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Abstract

The role of generalized ordinary differential equation (Kurzweil equation) in applying

the technique of topological dynamics to the study of classical ordinary differential

equation as outlined in [3, 4, 47, 51-58, 88-90] is a major motivation for studying

this class of equations associated with the weak forms of the Lipschitzian quantum

stochastic differential equations.

In this work, existence and uniqueness of solution of quantum stochastic differen-

tial equations associated with the Kurzweil equations under a more general Lipschitz

condition were established. The results here generalize the results in the existing

literatures thereby extending the class of equations for which the theory of quantum

stochastic differential equation is applicable.

Existence of solution of quantum stochastic differential equation, enabled one to in-

vestigate and establish other qualitative properties of solution such as variational

stability, variational attracting, variational asymptotic stability, converse variational

stability and continuous dependence of solution on a parameter.

The results are established within the framework of the topological linear space of pro-

cesses of finite variations. The theory of Kurzweil equations associated with quantum

stochastic differential equation provides a basis for future application of the technique

of topological dynamics to the study of quantum stochastic differential equation.

viii



Contents

Title i

Declaration ii

Certification iii

Dedication iv

Acknowledgements v

Abstract viii

Table of Contents ix

1 Introduction 1

1.1 Background Of the study . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Fundamental Concepts and Notations . . . . . . . . . . . . . . . . . . 8

1.3 Boson Quantum Stochastic Integration . . . . . . . . . . . . . . . . . 12

1.4 Spaces of Sesquilinear-form-Valued Maps . . . . . . . . . . . . . . . . 18

1.5 Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . 21

1.6 Equivalent form of Quantum Stochastic

Differential Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

ix



1.7 Kurzweil Integrals Associated with

Quantum Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . 26

1.8 Kurzweil Integrals associated with Quantum Stochastic Differential

Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.9 Class of Kurzweil Integrable Sesquilinear

form-valued Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.10 Equivalence of Kurzweil equation and the

associated Lipschitzian Quantum Stochastic Differential Equation . . 42

1.11 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . 44

1.12 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.13 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.14 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2 Literature Review 46

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Existence of Solution of Ordinary Differential Equations . . . . . . . 47

2.3 Existence of Solution and Continuous Dependence on Parameters of

Classical Kurzweil

Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 Existence of Solution of Stochastic Differential Equations and Quan-

tum Stochastic

Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5 Stability of Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Methodology 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

x



3.2 Method of proof on Existence and Uniqueness of Solution . . . . . . . 60

3.3 Method of proof on Variational Stability of

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Method of proof on Continuous Dependence on Parameters . . . . . . 63

4 Existence and Uniqueness of Solution of Kurzweil equations associ-

ated with Quantum Stochastic Differential Equations 64

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Existence of Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Uniqueness of Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Variational Stability of Kurzweil Equations associated with Quan-

tum Stochastic Differential Equations 71

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Concepts and Definitions of Variational

Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Variational Stability and Asymptotic Variational Stability using the

Lyapunov’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Converse Variational Stability Theorems . . . . . . . . . . . . . . . . 94

6 Continuous Dependence on Parameters of Kurzweil Equations asso-

ciated with Quantum Stochastic Differential Equations 111

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Major Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Summary, Conclusion and Recommendations 127

xi



7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3 Outstanding contribution to knowledge . . . . . . . . . . . . . . . . . 129

7.4 Practical applications of QSDEs . . . . . . . . . . . . . . . . . . . . . 130

7.5 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.6 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.7 Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

References 134

xii



Chapter 1

Introduction

1.1 Background Of the study

Most differential equations (Ordinary, Stochastic, Quantum stochastic, etc.) do not

have closed analytical solutions, that is solutions that can be written in closed forms.

Only approximate solutions or numerical solutions can be obtained if such solutions

exist. Before one ventures into the rigour of numerical computations, it is imperative

to examine whether there exists a solution for the given differential equation, a unique

solution probably for a given initial condition.

