
E2 250 g soil  + 5.96 + 3.64  + 1.85  + 13.00 
E3 250 g soil  + 3.98 + 2.43 + 1.24   + 15.30 
E4 250 g soil  + 1.99 + 1.21  + 0.62   + 17.60 

CIRP 

C1 250 g soil  + 7.42 + 4.85 + 2.47    
C2 250 g soil  + 5.57 + 3.64  + 1.85  + 12.50 
C3 250 g soil  + 3.71 + 2.43 + 1.24   + 14.75 
C4 250 g soil  + 1.86 + 1.21  + 0.62   + 17.00 

 

 

Inclusion of urea and MOP in the study was to mimic planting inputs which include these 

fertilizers to sustain plant growth. Clinoptilolite zeolite as amendment was added to the treatments 

with reduced amount of fertilization. The treatment with 50% fertilizer reduction received 100% 

clinoptilolite zeolite (the amount of clinoptilolite zeolite used was based on the weight of the 

recommended fertilization rate). As the fertilizer rate increased by 25% (treatments with 75% 

fertilization), clinoptilolite zeolite rate was reduced to 85% of the recommended fertilizer weight. The 

amount of clinoptilolite zeolite added in 75% fertilizer reduction (treatments with 25% fertilization) 

was 115% of the fertilizer weight. This study was conducted in a closed system without plant 

interaction and leaching effect to evaluate the reaction of the treatments with soil only. 

  

 

Statistical analysis 
Analysis of variance (ANOVA) was used to test significant effect of treatments whereas 

means of treatments were compared using Tukey’s test. Statistical  nalysis System (S S) version 9.2 

was used for all the statistical analysis (SAS, 2008). 
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Results and discussion 

Effects of amending fertilizers with clinoptilolite zeolite on selected soil chemical properties  

 

Incubation time and interaction between incubation time and treatments significantly affected 

soil acidity, exchangeable cations (Al, Fe, K, Ca, and Mg), and soil P fractions (Tables 4 and 5). The 

significant interaction obtained could be due to various chemical and biological processes occuring in 

the soil including mineralization, immobilization, adsorption, and desorption throughout the study as 

the soil reacted due to undergone repeated protonation and deprotonation.  

 Effects of treatments on soil pH at 30, 60 and 90 days after incubation (DAI) are presented in 

Figure 2. The pH of soil alone (T0) was acidic. Application of fertilizers amended with clinoptilolite 

zeolite significantly improved soil pH. Treatments with higher amount of clinoptilolite zeolite 

significantly increased soil pH because of the catalytic effect of the clinoptilolite zeolite and parent 

material structure (Table 1). The liming effect of the clinoptilolite zeolite does not only raise soil pH, 

it also reduces soil acidity by minimizing Al hydrolysis in highly weathered soils such as Bekenu 

series. A recent study has revealed that zeolites are more effective in increasing soil pH compared to 

organic amendments (Basri et al., 2013) and clinoptilolite zeolite improves soil CEC (Ramesh and 

Reddy, 2011; Nibou et al., 2009). 

 

The effects of treatments on soil titratable acidity (sum of total H+ and exchangeable Al) are 

shown in Figure 2. Soil titratable acidity was higher in the treatments with TSP compared to those of 

the rock phosphates. For example, T1 which is the treatment with highest amount of TSP showed 

higher titratable acidity. However, the opposite was true where H+ and titratable acidity decreased 

with decreasing amount of TSP and increasing amount of clinoptilolite zeolite. The results for RP 

treatments were however different. The insignificant differences could be due to inactive 

displacement of H+ and the retention of basic cations by clinoptilolite zeolite. Also, there were no 

plants to contribute H+ removal through uptake of nutrients in this study. This is also evident in soil 

exchangeable Ca as the effects of the treatments with 25% fertilizer reduction and recommended 

fertilizer rates on this cation was similar (Figure 4).  

 

With the exception of soil only, soil exchangeable Al was negligible regardless of incubation 

time, rates of clinoptilolite zeolite, and P fertilizers. The increase in soil pH reduced exchangeable Al 

by reducing solubility of Al species to less soluble form during the course of undergoing repeated 

deprotonation to precipitate (Krstic et al., 2012; Azura et al., 2011).  

 

Soil exchangeable Fe was significantly higher in soil alone (T0) compared with other 

treatments because the latter showed higher soil acidity than the former (Figure 2). Increase in soil pH 
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reduces solubility Al and Fe to sorb P. However, among the treatments with P fertilizers and 

clinoptilolite zeolite, the treatments with lower amount of P fertilizers and higher rates of clinoptilolite 

zeolite showed higher soil exchangeable Fe because of the inherent content of Fe in the clinoptilolite 

zeolite and P fertilizers (Tables 1 and 2).  

 

Potassium availability (Figure 3) was highest in the normal rate of P fertilization regardless of 

the type of P fertilizer and incubation time because of reduction of the amount of fertilizers in the 

other treatments. Exchangeable Ca (Figure 3) content in soil was similar although fertilizer 

application was reduced by 25% regardless of the type of P fertilizer used. Soil exchangeable Mg 

(Figure 3) varied with the treatments with 25% fertilizer reduction and recommended fertilization 

rates. Soil exchangeable Mg following different amounts of CIRP application was similar (C1=C2). 

In the case of TSP application, T1 showed significantly higher effect compared with T2 whereas the 

effect of ERP application on soil exchangeable Mg was the opposite of TSP treatments where E2 

showed higher effect than E1. Inherent contents of Mg (Table 2) in the respective P fertilizers could 

partly explain these observations. The reducing trend of K contents is consistent with reduction of 

fertilizer with increasing rate of clinoptilolite zeolite. Although clinoptilolite zeolite provides extra 

vacant sites for bases retention, the affinity of the sorption depends on valence and hydration of the 

bases. This partly explains the retention of Ca and Mg over K despite 25% reduction of fertilizers. 

