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Abstract—This paper intends to investigate the use of a dilated 
trigonometrically equipped algorithm to compute periodic 
vibrations in block Milne’s implementation. The block-Milne 
implementation is established by developing a block variable-
step-size predictor-corrector method of Adam’s family using a 
dilated trigonometrically equipped algorithm. The execution is 
carried out using a block variable-step-size predictor-corrector 
method. This system has significant advantages that include the 
varying step-size and finding out the convergence-criteria and 
error control. Convergence-criteria and operational mode are 
discussed to showcase the accuracy and effectuality of the 
proposed approach. 

Keywords-dilated trigonometrically equipped algorithm; block- 
Milne’s device; convergence-criteria; max errors; principal-local- 
truncation-error  

NOMENCLATURE 
BMD: errors in BMD for computing test problems 1, 2 and 3. 

Memployed: approach employed. 

Maxerrors: the magnitude of the max errors of BMD. ܥ௖௥௜௧௘௥௜௔: convergence-criteria. 

TSDM: errors in TSDM (trigonometrically-fitted Second derivative method) 
for numerical tested problem 1, [12]. 

BHMTB: errors in BHMTB (block hybrid method with trigonometric basis) 
for numerical tested problem 1 [10]. 

BHT: errors in BHT (block hybrid trigonometrically fitted of ߜ = 10ି଺) for 
numerical tested problem 1, 2 and 3 [13]. 

BHTRKNM: errors in BHTRKNM (block hybrid trigonometrically fitted 
Runge-Kutta-Nystrom method of ߜ = 10ି଺) for numerical tested problem 1, 2 
and 3 [14]. 

BHTFM: errors in BHTFM (block hybrid trigonometrically fitted method) for 
numerical tested problem 2 [11] 

I. INTRODUCTION  

The dilated trigonometrically equipped algorithm is 
virtually among the utilitarian procedures which constitute 
block-Milne’s implementation for approximating solutions of 
periodic vibrations. A trigonometrically equipped algorithm is 
more effective compared to non-fitted methods especially when 
the outcome exhibits periodical vibrations [1, 2]. The Block 

Milne’s implementation is of significant importance for 
documneting block variable-step-size predictor-corrector 
methods, convergence-criteria and check errors [3-6]. This 
composition aims at approximating the solution of periodic 
vibrations of class: [1, 6] 
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where ݂: ܴ × ܴ௖ → ܴ௖ , ܿ  is the dimension of the physical 
system. Presuming f  R equals to the differentiability to 
sufficient degree on u ߳[ݒ଴, ܺ] and meets a worldwide Lipchitz 
precondition, i.e., ܮ ≥ 0 ∋ |݂(߭, ݃) − ݂(߭, ݃̅| ≤ ݃|ܮ − ݃̅|, ∀݃, ݃̅ ∈ ܴ. 

Underneath this presumption, (1) ascertains the universal 
and singularity place as ݒ ∈ ,ݑ] [ߩ  which is similarly 
considered to meet the Weierstrass theorem [6-9]. In particular, 
periodic vibrations often spring up in areas of scientific 
knowledge like Newtonian mechanics, uranology, quantum 
theory, control theory, electric circuits and biological science. 
Various approximation methods have been established. Clear 
cut methods instituted on trigonometrically equipped 
algorithms may be realized [1, 10-18]. Their execution is 
carried out while adopting fixed step-size strategies [1, 10-22]. 
The motive governing a trigonometrically equipped algorithm 
is inherent in the fact that if the frequency is acknowledged in 
advance, this method turns more beneficial compared to the 
multinomial established methods [1, 10-18]. 

In addition, a block Milne’s implementation is primarily 
employed for changing step-size, fixing convergence-criteria 
and check ciphered errors [3-6, 23-26]. The main target of this 
paper is to implement a dilated trigonometrically equipped 
algorithm for ciphering periodic vibrations where the frequency 
of the outcome is anticipated in advance. This approach 
possesses advantages like varying step-size, deciding the 
convergence criteria and error control [7-8, 24-25, 27-29]. The 
dilated trigonometrically equipped algorithm has extra 
advantages which includes reduced computation costs and 
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improved accuracy. Milne’s implementation is examined as a 
broad prospect of the predictor-corrector method on account of 
the computational benefits. This approach employs components 
like Adams type class, block predictor-corrector pair of similar 
order and principal local truncation errors as mentioned in [7-8, 
24-25, 27-29]. 