As with most ordinary differential equations, the qualitative properties of quantum

stochastic differential equations (QSDEs) cannot be studied without knowing if the

equation has a unique solution, because it would be needless studying the properties

or behaviour of what does not exist. Therefore the study of the theory of the existence

and uniqueness of solution is vital to both the analysis of qualitative properties of

solutions and the numerical analysis.

There have been intensive research activities in the literature concerning the

theoretical and numerical analysis of classical stochastic differential equations of the

type

dX(t, w) = H(X(t), t)dt+ F (X(t), t)dQ(t)

X(t0) = X0, t ∈ [t0, T ] (1.1)
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Equation (1.1) is understood in the integral form

X(t, w) = X0 +

∫ t

t0

(H(X(s), s)ds+ F (X(s), s)dQ(s)) (1.2)

where the first integral on the right hand side of (1.2) is in general a Lebesgue integral

and the second integral is the Ito integral driven by a Martingale, in particular, a

Brownian motion Q(t) and the coefficients H, F are sufficiently smooth deterministic

ordinary functions defined on the space I × Rn, where I = [t0, T ] and n ∈ N.

The Ito integral cannot be interpreted as an ordinary Riemann-Steiltjes integral since

Q is not differentiable in the ordinary sense. Equation (1.1) has found applications in

diverse fields such as Stochastic Analysis, Engineering, Physics, Geology, Meteorology,

Finance, AIDS/HIV epidemiology, medicine and other biomedical systems.

A noncommutative generalization of (1.1) is the following quantum stochastic

differential equation (QSDE) introduced by Hudson and Parthasarathy [44]:

dX(t) = E(X(t), t)d ∧π (t) + F (X(t), t)dAg(t)

+G(X(t), t)dAf+(t) +H(X(t), t)dt), X(t0) = X0, t ∈ I (1.3)

In equation (1.3), the coefficients E, F, G, and H lie in a certain class of stochastic

processes for which quantum stochastic integrals against the gauge, creation, annihi-

lation processes ΛΠ, Af+ , Ag and the Lebesgue measure t are defined. Equation (1.3)

is understood in integral form as

X(t) = X0 +

∫ t

t0

(E(X(s), s)d ∧π (s) + F (X(s), s)dAg(s)

+G(X(s), s)dAf+(s) +H(X(s), s)ds), t ∈ I (1.4)

Quantum stochastic differential equation arises from quantum theory which can be

regarded as a theory of non-commutative probability (quantum probability) in which

observables are represented by noncommuting, self-adjoint linear operators acting on

dense domains of some Hilbert spaces.
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It has been well established that the quantum stochastic differential equations intro-

duced by Hudson and Parthasarathy [44] provide an essential tool in the theoretical

description of physical systems, especially those arising in quantum optics, quan-

tum measure theory, quantum open systems and quantum dynamical systems. The

time evolution in these models is given by a unitary cocycle that solves a Hudson-

Parthasarathy quantum stochastic differential equation. In the sense of [22], these

unitaries define a flow, which is a quantum Markov process that represents the Heisen-

berg time evolution of the observables of the physical system.

Several authors have studied how quantum stochastic models can be obtained as a

limit of fundamental models in quantum field theory [1, 38, 42, 46]. This provides a

sound justification for using quantum stochastic models to describe several physical

systems.

So much work has been done on existence of solution of stochastic differential equa-

tions compared with quantum stochastic differential equation introduced above. How-

ever existing literatures [5, 6, 30, 46, 48, 60, 94, 95] show that the existence of solution

for both classical stochastic differential equations and quantum stochastic differential

equations are subject to the Lipschitz condition. This restrict the class under which

the results are applicable.