The relatively higher Ca contents in the P fertilizers and clinoptilolite zeolite might have also 

contributed to this observation (Tables 1 and 2). 
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Table 4: Mean square values of analysis of variance (ANOVA) to evaluate effects of treatments and incubation time on soil pH, titratable acidity, 
exchangeable Al, Fe, K, Ca, and Mg 

Source of variations 
Degree of 
freedom 

       Mean square 

pH 
Exchangeable 

Acidity Al Fe K Ca Mg 

TSP          

Time 2 0.07* 0.18* 0.014* 154498.9* 309775.5* 174512.9* 920.7* 

Treatments 4 5.84* 0.27* 0.180* 72909.5* 44124756.1* 2255759.6* 24021.8* 

Treatments*Time  8 0.04* 0.02 0.009* 10355.2* 63857.2* 89966.9* 31.9 

Error 30        

ERP         

Time 2 0.19* 0.380* 0.014* 56911.4* 250544* 268093.2* 32.5* 

Treatments 4 7.14* 0.055* 0.178* 111109* 48112498.2* 12468482* 376.3* 

Treatments*Time  8 0.03* 0.031* 0.009* 18358.3* 51179.2* 284140.1* 154.7* 

Error 30        

CIRP         

Time 2 0.15* 0.56* 0.014* 52240.3* 734092.4* 292254.9* 389.4* 

Treatments 4 6.41* 0.15* 0.179* 99059.6* 51944144.5* 3921445.8* 3983.7* 

Treatments*Time  8 0.05* 0.08* 0.009* 17918.3* 137845 73679.8* 186.9* 

Error 30        

Note: Asterisk (*) indicates significant at p≤0.05 
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Table 5: Mean square values of analysis of variance (ANOVA) to evaluate effects of treatments and incubation time on soil total P, available P, and inorganic 
P (loosely soluble-P, Al-P, Fe-P, reductant-P, Ca-P, and occluded-P) 

Source of variations 
Degree of 
freedom  

Mean square 

Total P Available P Sol-P Al-P Fe-P Red-P Ca-P Occl-P 

TSP          

Time 2 141570.3* 1863895.0* 10932.2* 83234.2* 15793.6* 24.75* 64123.1* 1612.6* 

Treatments 4 11997853.0* 8123606.0* 141977.2* 2625319* 74561.1* 2.34* 100898.8* 1327.7* 

Treatments*Time  8 152724.2* 512452.3* 2517.6* 67424.7* 4537.8* 3.48* 17763.2*  825.8* 

Error 30         

ERP          

Time 2 7593379.8* 1086219.0* 0.003* 216.2* 8.69* 12.98* 972584.7* 605.6* 

Treatments 4 35738349.1* 3436152.0* 0.004* 854.8* 274.42* 0.98* 6209968.0* 6892.1* 

Treatments*Time  8 3904456.9* 165146.1* 0.002* 78.4* 2.93* 2.75* 498917.5* 353.8* 

Error 30         

CIRP          

Time 2 2625341.3* 87580.7* 0.076* 82.17* 365.42* 43.20* 140557.9* 17309.1* 

Treatments 4 12470362.3* 669439.5* 0.004* 1805.90* 52561.08* 2.47* 2363812* 72135.5* 

Treatments*Time  8 986563.2* 127051.1* 0.022* 291.90* 357.65* 0.80* 187633.5* 3230.3* 

Error 30         

Note: Asterisk (*) indicates significant at p≤0.05  
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Figure 2: Effects of treatments on soil pH, titratable acidity, and exchangeable Fe at 30, 60, and 90 DAI. Means with different letter indicates significant 

differences using Tukey’s test at p ≤0.05. (i), (ii), and (iii) represent treatments with TSP, ERP, CIRP, and clinoptilolite zeolite, respectively. Capital 
letters indicate titratable acidity whereas small letters indicate H+. Note: Letters without prime represent 30 DAI, single prime superscript represents 
60 DAI, and double prime superscript represents 90 DAI 
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Figure 3: Effects of treatments on soil exchangeable K, Ca, and Mg at 30, 60, and 90 DAI. Means with different letter indicates significant differences using 
Tukey’s test at p ≤0.05. (i), (ii), and (iii) represent treatments with TSP, ERP, CIRP, and clinoptilolite zeolite, respectively. Note: Letters without prime 
represent 30 DAI, single prime superscript represents 60 DAI, and double prime superscript represents 90 DAI 
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Effects of amending fertilizers with clinoptilolite zeolite on soil total and available 

phosphorus 

Soil total P and available P at 30, 60 and 90 days after incubation (DAI) are presented in 

Figure 4. The reducing trend in soil total and available P regardless of incubation time and type of P 

fertilizer was due to the reduction rates of the P fertilizer used. Sorption of P may have also possibly 

decreased with increasing soil pH (Figure 2). This relates to the increase of negative charges on soil 

particles as amorphous Fe and Al oxides precipitated and greater competition of hydroxyl ion (OH-) 

with phosphate ions for the adsorption sites when soil pH increased (Naidu and Syers, 1990). Limited 

availability of P to satisfy sorption sites also explains the increase in soil exchangeable Fe with 

reducing P fertilizer rate. Larger sorption capacity of Al implies better saturation of Al compared to 

Fe (Maguire et al., 2000; He et al., 1992). 
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Figure 4: Effects of treatments on soil total and available P at 30, 60, and 90 DAI. Means with different 

letter indicates significant differences using Tukey’s test at p ≤0.05. (i), (ii), and (iii) represent 
treatments with TSP, ERP, CIRP, and clinoptilolite zeolite, respectively. Note: Letters without 
prime represent 30 DAI, single prime superscript represents 60 DAI, and double prime 
superscript represents 90 DAI 

 

Effects of amending fertilizers with clinoptilolite zeolite on soil inorganic phosphorus 

fractions distribution  

 

The percentage of inorganic P following application of TSP, ERP, and CIRP are summarized 

in Table 6. At 30 DAI, active P fractions (Fe-P > Ca-P > Al-P) constituted 80% but increased to 90% 

at 90 DAI under soil alone (T0). Iron bound P showed the largest fractions of inorganic P regardless 

of time of incubation. At 30 DAI, Fe-P was approximately 58% and the fraction increased with time 

to 68% at 90 DAI. Application of fertilizer regardless of type and rate altered the distribution of soil 

inorganic P in this study.  

Upon application of TSP (Table 6), Fe-P fraction reduced by 2 to 4 folds, whereas Al-P 

increased by 5 folds (dominant inorganic P fraction). The observation is however contrary to the soil 

treated with rock phosphates as Ca-P was the dominant fraction regardless time of incubation and rate 

of rock phosphate applied. Application of ERP resulted in more than 90% Ca-P fraction whereas 

CIRP showed almost 60% to 70% Ca-P regardless of time of incubation. Figure 6 shows the effects of 

treatments on Sol-P. Treatments with TSP showed Sol-P recovery from 30 DAI to 90 DAI whereas 

for ERP and CIRP treatments started from 60 DAI to 90 DAI. The higher recovery of of Sol-P in TSP 

treatments compared with those of rock phosphates was due to the solubility of TSP. The significantly 

higher content of Sol-P in T1 regardless of day of incubation was due to the higher rate of TSP 

applied (normal fertilization which is 100% TSP). The reduction trend in T2, T5, and T8 was 

attributed to reduction of TSP application by 25%, 50%, and 75%, of the recommended rate 

respectively. Application of higher P rates was able to quench the P fixation sites such that P 

buffering capacity was exceeded. Hence, the higher amount of Sol-P recovery following the 

application of TSP (Buresh et al., 1997).  