Definition 1: ݀ − ,݇ܿ݋݈ܾ ܾ − stage	݉݁ݐℎ݀݋ . Whenever k 
refers to block size and h as pace size, then block size in time is ܾℎ. Let ݉ = 0,1,2,… form the block number and let ݐ = ܾ݉, 
then the ݀ − ܾ ,݇ܿ݋݈ܾ −  method can be composed in the	ݐ݊݅݋݌
next class: 

ఛܻ = ∑ ఓܣ ఛܻିఓ + ℎ∑ ఛିఓௗఓୀ଴ௗఓୀଵܨఓܤ .  (2) 

For ௧ܻ = ,௧ାଵݕ] … , ,௧ା௜ݕ … , ௧ܨ,௧ା௥]ఛݕ = [ ௧݂ାଵ, … , ௧݂ା௜, … , ௧݂ା௥]ఛ  ܣఓ and ܤఓ are ܾ × ܾ constants matrices [6, 17, 30]. Hence, 
taking off from the over account, a block method has 
computational benefits. For each practical real-life program, 
the terminate product is assessed to a greater extent at the same 
time. Utilizing these methods can permit faster outcomes of the 
problem which can be handled to generate the sought after 
accuracy [10-12, 16-17].  

II. METHODS 

Block-Milne’s device is a combination of Adams-Bashforth ݃ − ݌݁ݐݏ  (predictor) method and Adams-Moulton ݃ − 1  method of the same order. This combination (corrector) ݌݁ݐݏ−
can be of the form:  ݃(߭) = ∑ ௟௞௟ୀ଴ߙ ݃௧ି௟ + ℎଶ ∑ (ߜ)௟ߚ ௧݂ି௟௞௟ୀ଴ , (3) ݃(߭) = ∑ ௟௞௟ୀ଴ߙ ݃௧ି௟ + ℎଶ ∑ (ߜ)∗௟ࢼ ௧݂ା௟௞௟ୀଵ . (4) 

Equations (3) and (4) represent the Adams family of block 
Milne’s device with ߜ = ℎݓ ,(ߜ)௡ߚ , ݊ = 0, 1, 2  comprising 
invariants that depend on the varying step-size and frequency. 
Observing that ݃௧ା௟  is the numeric approximate of the 
analytical results ݃(߭௧ା௟)  i.e. ݃(߭௧ା௟) ≈ ݃௧ା௟ , and ௧݂ା௡ ≈݂(߭, ݃௧ା௡)  owning ݊ = 0, 1, 2 . To arrive at (3) and (4), the 
trigonometrically fitted method is written as the dilated 
trigonometrically equipped algorithm in which runs by looking 
forward to approximate the analytical result ݃(߭) on distinct 
time intervals of ൣ߭௧, ߭௧ି௝൧  through with the interpolating 
subprogram of (5): ݃(߭) =∝଴+∝ଵ ݒ +∝ଶ ଶݒ +∝ଷ sin(߭ݓ) +∝ସ cos	(߭ݓ) (5) 

Revising (4) produces the dilated trigonometrically 
equipped algorithm as: 

݃(߭) =∝଴+∝ଵ ቀ߭ − ߭௡ℎ ቁ +∝ଶ ቀ߭ − ߭௡ℎ ቁଶ +∝ଷ ቆwቀυ − ߭୬h ቁ − wଷ6 ቀυ − ߭୬h ቁଷቇ + ∝ସ ൬1 − ௪మଶ ቀజିజ೟௛ ቁଶ + ௪రଶସ ቀజିజ೟௛ ቁସ൰,   (6) 

where ∝଴,∝ଵ, ∝ଶ, ∝ଷ  and ∝ସ  are invariants needed to be 
determineδ in a especial direction. Presume the precondition 
that (6) matches with the accuracy output at definite length of 
time ߭௧, ߭௧ି௡ to get the approximant of (7): ݕ(߭௧) ≈ (௧ି௡߭)ݕ  ,௧ݕ ≈  ௧ି௡.   (7)ݕ