In the work of [30], the Hudson and Parthasarathy [44] quantum stochastic calcu-

lus was employed to establish the equivalent form of quantum stochastic differential

equation (1.3) given by

d

dt
〈η,X(t)ξ〉 = P (X, t)(η, ξ)

X(t0) = X0, t ∈ [t0, T ], (1.5)

where η, ξ lie in some dense subspaces of some Hilbert spaces which will be defined

later. As explained in [3, 6, 30], the map (X, t)→ P (X, t)(η, ξ) appearing in equation

3



(1.5) has the form

P (X, t)(η, ξ) = (µE)(X, t)(η, ξ) + (γF )(X, t)(η, ξ)

+(σG)(X, t)(η, ξ) +H(X, t)(η, ξ) (1.6)

where η, ξ ∈ ID⊗IE is arbitrary, (X, t) ∈ Ã × I and H(X, t)(η, ξ) := 〈η,H(X, t)ξ〉.

The integral at the right hand side of equation (1.4) is the Hudson and Parthasarathy

quantum stochastic integral introduced in [44].

The connection between Equation (1.2) and (1.4) is that (1.4) reduces to (1.2) by

a suitable choice of parameters in a simple Fock space. Hence equation (1.3) is

applicable to a wider class of real life problems than equation (1.1). In particular

QSDE (1.3) often arise as mathematical models which describe among other things,

quantum dynamical systems and several physical problems in quantum stochastic

control theory and quantum stochastic evolutions [30, 31, 44, 46].

In comparison with equation (1.1), QSDE (1.3) has not enjoyed intensive research

activities in respect of the investigation of the theoretical and numerical properties

of solutions that live in certain infinite dimensional locally convex spaces. Equation

(1.5) is a first order non-classical ordinary differential equation with a sesquilinear

form valued map P as the right hand side. There are other formulations of QSDE

as developed in [5, 18, 38, 43, 44] but the nearest to the Ito stochastic calculus is

the Hudson and Parthasarathy formulation [42]. Some recent investigations have

been done concerning existence of solutions and their numerical approximations for

equation (1.5) [6-8, 30, 33].

In [6], the equivalence of the Lipschitzian quantum stochastic differential equation

(1.5) with the associated Kurzweil equation

d

dt
〈η, x(t)ξ〉 = DF (x, t)(η, ξ) (1.7)

was established along with some numerical approximations. In arriving at these re-

sults, assumption of Lipschitz and Caratheodory conditions were imposed on the map

4



(X, t) → P (X, t)(η, ξ), these restrict the class of equations under which the results

are applicable.

There is therefore the need to establish existence results that will depend on a more

general Lipschitz condition. The aim of this research is to establish more general con-

ditions that will guarantee the existence and uniqueness of solution of the Kurzweil

equation(1.7) associated with QSDE (1.5) thereby generalizing the results in [6] and

to investigate other qualitative properties of solution such as stability and continuous

dependence of solution on a parameter. It is worth mentioning that this is the first

time the qualitative properties (variational stability and continuous dependence on

parameter) of solution of QSDE (1.5) will be considered.

The role of generalized ordinary differential equations in applying topological dyna

mics to the study of ordinary differential equations as outlined in [3, 4, 6, 87] is the

major motivation for studying this class of equations associated with the weak forms

of quantum stochastic differential equations. This research is strongly motivated by

the need to create a framework for the application of the technique of topological

dynamics to the study of quantum stochastic differential equations as obtained in the

case of ordinary differential equations [3, 4, 41, 47, 51-58, 79-87].

Therefore, the space of the associated Kurzweil equations (1.7) will then be a com-

pletion of the space of the equivalent non classical first order ordinary differential

equation (1.5) as observed by [3]. The result on existence of solution will be appli-

cable to a wider class of equations compared with the results in [6, 30]. Results on

existence of solution enables one to investigate other properties of solution. Hence

we shall investigate variational stability of solution, asymptotic variational stability

of solution, variational attracting of solution, relationship between these concepts of

stability, converse variational stability and continuous dependence of solution on pa-

rameters.

This work will consist of seven chapters. Section 1.1 of this chapter(1) will begin with

5



general introduction. Sections 1.2 to 1.11 of this chapter 1, wiil consist of Ekhaguere

[30] and Ayoola’s [6-8] formulations and notations. Section 1.2 is devoted to some

fundamental concepts and structures that are employed in subsequent chapters.