Loosely soluble-P recovery from 60 DAI due to increase in soil pH (Figure 2) following 

application of clinoptilolite zeolite and rock phosphates as relatively higher pH impedes release of P 

from rock phosphates. This, could partly explain the insignificant differences regardless of 

fertilization. In addition, in this incubation study, there was no leaching, no roots exudates, and no 

nutrients uptake to induce dissolution of the rock phosphates. The transformation of inorganic P 

fractions is mainly governed by soil pH.    

Regardless of time of incubation, TSP application in soils showed higher Al-P content 

compared with rock phosphates (Figure 5) suggesting that a portion of P applied (TSP) to the soil 
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might have been adsorbed at a faster rate to allophane and Al oxides more than that converted to any 

other forms. This observation is consistent with a report that Al-P varies with rate of fertilization, high 

sesquioxides content, and low pH (Amaizah et al., 2013). Hence, the relative increase in Al-P 

recovery following the application of TSP in this study suggests the strong effect of fertilization on 

Al-P. 

 

Rock phosphates are generally made up of calcium apatite, so they considerably increase Ca-

P fraction in soils (Hongqing et al. 2001). As soil pH increased (Figure 2), dissolution of rock 

phosphate was impeded. The absence of plant-soil association in this study could not significantly 

affect induced-exchange mechanism with which clinoptilolite zeolite induces rock phosphate 

dissolution. The higher Ca-P content in the rock phosphate treatments compared with TSP treatments 

suggests that undissolved rock phosphates remained in the soil and dissolved slowly (Figure 5). A 

lower Ca-P in CIRP could be due to the better solubility of CIRP than ERP. Regardless of rate of P 

application, the reduction of Ca-P with time could be related to the recovery of Sol-P in the TSP 

treatments as previously discussed. Appreciable amounts of the solubilized P (TSP) might have also 

been partly fixed by Al and Fe to form Al-P and Fe-P pool in this high P fixing soils (Figures 5 and 6). 

This observation is consistent with a report that in high P fixing Ultisol, Al-P and Fe-P dominated 

upon application of TSP (highly soluble P) whereas Ca-P dominated in soils was high with rock 

phosphate application (Hongqing et al., 2001; Zoysa et al., 1997). However, some of the heavily 

fertilized acid soils might contain significant amounts of Ca-P (Lookman et al., 1996) and 

hydroxyapatite has also been found as a product of the superphosphates dissolution in acidic and 

slightly acidic soils (Kumar et al., 1994). 

 Reductant soluble-P is assumed to be P associated with poorly crystalline Fe oxides that is 

stable under oxidized condition (Figure 6). Reductant soil soluble-P as affected by fertilization 

regardless of rate showed a decreasing trend with time of incubation. This could be related to 

transformation of Red-P into other forms of P with increasing time. The level of Red-P in the natural 

environment can be manipulated as an index of potential P release into soil that is subjected to redox 

conditions (Sharpley, 2000; Gu and Qin, 1997). In a study on waterlogged rice fields, it was reported 

that Red-P, Al-P and Fe-P were positively correlated with P availability, suggesting their contributions 

to supply of the P to crops in the areas under stress condition (Fe3+ could release adsorbed P when 

reduced to Fe2+) (Adhami et al., 2013). However, in this study, there was no redox potential involved 

and thus, implicates high content of Occl-P because adsorbed P might have been physically 

encapsulated or surrounded by secondary minerals such as Fe and Al oxyhydroxides with time (Figure 

6).  
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Table 6: Percentage of soil inorganic P fractions as affected by TSP, ERP and CIRP treatments at 30, 60 and 90 DAI. Note: T0: soil alone; T1, E1, C1: recommended P 
fertilizer, T2, E2, C2: 75% fertilization + 85% zeolite; T5, E5, C5: 50% fertilization + 100% zeolite and T8, E8, C8: 25% fertilization + 115% zeolite 
 

DAI Pi-Type   
TSP ERP CIRP 

T0 T1 T2 T5 T8 T0 E1 E2 E5 E8 T0 C1 C2 C5 C8 

30 

Sol-P 

(%) 

0.0 12.0 8.0 5.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Al-P 10.0 56.0 56.0 54.0 51.0 10.0 1.0 1.0 2.0 6.0 10.0 2.0 2.0 3.0 6.0 

Fe-P 59.0 14.0 17.0 24.0 26.0 59.0 0.0 1.0 1.0 5.0 59.0 9.0 12.0 12.0 16.0 

Red-P 12.0 0.0 0.0 0.0 1.0 12.0 0.0 0.0 0.0 1.0 12.0 0.0 1.0 1.0 1.0 

Ca-P 11.0 17.0 18.0 16.0 18.0 11.0 97.0 94.0 93.0 75.0 11.0 78.0 69.0 62.0 51.0 

Occl-P 8.0 1.0 1.0 1.0 2.0 8.0 2.0 4.0 4.0 13.0 8.0 11.0 16.0 22.0 26.0 

60 

Sol-P 

(%) 

0.0 16.0 15.0 9.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Al-P 9.0 48.0 55.0 58.0 56.0 9.0 2.0 2.0 1.0 3.0 9.0 4.0 3.0 6.0 5.0 

Fe-P 64.0 12.0 15.0 13.0 23.0 64.0 1.0 1.0 1.0 3.0 64.0 15.0 11.0 16.0 21.0 

Red-P 8.0 0.0 0.0 0.0 0.0 8.0 0.0 0.0 0.0 1.0 8.0 0.0 0.0 0.0 1.0 

Ca-P 6.0 20.0 13.0 17.0 17.0 6.0 92.0 88.0 96.0 88.0 6.0 71.0 77.0 64.0 53.0 

Occl-P 13.0 4.0 2.0 3.0 1.0 13.0 5.0 9.0 2.0 5.0 13.0 10.0 9.0 14.0 20.0 

90 

Sol-P 

(%) 

0.0 13.0 10.0 8.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Al-P 10.0 74.0 73.0 64.0 47.0 10.0 2.0 1.0 1.0 2.0 10.0 1.0 4.0 6.0 4.0 

Fe-P 68.0 8.0 9.0 18.0 26.0 68.0 0.0 1.0 1.0 2.0 68.0 13.0 15.0 10.0 11.0 

Red-P 2.0 5.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 1.0 

Ca-P 13.0 0.0 7.0 9.0 20.0 13.0 95.0 94.0 97.0 92.0 13.0 68.0 63.0 61.0 60.0 

Occl-P 7.0 0.0 1.0 1.0 2.0 7.0 3.0 4.0 1.0 4.0 7.0 18.0 18.0 23.0 24.0 
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Figure 5: Effects of treatments on Sol-P, Al-P, and Ca-P at 30, 60, and 90 DAI. Means with different letter indicates significant differences using Tukey’s test at 
p ≤0.05. (i), (ii), and (iii) represent treatments with TSP, ERP, CIRP, and clinoptilolite zeolite, respectively. Note: Letters without prime represent 30 
DAI, single prime superscript represents 60 DAI, and double prime superscript represents 90 DAI 
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Figure 6: Effects of treatments on Fe-P, reductant-P and occluded-P at 30, 60, and 90 DAI. Means with different letter indicates significant differences using 