Demanding that the interpolating function (6) conforms to 
(1) at the levels ߭௜ା௞, ݇ = 0, 1, 2 we get the next approximates 
as ݃ᇱ(߭௧ା௞) ≈ ௧݂ା௞, ݃ᇱᇱ(జ೟శೖ) ≈ ௧݂ା௞, ݇ = 0, 1, 2 (8) 

Linking (7) and (8) will lead to a fivefold system of 
equations which gives birth to Av=d. Computing the systems 
of equation adopting Mathematica 9 kernel 64 to obtain ߭௞, ݇ = 0, 1, 2, 3, 4 and subbing the measures of ߭௞′ݏ into (6) 
will yield the continuous block Milne’s device. Assessing the 
continuous block Milne’s device at some preferred points of ߭௧ା௞, ݇ = 1, 2, 3	will invent the Milne’s device as 	݃(߭) = ௟݃ + ௟݃ିଵ + ℎଶ(ߚଵ(ݓ, ߭) ௟݂ାଵ + ,ݓ)ଶߚ ߭) ௟݂ାଶ + ,ݓ)ଷߚ ߭) ௟݂ାଷ) (9) 

where ݓ is the frequency, and ߚଵ(ݓ, ߭), ,ݓ)ଶߚ ߭), and ߚଷ(ݓ, ߭) 
are uninterrupted invariants [5, 10-14].  

A. Forming Convergence Criteria for Block Milne’s Device 
In launching operation of block-Milne’s device, Adams-

Bashforth ݃ − ݌݁ݐݏ  and Adams-Moulton ݃ − 1 −  ݌݁ݐݏ
approaches are employed in a predictor-corrector approach [3-
6, 23-25]. Mixed block-Milne’s device proves the feasibleness 
to determine principal-local-truncation-error in predictor-
corrector approach in absence of finding higher differential 
coefficient, ݃(߭). Taking for granted that  ݍ෤ =  ,෤ showcase the order of the predictor and corrector. Right nowݍ ത andݍ ത, whereݍ
in approach of order ݍ෤, the investigation of the block-Adams-
Bashforth ݃ − ݌݁ݐݏ  brings forth principal-local-truncation- 
errors. ̅ܥ௤ାହ[ଵ] ℎ௤ାହ݃(௤ାହ)(߭̅௡) = ݃(߭௟ାଵ) − ݃௟ାଵ[௜భ] + ܱ(ℎ௤ା଺),  ܥሚ௤ାହ[ଶ] ℎ௤ାହݕ(௤ାହ)( ෤߭௡) = (௟ାଶ߭)ݕ − ݃௟ାଶ[௜మ] + ܱ(ℎ௤ା଺) (10) ܥሚ௤ାହ[ଷ] ℎ௣ାହ݃(௣ାହ)( ෤߭௡) = ݃(߭௟ାଷ) − ݃௟ାଷ[௜య] + ܱ(ℎ௤ା଺).  