Tukey’s test at p ≤0.05. (i), (ii), and (iii) represent treatments with TSP, ERP, CIRP, and clinoptilolite zeolite, respectively. Note: Letters without prime 
represent 30 DAI, single prime superscript represents 60 DAI, and double prime superscript represents 90 DAI 
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Conclusions 
Reduced rate of fertilizers with increasing rate of clinoptilolite zeolite significantly increase 

soil pH. As a result, reduction of exchangeable Al was comparably to the recommended rate of 

fertilizer which also reduced soil titratable acidity.  Retention of Ca and Mg in the treatments with 85% 

clinoptilolite zeolite and 25% fertilizers reduction (T2, E2 and C2) was comparable to the standard 

recommendation. However, treatments with clinoptilolite zeolite neither significantly reduced 

exchangeable Fe, P fixation (Al-P, Fe-P, Ca-P, Red-P, and Occl-P) nor increased soil total P and 

availability of P. Although retention and availability of P was not striking with the of inclusion 

clinoptilolite zeolite in this study, results could be different if the soil is cultivated with crops. Root 

exudation and uptake of nutrients may contribute to release of organic acids to compete for adsorption 

sites and reducing Ca availability in the soil to trigger induced-exchange dissolution of RP-

clinoptilolite zeolite. The treatment with 25% fertilizer reduction amended with 85% clinoptilolite 

zeolite is suggested for further evaluation in pot and field studies as its effects are similar to that of the 

recommended fertilizer rate.  
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Abstract  

Amending fertilizers with clinoptilolite zeolite may improve nutrients availability and 

selected soil chemical properties by exploiting the large surface area, high negativity, and alkaline 

nature of clinoptilolite zeolite to reduce environmental pollution due to unbalanced use of chemical 

fertilizers and mobility of toxic elements on acid soils. The acidity, nutrients, and toxic metals bound 

in acid soil tend to unlock as soil capacity to bind to the positively charged ions depletes in high 

weathering, rainfall, and heat of the tropics. A laboratory leaching experiment was carried out to 

evaluate nutrients retention from soils treated with different amounts of clinoptilolite zeolite as 

fertilizers rate reduced over 30 days. Leachates and soil were analyzed using standard procedure. 

Results indicated clinoptilolite zeolite inclusion reduced pH buffering capacity in the soil and reduced 

the leaching losses of Ca and Mg. The availability of N, P, K, and Fe in the soil significantly reduced 

following the application clinoptilolite zeolite at 25% fertilizer reduction. The effect of the 

clinoptilolite zeolite on nutrients was not glaring because of the fertilizer reduction.  

 

Keywords: pH buffering capacity, nutrients leaching, clinoptilolite zeolite, nutrients retention, 

environmental sustainability  

 

Introduction 

 
In the humid climates, nutrients losses through leaching are higher than in the dry climates 

(Havlin et al., 1999). Sandy soils with high water infiltration rate and low nutrients retention capacity 

are prone to nutrients leaching (von Uexküll, 1986). In acid soils, nutrients leaching tend to increase 

mailto:osumanuharuna@gmail.com
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because roots development is impeded. Mobility of anions such as nitrate and phosphates in highly 

weathered acid soils is also impeded because of the high anion exchange capacity of those soils.  In 

contrast to nitrate, phosphate movement (through diffusion) is very low in most soils because of P 

precipitation and adsorption to mineral surfaces. However, excessive application and inefficient use of 

P fertilizers could cause water pollution such as eutrophication as available P in soils may enter water 

bodies through soil erosion (Zhou and Zhu, 2003) rather than through leaching (Ruban, 1999) except 

in very sandy and organic soils (Wild, 1988). 

In a study where clinoptilolite zeolite was used in the fertilization programme of maize 

cultivation on an acid soil, the Clinoptilolite zeolite neither significantly increased soil pH, P 

availability, bases cations nor reduced P fixation, soil acidity, and exchangeable Al (Ahmed et al., 

2016). However, dry matter production, yield of fresh cobs, nutrient uptake, and agronomic efficiency 

were similar for the maize plants with or without clinoptilolite zeolite (Ahmed et al., 2016). With the 

exception of soil pH which improved with clinoptilolite zeolite and 75% fertilizer application (Urea, 

Egypt Rock Phosphate, and KCl) the aforementioned results obtained in the first maize plant cycle 

were similar to those obtained in the second cycle (Ahmed et al., 2016; Aainaa et al., 2015). These 

results suggest that the use of clinoptilolite zeolite in agriculture is beneficial as it can be used to 

reduce the unbalanced use of N, P, and K fertilizers of Zea mays L. and related crops cultivated on 

acid soils. Perhaps, in a long term, soil chemical properties could significantly improve due to carry 

over effects of clinoptilolite zeolite. 

However, further assessment on nutrients leaching for environmental consideration besides 

minimizing environmental pollution due to excessive use of chemical fertilizers needs to be clarified. 

Thus, this study was conducted to determine retention and leaching of nutrients added to soil as 

affected by clinoptilolite zeolite application in the fertilization programme of Zea mays L. In this 

present study, clinoptilolite zeolite was adopted as an amendment to improve P use efficiency and to 

also reduce N, P, and K fertilizers use. 

 

Materials and methods 

Soil Sampling, Preparation, and Characterization.  

 

The clinoptilolite zeolite used in this study was imported from Indonesia. The mineral soil 

used in the study is typical of Bekenu series (Typic Paleudults) and it was sampled at an uncultivated 

area of Universiti Putra Malaysia, Bintulu Campus Sarawak, Malaysia. The coordinates of the soil 

sampling site are latitude 03˚ 12.241’ N and longitude 113˚ 04.270’ E. The soil samples taken at 0-15 

cm depth were air-dried, ground, and sieved to pass to a 2 mm sieved. Soil samples were 

characterized for physical and chemical properties before and after the leaching study. Soil texture 

was determined using the hydrometer method (Tan, 2005). pH of the soil and clinoptilolite zeolite 
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were determined in distilled water (at ratio of 1:2.5 soil:water) using a digital pH (Peech, 1965). Soil 

organic matter and total carbon were determined using the loss-on-ignition method (Piccolo, 1996). 