A corresponding break down of block-Adams-Moulton ݃ − 1 − brings about principal-local-truncation-errors: ഥܹ௤ାହ[ଵ] ݌݁ݐݏ ℎ௤ାହ݃(௤ାହ)(߭̅௡) = ݃(߭௟ାଵ) − ݃௟ାଵ[௥భ] + ܱ(ℎ௤ା଺),	 ഥܹ௤ାହ[ଶ] ℎ௤ାହ݃(௤ାହ)(߭̅௡) = ݃(߭௟ାଶ) − ݃௟ାଶ[௥మ] + ܱ(ℎ௤ା଺) (11) ഥܹ௤ାହ[ଷ] ℎ௤ାହ݃(௤ାହ)(̅ݒ௡) = (௟ାଷݒ)݃ − ݃௟ାଷ[௥య] + ܱ(ℎ௤ା଺),  
where ܥሚ௤ାହ[ଵ] , ሚ௤ାହ[ଶ]ܥ , ሚ௤ାହ[ଷ]ܥ  , ഥܹ௤ାହ[ଵ] , ഥܹ௤ାହ[ଶ]  and ഥܹ௤ାହ[ଷ]  are existing as 
independent entities of the step-size h and ݃(߭) behaves as the 
result to the differential coefficient fulfiliing the initial 
consideration ݃(ݒ௡) ≈ ݃௡  [3-6, 23-25]. To move ahead, the 
precondition for small assesses of h is reached as ݃(ହ)( ෤߭௡) ≈݃(ହ)(߭̅௡), and the dominance of block-Milne’s device banks 
right away on this condition. Further simplification of the 
principal local truncation errors of (10) and (11) while 
neglecting terms of ܱ(ℎ௤ା଺) order, makes it easy to achieve 
computation of principal- local-truncation-errors of block-
Milne’s device as:  ഥܹ௤ାହ[ଵ] ℎ௤ାହ݃(௤ାହ)(߭̅௡) ≈ ௐഥ೜శఱ[భ]஼ሚ೜శఱ[భ] ିௐഥ೜శఱ[భ] ቂ݃௡ା௟[௜భ] − ݃௡ା௟[௥భ]ቃ 	< ߱ଵ,  ഥܹ௤ାହ[ଶ] ℎ௤ାହ݃(௤ାହ)(߭̅௡) ≈ ௐഥ೜శఱ[మ]஼ሚ೜శఱ[మ] ିௐഥ೜శఱ[మ] ቂ݃௡ା௟[௜మ] − ݃௡ା௟[௥మ]ቃ 	< ߱ଶ, (12)  
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ഥܹ௤ାହ[ଷ] ℎ௤ାହ݃(௤ାହ)(߭̅௡) ≈ ௐഥ೜శఱ[య]஼ሚ೜శఱ[య] ିௐഥ೜శఱ[య] ቂ݃௡ା௟[௜య] − ݃௡ା௟[௥య]ቃ 	< ߱ଷ . 

Mentioning the affirmations that ݃௡ା௟[௜భ] ≠ ݃௡ା௟[௥భ], ݃௡ା௟[௜మ] ≠ ݃௡ା௟[௥మ] 
and ݃௡ା௟[௜య] ≠ ݃௡ା௟[௥య] are the predicted and corrected approximates 
which are given by the block Milne’s device of order p, while ഥܹ௤ାହ[௝] ℎ௤ାହ݃(௤ାହ)(߭̅௡), ݆ = 1, 2, 3	 are the principal-local-
truncation-errors. ߱ଵ,߱ଶ  and ߱ଷ  are the boundaries of the 
convergence-criteria of block-Milne’s device. Moreover, the 
estimates of the principal local truncation error (12) ar utilized 
to determine whether to go for the results of the current step or 
to reconstruct the step with a slighter variable-step-size. The 
step is established on a trial run as defined by (12) [3-6, 23-25]. 
The principal-local-truncation-error (12) is the convergence-
criteria of block-Milne’s, device distinctly seen as block-
Milne’s device (estimate) for conforming to convergence. 

III. NUMERICAL EXAMPLES 

Three selected numerical test problems were viewed and 
solved utilizing the proposed approach (denoted as BMD in 
this paper) at different convergence criteria of 10ିଷ , 10ିହ , 10ି଻, 10ିଽ  and 10ିଵଵ [10-14]. Programming codes on block 
Milne’s are compiled employing Mathematica 9 kernel 64. 
These codes are executed in a block by block mode together 
with the block Milne’s device. 

Numerical test problem 1. Consider the inhomogeneous 
IVP: 

(ݒ)ᇱᇱݕ  = −100y + 99sin	(ݒ) (0)ݕ , = 1 ᇱ(0)ݕ , = 11 , 0 ≤ ݒ ≤ 1000. 

Solution:  

(ݒ)ݕ  = cos(10ݒ) + sin(10ݒ) + sin	(ݒ) 
Numerical test problem 2. Consider the nonlinear Duffing 

equation: ݕᇱᇱ + ݕ + ଷݕ = (0)ݕ ,(ݒΩ)ݏ݋ܿܤ = ᇱ(0)ݕ ,଴ܥ = 0. 

Solution:  (ݒ)ݕ = ଵܥ cos(Ωݒ) + ଶܥ cos(3Ωݒ) + ଷܥ cos(5Ωݒ) (ݒ7Ω)	ସcosܥ+  where Ω=1.0, Β=2x10-3, C0=0.200426728069, 
C1=0.20017947753, C2=0.246946143x10-3, C3=0.304016x10-6, 
C4=0.374x10-9. Choose w=1.01 

Numerical test problem 3. Consider the harmonic oscillator 
with frequency Ω and small perturbation ݕ  .ߜᇱᇱ + ᇱݕߜ + Ωଶݕ = (0)ݕ ,0 = ᇱ(0)ݕ ,0 = − ఋଶ, 0 ≤ ݒ ≤ 1000. 

Solution: (ݔ)ݕ = ݁ቀഃమቁ௩ܿݏ݋ ቀΩଶ − ఋమସ ቁ , where Ω = 1  and ߜ = 10ି଺. 

IV. RESULTS 

The numerical results of the implementation of the dilated 
trigonometrically equipped algorithm on block Milne’s device 
for ciphering periodic vibrations are exhibited in Table I.  

 

TABLE I. MILNE’S IMPLEMENTATION  

Memployed Maxerrors Ccriteria 
TSDM 1.7e-03 10-3

BHTFM 1.2e-03  
BHT 1.9e-03  

BHTRKKNM 2.14e-03  
BMD 9.15202e-04 10-3

BMD 2.79178e-04  
BMD 1.83035e-04  
TSDM 2.7e-05 10-5

BHTFM 1.4e-05  
BHMTB 3.9e-05  

BHTRKKNM 5.98e-05  
BHTRKKNM 2.06e-05  

BMD 1.05006e-07 10-5 
BMD 3.75372e-08  
BMD 3.34795e-06  
TSDM 1.0e-07 10-7

BHTFM 1.5e-07  
BHMTB 1.4e-07  

BMD 1.05933e-10 10-7

BMD 3.76048e-11  
BMD 3.4074e-09  
TSDM 6.3e-09 10-9

BHTFM 8.7e-09  
BHTFM 1.1e-09  

BHTRKKNM 4.67e-09  
BMD 1.07025e-13 10-9

BMD 3.9968e-14  
BMD 3.40017e-12  
BHT 9.7e-11 10-11

BHT 6.7e-11  
BMD 4.88498e-15 10-11

BMD 1.04361e-14  
BMD 3.57492e-14  
BHT 4.3e-13 10-13

BMD 1.9984e-15 10-13

BMD 5.10703e-15  
BMD 2.39808e-14  
TSDM 3.3e-03 10-3

BHTFM 1.3e-03  
BMD 3.60282e-06 10-3

BMD 7.81099e-06  
BMD 1.31395e-04  
TSDM 6.4e-05 10-5

BHTFM 5.6e-05  
BHT 7.7e-05  

BHTRKKNM 7.52e-05  
BMD 3.11695e-10 10-5

BMD 7.32379e-10  
BMD 1.20413e-08  
TSDM 1.0e-07 10-7

BHTFM 1.4e-07  
BHTRKKNM 1.34e-07  

BMD 3.14471e-14 10-7

BMD 7.38853e-14  
BMD 1.20062e-12  

BHTRKKNM 8.11e-09 10-9

BMD 1.38778e-16 10-9 
BMD 3.60822e-16  
BMD 1.66533e-15 
BHT 1.23e-11 10-11

BHTRKKNM 7.13e-11  
BMD 4.06231e-13 10-11 
BMD 9.65783e-13  
BMD 4.14513e-12 
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V. CONCLUSION 

Computed results demonstrated that the BMD is attained 
with the aid of the convergence-criteria. These convergence 
criteria decide whether the result is accepted or the algorithm is 
repeated. The results also establish that the performance of the 
BMD allows improved maximum errors compared with the 
TSDM, BHMTM, BHT, BHTRKNM and BHTFM at all 
examined convergence criteria of 10ିଷ , 10ିହ , 10ି଻ , 10ିଽ , 10ିଵଵ and 10ିଵଷ [10-14]. Thus, it can be concluded that the 
devised method is suitable for working out periodic vibrations 
dealing with non-stiff and stiff ODEs. BMD performs better 
when compared to the existing methods for reasons pointed out 
above. Further work will deal with carrying out the block 
Milne’s device on dilated exponentially fitted algorithm. 
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