Soil bulk density was determined using the method described by Tan (2005). Soil total P (extracted 

using aqua regia) and available P (extracted using Mehlich No.1) (Tan, 2005) were determined using 

spectrophotometer (Lambda 25, Perkin Elmer) after blue color development (Murphy and Riley, 

1962). Soil cation exchange capacity (CEC) was determined using the ammonium acetate method 

(Cottenie, 1980) whereas CEC of the clinoptilolite zeolite was determined using the CsCl method 

(Ming and Dixon, 1986). The CsCl method used avoids underestimation of CEC of the zeolites as this 

method does not lead to entrapment of ammonium ions in the channels of zeolites. Exchangeable 

cations were extracted using double acid as extractant following the method of Mehlich No.1 

(Mehlich, 1953). Afterwards, the exchangeable cation concentrations of the solution extracted from 

the soil were determined using Atomic Absorption Spectrometer (AAnalyst 800, Perkin Elmer 

Instruments, Norwalk, CT), Total titratable acidity was determined using acid-base titration method 

(Rowell, 1994) whereas Kjeldahl method was used to determined total N (Bremner, 1965),  

The selected physico-chemical properties of Bekenu series and clinoptilolite zeolite are shown 

in Table 1 whereas the chemical properties of P fertilizers (TSP, ERP, and CIRP) are shown in Table 2. 

The soil used was acidic (pH=4.32), low in CEC (5.33 cmol(+)kg-1) and total N (0.06%). Soil total 

carbon, exchangeable K, Ca, and Mg were slightly higher than the standard range for this soil type 

(Paramananthan, 2000) because of litter decomposition with time at the soil surface as the soil used in 

this study was taken from an uncultivated area.  

 
Table 2: Selected soil physico-chemical properties of Bekenu series 

Soil properties 
Soil 

Clinoptilolite zeolite 
Value obtained Standard range* 

pH (water) 4.32 4.6-4.9 8.54 
Bulk density (g cm-3) 1.01 Nd Nd 
CEC (cmol(+)kg-1) 5.33 3.86-8.46 75.4 
Total N (%) 0.06 0.04-0.17 0.22 
Total P (%) 0.005 Nd 0.01 
Available P (mg kg-1) 2.48 Nd Nd 
Organic matter (%) 5.60 Nd Nd 
Total carbon (%) 3.25 0.57-2.51 Nd 
Total Fe    7.51 Nd 0.11 
Total acidity    1.38 Nd Nd 
Exchangeable Al    0.9 Nd Nd 
Exchangeable H  

(cmol(+)kg-1) 
0.48 Nd Nd 

Exchangeable K  0.24 0.05-0.19 6.16 
Exchangeable Ca    0.76 0.01 22.30 
Exchangeable Mg    0.45 0.07-0.21 2.36 
Exchangeable Na   3.60 0.01 18.99 
Texture SL SL Nd 

Note: Nd= not determine, SL= sandy loam,  asterisk (*) subjected to the soil development, standard 
data range by Paramananthan (2000)  
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The total P2O5 of TSP, CIRP, and ERP were 41%, 24%, and 27%, respectively (Table 2). 

Calcium in TSP, ERP, and CIRP were 4%, 47%, and 51%, respectively. The higher amounts of Ca in 

ERP and CIRP were due to inherent contents of Ca in the parent materials of the fertilizers. High Ca 

in the apatite of the rock phosphates contributes to alkalinity of these phosphate fertilizers compared 

with that of the acidulated TSP. 

 
Table 3: Selected chemical properties of phosphorus fertilizers 

Property TSP ERP CIRP 

pH (water) 2.46 7.42 7.93 
Total P (%) 18.09 11.96 10.62 
Total P2O5 (%) 41.12 27.19 24.15 
Total K (%) 0.42 0.25 0.31 
Total Ca (%) 4.88 47.55 51.73 
Total Mg (%) 0.35 0.17 0.24 
Total Fe (%) 0.38 0.61 0.52 

 
 

Determination of soil pH buffering capacity 
 

Prior to soil pH buffering capacity determination, 250 g of soil (Bekenu Series) were mixed 

thoroughly with clinoptilolite zeolite. Three clinoptilolite zeolite rates were evaluated represent the 

rate applied in combination with different P fertilizers (TSP, ERP, and CIRP).  

T0 : Soil only (controlled) 
Z0 : Clinoptilolite zeolite only 
T2 : Soil  + 0.34 t ha-1 clinoptilolite zeolite 
E2 : Soil  + 0.43 t ha-1 clinoptilolite zeolite 
C2 : Soil  + 0.42 t ha-1 clinoptilolite zeolite 

 
 

Following the method of Rowell (1994), soil pH buffering capacity was determined using 0.1 

M NaOH and 0.1 M HCl. The samples were equilibrated for 7 days as described by Aitken and 

Moody (1994). A 10 g of air-dried soil was weighed into a plastic vial, and 25 mL of distilled water 

were added. A 1 mL of 0.05 M CaCl2 was added to minimize variation in ionic strength and 0.25 mL 

of toluene addition was to inhibit microorganism activity. Suspensions were shaken for 24 hours at 

180 rpm after which they were equilibrated for seven days. Samples were shaken for 2 minutes daily 

until the seventh day of equilibration. Titration curves were established by repeatedly adding 0.1 M 

HCl to the suspensions and pH measured until the required pH range was obtained. The amount of 

acid required to reduce pH by one unit was calculated as the negative reciprocal of the slope of the 

linear regression. The values of pH buffering capacity were obtained from the slope of titration curves 

of acid (0.1 M HCl) or base (0.1 M NaOH) additions plotted against pH (pH range 4 to 7). With the 

exception of soil alone, the other treatments were titrated with 0.1 M HCl. The soil alone treatment 

was titrated with 0.1 M NaOH to avoid underestimation of the acidity of the soil.  
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Laboratory leaching experiment 

 
A laboratory leaching experiment was carried out at the Soil Science Laboratory of Universiti 

Putra Malaysia Bintulu Sarawak Campus Malaysia. Based on the bulk density of Bekenu series, 250 g 

soil were filled in polypropylene container. Nitrogen, P, and K fertilizers, and clinoptilolite zeolite 

were mixed thoroughly with soil prior to the leaching experiment. Distilled water was sprayed every 

three days to every pot with soil such that leachate (through leaching) was collected to determine the 

amount of nutrients leached from the soil. The volume of distilled water (48 mL) used in this leaching 

study was based on rainy days over 30 days. A 5 year rainfall data was obtained from the Malaysian 

Meteorological Department from which average amount of rainfall per month was used. Leachates 

were collected at 3 days interval over 30 days of leaching for determination of pH, available N, P, K, 

Ca, Mg, Al, and Fe whereas soil samples were collected at 30 days of leaching. The soil samples were 

air-dried, and analyzed for pH, titratable acidity, total P, available P, exchangeable Al, Fe, K, Ca, Mg, 

and total N using the aforementioned procedures.  

 

Experimental design and treatments 

 

The experimental design was completely randomized with three replicates. The treatments 

were based on treatments evaluated in our previous field trials (Aainaa, 2016). The rate of the 

fertilizers used was based on standard recommendation (Malaysian Agricultural Research and 

Development Institute, 1990). The recommended rates of N, P, and K fertilizers used were as follows: 

60 kg N ha-1 (130 kg ha-1 urea), 60 kg P2O5 ha-1 (130 kg ha-1 TSP: 214 kg ha-1 ERP: 200 kg ha-1 CIRP), 

and 40 kg K2O ha-1 (67 kg ha-1 MOP). The rates of the fertilizers applied in this study were scaled 

down to per plant basis (Table 3).  

 
Table 4: Treatments evaluated in leaching study 

Treatment  

 
Urea P fertilizer MOP 

Clinoptilolite 
zeolite 

 -------------------------- g pot-1------------------------- 

Control Soil only T0 : - - - - 

TSP 
100% T1 : 4.85 +  4.84 +  2.47 - 

75% T2 : 3.64 +  3.63 +  1.85 +  10.34 

ERP 
100% E1 : 4.85 +  7.95 +  2.47 - 

75% E2 : 3.64 +  5.96 +  1.85 +  13.00 

CIRP 
100% C1 : 4.85 +  7.42 +  2.47 - 

75% C2 : 3.64 +  5.57 +  1.85 +  12.50 

Clinoptilolite 
zeolite   

Rate for TSP  TZ : - - - +  10.34 

Rate for ERP EZ : - - - +  13.00 

Rate for CIRP CZ : - - - +  12.50 
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Statistical analysis 

Results and discussion 

pH buffering capacity 

 

pH buffering capacity of a soil is the resistance of that soil to changes in pH when an acid or a 

base is added. It is expressed as the amount of protons required to change soil pH by one unit (mmol 

H+ kg-1 soil pH-1) (Rowell, 1994). As shown in Figure 1, there was positive linear relationship 

between amount of OH- and soil pH for soil alone (T0). However, the effects of clinoptilolite zeolite 

alone (T1) and different rates of clinoptilolite zeolite mixed with soil (T2, T3, and T4) on soil pH 

buffering capacity reflected or resulted in the negative linear relationship between H+ and soil pH. 

 
 

 
 

 
Figure 2: Soil pH buffering capacity. Treatment of soil alone (T0) using 0.1 M NaOH, Clinoptilolite 

zeolite alone (T1), 0.34 t ha-1 clinoptilolite zeolite (T2), 0.43 t ha-1 clinoptilolite zeolite (T3), 
and 0.42 t ha-1 clinoptilolite zeolite (T4) 
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Table 4 summarizes the pH buffering capacity of the treatments. Although the clinoptilolite 

zeolite had higher CEC (Table 2), a higher pH buffering capacity recorded for soil alone could be due 

to organic matter in the soil. The declining pH buffering capacity observed is related to the changes in 

the mineral composition of the soils with clinoptilolite zeolite. Dissolution of primary minerals such 

as feldspar, minerals (allophane), and amorphous materials of the soils also explains the higher pH 

buffering capacity at low pH (Nelson and Su, 2010). The high pH buffering capacity recorded at 

pH >6.0 with the inclusion of clinoptilolite zeolite might be due to precipitation of Al3+ as Al(OH)3 

(Bloom 2000). The difference in this buffering capacity determines the degree of soil acidification.  

High weathering and strong leaching processes due to high rainfall and heat of the tropics 

cause depletion of base cations from soils. This accelerates soil acidification which negatively affects 

crop productivity. As example, mobility of toxic elements such as Al is detrimental to crop roots 

besides creating chemical stress in crops (Stevens et al., 2009). Soil acidification also enhances 

mobility and bioavailability of heavy metals such that they (heavy metals) cause plant injuries (Liao et 

al., 2005). 

 
Table 5: Summary of soil pH buffering capacity as affected by treatments 

Treatments pH Buffering capacity Adjusted R2 

T0 Soil alone 3.84 31.10 0.98* 

T1 Clinoptilolite zeolite alone 7.50 29.37 0.83* 

T2 Rate of Clinoptilolite zeolite for TSP 6.57 26.12 0.92* 

T3 Rate of Clinoptilolite zeolite ERP 6.77 25.50 0.94* 

T4 Rate of Clinoptilolite zeolite for CIRP 6.76 25.29 0.91* 

Note:  
Asterisk (*) represent significant difference at p ≤ 0.05 
Soil alone was titrated with base giving the BC unit of mmol OH- kg-1 soil 
Other treatments were titrated with acid giving the BC unit of mmol H+ kg-1 soil 

 
 

In a related study on Ultisols and Oxisols of the tropical and subtropical regions, the pH 

buffering capacity of these soils were reported to be in the range of 13 to 26 mmol kg-1 pH-1 (Xu et al., 

2012). The buffering capacity was reported to increase with increasing application of biochar (22-38 

mmol kg-1 pH-1). The functional groups and organic matter of biochar increase soil negative charges 

because they are able to absorb and provide protons through association reactions at low pH range 

(less than 7) and dissociation reactions at high pH range (above than 7) (Yuan et al. 2011). These 

reactions increase pH buffering capacity of acid soils upon biochar application (Xu et al., 2012). 

However, this observation is contrary to what was found in this study as the mechanism responsible 

for increasing CEC of clinoptilolite zeolite is substitution of Si4+ by Al3+. Despite reduction of soil pH 

buffering capacity, the range recorded in this present study is high (25.29-26.12 mmol kg-1 pH-1). The 

decrease in soil pH buffering capacity indicates increase in the soil sensitivity to acidic condition 

(Aitken 1992). 
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Effects of amending nitogen, phosphorus, and potssium fertilizers with clinoptilolite zeolite 

on selected nutrients availability and leaching  

 
pH of the leachates over 30 days of the leaching study is presented in Figure 2. Soil alone (T0) 

recorded the lowest range of pH throughout the leaching study as this treatment had no fertilizer. 

Initial pH of the leachate for soil alone was high because more Fe was adsorbed on the soil compared 

to H+, an evidence being the lower Al and Fe recorded in the leachate at the initial stage of the 

leaching study. Application of fertilizers, different rates of clinoptilolite zeolite, and amending 75% 

fertilizers with clinoptilolite zeolite increased pH of the leachates because cations were leached 

through displacement of H+ ions from solution (precipitation applied using distilled water had pH 5.6) 

by ion exchange (Sun et al. 2006; Singer and Munns, 1996).  

 
 

 
Figure 3: Effects of treatments on pH of leachates over thirty days of leaching 
 

 

Phosphorus loss from treatments is presented in Figure 3. Phosphorus availability in the 

leachate was higher from the beginning (day 3) of the leaching study after which it decreased 

gradually with increasing time for the TSP treatments (Figure 3a). However, the treatments with RPs 

(Figure 3b) showed contrary results where P in the leachates increased in the second leaching event 

(day 6) after which it decreased. The fact that the highest P loss from TSP and the RPs occurred on 

day 3, 6, and 9 and day 6, 9, and 12, respectively suggest that P is prone to leaching. The different 

trends of P leaching out of the soil indicate that the release of P from loosely adsorbed or water 

soluble P (for TSP) is a rapid reaction (Yang et al., 2007) whereas for the RPs their solubility to 

release P was slow. This observation is evident in the higher cumulative loss of P over the leaching 

periods in the TSP treatments compared with those of the RPs (Figure 3c). The TSP treatment with 

clinoptilolite zeolite (T2) showed significantly lower P loss compared with the recommended 

fertilization (T1) due to the lower amount of fertilizer in this treatment. 



Zeolites: Synthesis, Characterisation & Practice     89 

Ideal International E- Publication 
www.isca.co.in 

The lower amount of P leached from the RPs treatments was due low dissolution of calcium 

phosphates, fixation, and precipitation of P in the soil. Besides, there were no plants to induce RP 

dissolution via reduction of Ca2+ availability in soil upon nutrients uptake (Figure 4e). Clinoptilolite 

zeolite also has low propensity to form anionic complexes due to their negative framework structure 

(Haggerty and Bowman, 1994). Therefore, in this present study, the availability of P was partly 

governed by increase in soil pH.  

Regardless of treatment, leaching of Fe and Al over 30 days (Figures 4a and 4b) was low at 

the beginning of the leaching study. Higher amount of Fe was leached from day 9 to 18 day whereas 

Al in leachate was highest at day 12 of the leaching study after which it decreased with increasing 

time. Protonation of mineral surfaces (Al and Fe oxyhydroxides) as OH- groups on metal surface 

accepting H+ from the solution might have increased positive surface charges in the soil (Zhu et al., 

2005; Zhang et al., 1991). This surface protonation in soils promotes ferric oxides dissolution, thereby 

solubilizing the metals. This clarifies the higher amount of Fe in the leachate over 30 days of leaching 

(Figure 5a) compared with Al (Figure 5b). This observation is also consistent with the higher amount 

of Fe in the soil than Al (Table 1). 

The relatively lower amounts of Fe and Al in the leachates of the TSP treatments suggest that 

some of the P might have been fixed onto the soil colloids and precipitated to form complexes with Fe 

(strengite) and Al (variscite and various minerals of the plumbogummite group) (Hinsinger, 2001; 

Whitelaw, 2000; Havlin et al., 1999). However, this explanation is not applicable to RPs treatments as 

low RP dissolution is related to the parent material of RP (Table 2). Absence of plant also inhibited 

Ca uptake and exudation of organic acids and H+ to favor RP solubilization. This might have impeded 

metal ions complexation (Welch et al., 2002; Jones 1998). Moreover, the adoption of Fe and Al by the 

clinoptilolite zeolite resulted in significantly lower Fe and Al leached from the soil compared with 

those of 100% fertilizer because of 25% fertilizer reduction. The treatments with different rates of 

clinoptilolite zeolite (TZ, EZ, and CZ) without fertilizer application showed reduction of Fe in the 

leachate compared with soil alone, suggesting that the clinoptilolite zeolite might have enhanced 

retention of  Fe in the soil. The results obtained in this present study are consistent with those of a 

report on zeolites use on heavy metal reclamation of acid drainage mine (Motsi et al., 2009; Moreno 

et al., 2006). As shown in Figure 5e, it is also evident that ion exchange is one of the mechanisms 

responsible for Fe and Al reduction in the leachates. This is due to an increase in the amount of 

exchangeable Ca in the soil solution as Fe and Al concentrations increased in the RP treatments in 

spite of the reduced of the reduced amounts of the RPs used in this present study. 

Soil alone (T0) and the treatments with different rates of clinoptilolite zeolite (TZ, EZ, and 

CZ) had no significant effect on N loss throughout the incubation study (Figure 4c) because the 

treatments had no nitrogen. Irrespective of treatment, there was rapid decline of available N from day 

3 to day 9 followed by gradually decrease of N. At the recommended rate of N, cumulative N loss in 
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the TSP treatment (T1) was higher than those of the RP treatments (E1 and C1) (Figure 5c). The 

treatments with clinoptilolite zeolite showed significantly lower N loss compared with the 

recommended rate of fertilizers due to 25% of the fertilizers reduction. The higher amount of N 

leached was due to the higher amount of N applied as the soil with low CEC (5.33 cmol(+)kg-1) could 

not significantly retain more NH4
+ (Table 1). The fact that the effects of reducing fertilizers by 25% on 

maize fresh cobs, N uptake, and agronomic efficiency in the field trials were comparable to the 

recommended fertilizer rates (Ahmed et al., 2016) indicates that clinoptilolite zeolite served as an 

amendment which temporary captured and released nutrients such as N slowly to ensure timely 

release of nutrients and use by Zea mays L.  
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Figure 4: Effects of treatments on available P. (a) and (b) represent treatments with TSP, and rock 

phosphates and clinoptilolite zeolite, respectively. (c) represent cumulative P in leachates 
over thirty days of leaching. Means with different letter indicates significant differences 
using Tukey’s test at p ≤ 0.05 
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Leaching of K occurred rapidly until day 12 followed by a gradual decrease (Figure 4d). 

Regardless of P fertilizer type, higher amount of K was leached from the recommended rate treatments. 

This finding is related the low CEC of soil used in this leaching study (Table 1) as soils with low CEC 

and with no amendments such as clinoptilolite zeolite are poor in retaining or adsorbing K. However, it is 

worth noting that the significantly lower K in the leachate (Figure 5d) over the leaching period is also 

associated with the 25% fertilizers reduction.  

 
 
 

 
 
Figure 5: Effects of treatments on available Fe (a), Al (b), N (c), K (d), Ca (e), and Mg (f) in leachates over 

thirty days of leaching 
  
 

Leaching of Ca and Mg occurred rapidly until day 9 followed by a gradual decrease (Figures 4e 

and 4f). The amount of available Ca leached from the treatment with 25% fertilizer reduction and 

clinoptilolite zeolite was similar to the recommended rate (TSP treatments) (Figure 5e). In contrast, the 
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RP treatments showed higher Ca in the leachate of treatments with fertilizers reduction but amended with 

clinoptilolite zeolite. Application of the different rates of clinoptilolite zeolite (TZ, EZ, and CZ) also 

showed higher amount of Ca loss than soil alone because of the inherent contents of Ca in the 

clinoptilolite zeolite and the RP fertilizers (Table 2). Although clinoptilolite zeolite provides extra vacant 

sites for bases retention, the affinity of the sorption depends on valence and hydration of the bases. This 

partly explains why the losses of Ca and Mg (Figures 5e and 5f) through leaching were relatively lower 

than monovalent K despite 25% reduction of fertilizers.  

 
 

 
 
Figure 6: Cumulative Fe (a), Al (b), N (c), K (d), Ca (e), and Mg (f) in leachates over thirty days of leaching. 

Means with different letter indicates significant differences using Tukey’s test at p ≤ 0.05 
 

 

Soil chemical properties after 30 days of leaching  
 
Soil pH as affected by leaching is shown in Figure 6. The low soil pH of soil alone (T0) is 

consistent with the higher titratable acidity, exchangeable Al (Figure 7), and exchangeable Fe results 

(Figure 8) compared with other treatments. The increase in soil pH with fertilization and clinoptilolite 
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zeolite inclusion reduced exchangeable Fe and Al by reducing solubility of these metal ions to less 

soluble form due to repeated deprotonation to form precipitate complexes (Krstic et al., 2012; Azura et al., 

2011). Hence, Al was negligible whereas exchangeable Fe was reduced.  

Application of fertilizers only or amending fertilizers with clinoptilolite zeolite increased soil pH 

because of the parent materials of these materials. Besides, the high CEC of clinoptilolite zeolite enabled 

basic cations retention. However, the different rates of clinoptilolite zeolite (TZ, EZ, and CZ) did not 

increase soil pH because some Ca of the clinoptilolite zeolite leached (Figure 5e) over the 30 days of the 

leaching study. The clinoptilolite zeolite could not significantly neutralize H+ (Figure 7) of the soil 

because of the soil’s p  b uffering capacity. 

 

 

 
 
Figure 7: Effect of treatments on soil pH after thirty days of leaching. Means with different letter indicates 

significant differences using Tukey’s test at p ≤ 0.05 
 
 
 
 

 
 
 
Figure 8: Effect of treatments on soil titratable acidity after thirty days of leaching. Means with different 

letter indicates significant differences using Tukey’s test at p ≤ 0.05. Capital letter indicates 
means value of titratable acidity whereas small letter indicates H+ means value 

 



Zeolites: Synthesis, Characterisation & Practice     95 

Ideal International E- Publication 
www.isca.co.in 

Although soil pH did not increase with clinoptilolite zeolite application alone compared to soil 

alone, reduction of Al toxicity is reported to be beneficial for improving plant productivity as Al toxicity 

is the primary factor affecting plant growth (Kong et al., 2008). The presence of H+ partially alleviates 

phytotoxic H+ competes with Al3+ at the root cell plasma membrane (Kochian, 1995). At higher pH values, 

where monomeric hydroxyl Al species predominates, the activity of H+ is reduced such that its 

competitive effects are impeded. This explains the insignificant difference in H+ in the soil of this present 

study. This observation is also related to the greater pH buffering capacity recorded for soil alone and 

clinoptilolite zeolite only (Table 4). More protons are required to change soil pH by one unit (mmol H+ 

kg-1 soil pH-1) (Rowell, 1994).  

 

 

 
Figure 9: Effect of treatments on soil exchangeable Fe after thirty days of leaching. Means with different 

letter indicates significant differences using Tukey’s test at p ≤ 0.05 
 

 
The amount of available P (Figure 9a) in the treatments with clinoptilolite zeolite was 

significantly lower compared with those of the recommended rate. This relates to the comparable 

reduction of Al (Figure 7) and Fe (Figure 8) in the soil because less available P was fixed, precipitated, 

and leached.  

Clinoptilolite zeolite is not a P fertilizer, thus no P was present in the treatments with the different 

amounts of clinoptilolite zeolite (TZ, EZ, and CZ) to quench Fe sorption site and precipitated soluble Fe. 

However, significantly higher Fe content in the soil compared with soil alone was due to the high affinity 

of the clinoptilolite zeolite for Fe. The result obtained is consistent with the significantly lower Fe and Al 

leached from the soil. The result is also in agreement with a report that zeolites can be used to mitigate 

acid drainage mines contaminated with heavy metals (Motsi et al., 2009; Moreno et al., 2006). 

Figure 9b shows that regardless of treatment, total N in the soil after 30 days of leaching was not 

significantly different. Although clinoptilolite zeolite improves retention of NH4
+ and NO3

- (Ahmed et al., 

2010), the insignificant differences obtained in this study was because of the fertilizers reduction.  



Zeolites: Synthesis, Characterisation & Practice     96 

Ideal International E- Publication 
www.isca.co.in 

Retention of K, Ca, and Mg in the soil are presented in Figures 9c, 9d, and 9e, respectively. 

Exchangeable K was significantly lower in the treatments with 75% fertilizers amended with clinoptilolite 

zeolite (for CIRP and TSP), whereas the results of the ERP treatments are comparable. Based on the 

parent materials of RPs and clinoptilolite zeolite, application of RPs treatments resulted in similar Ca 

contents compared to the recommended rate except for TSP. This observation is also similar to the 

exchangeable Mg contents of TSP treatments whose Mg contents were significantly higher than those of 

the RPs (Refer to Tables 1 and 2). 

 
 

 
Figure 10: Selected soil chemical properties after thirty days of leaching. Effect of treatments on: (a) 

available P, (b) total N, (c) exchangeable K, (d) exchangeable Ca, and (e) exchangeable Mg. 
Means with different letter indicates significant differences using Tukey’s test at p ≤ 0.05  

 
 

Zeolites exhibit higher selectivity for monovalent cations compared with multivalent cations 

(Wong and Ho, 1995). However, competitive adsorption of cations K+ and NH4
+ could partly explain the 

lack of significant difference in N retention. These observations corroborate those of Tarkalson and 
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Ippolito (2011). The dominance of K+ over NH4
+ at the exchange sites of the clinoptilolite zeolite was 

because of the ion selectivity order of this zeolite, thus supporting the debate of cations competition at the 

exchange site of clinoptilolite zeolite (Rahmani et al., 2004). 

 

Conclusion  
Although clinoptilolite zeolite inclusion reduced pH buffering capacity in the soil, the pH range 

recorded in this present study is high. Clinoptilolite zeolite reduced the leaching losses of Ca and Mg. At 

25% fertilizer reduction, the availability of N, P, K, and Fe in the soil significantly reduced following the 

application clinoptilolite zeolite. The effect of the clinoptilolite zeolite on nutrients was not glaring 

because of the fertilizer reduction. However, the use of clinoptilolite zeolite in maize cultivation on acid 

soils is beneficial because this zeolite reduces the unbalanced use of N, P, and K fertilizers of maize.  
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