In section 1.3, a summary of the first and second fundamental formulae of quantum

stochastic calculus due to Hudson and Parthasarathy [44] and their formulation of

Boson quantum stochastic integration will be presented. Section 1.4 contains a de-

scription of some spaces of sesquilinear forms-valued maps.

Quantum stochastic differential equations are discussed in section 1.5 while section

1.6 contains a summary of some established results of Ekhaguere [30] giving the

equivalent form of a quantum stochastic differential inclusion as a special case of

quantum stochastic differential equations introduced above.

A summary of the results of Ayoola [6] concerning the concept of the Kurzweil equa-

tions associated with quantum stochastic differential equations within the frame work

of Schwabik and Kurzweil [52-58, 80-87] formulations, will be presented in sections

1.7 to 1.10, . In this section the following will be discussed: the Kurzweil integrals

associated with quantum stochastic processes, Kurzweil equations associated with

quantum stochastic differential equations, a class of sesquilinear form-valued maps

and lastly the equivalence of the quantum stochastic differential equation and the

associated Kurzweil equation.

In chapter 2, a review some results on existence of solution of ordinary differential

equations, classical Kurzweil equations, stochastic differential equations and quantum

stochastic differential equations will be discussed. Also, some results on stability and

continuous dependence of solution on parameters for ordinary differential equations

and generalized differential ordinary equations will be considered. In chapter 3, the

methods of establishing the main results will discussed.

The major contribution on existence and uniqueness of solution of Kurzweil equa-

tion associated with quantum stochastic differential equation(1.5) that satisfy a more

6



general Lipschitz condition, will be established in chapter 4. Since the equivalence of

equations (1.5) and (1.7) has been established in [6], the existence and uniqueness of

solution of Kurzweil equation associated with quantum stochastic differential equa-

tion(1.5) will be established via its equivalent QSDE (1.3) so that the existence of

solution of equation (1.5) will imply existence of solution of the associated Kurzweil

equation (1.7).

Here the method of successive approximations in [18, 30] will be adopted. In chapter

5, all kinds of variational stability of solution will be studied and the

Lyapunov method will be employed to establish these results. The advantage of using

Lyapunov’s method is that it enables one to investigate variational stability without

explicitly solving the differential equation.

In chapter 6, results on continuous dependence of solution on parameters will be es-

tablished. Again, the method of convergence applied in [87] will be adoted to this

present noncommutative quantum setting to establish the results in chapter 6. Chap-

ter 7 will be devoted to summary, conclusion, outstanding contributions to knowledge,

practical applications of QSDEs in real life and recommendations for further studies.
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1.2 Fundamental Concepts and Notations

1.2.1 Notation.

Let D be an inner product space and H, the completion of D. We denote by L+(D,H)

the set
{X : D → H : X is a linear map such that DomX∗ ⊇ D,

where X∗ is the adjoint of X}

We remark that L+(D,H) is a linear space under the usual notions of addition and

scalar multiplication of operators.

1.2.2 Definition.

(i) Let H be a Hilbert space. The Boson Fock space Γ(H) determined by H is the

Hilbert space direct sum

Γ(H) =
∞⊕
n=0

H(n)

where H(0) = C. For n ≥ 1, H(n) is the subspace of the n-fold Hilbert space tensor

product of H with itself comprising all symmetric tensors.

H(n) = (H ⊗ ...⊗H)sym

(ii) For each f ∈ H, an element e(f) of the form

e(f) =
∞⊕
n=0

(n!)−1/2

n⊗
f

is called an exponential vector or coherent vector in Γ(H) corresponding to f . We

remark here that the subspace E of Γ(H) generated by the set of exponential vectors

in Γ(H) is dense in Γ(H). Here
⊗0 f = 1 and

⊗n f is an n-fold tensor product of f

with itself for n ≥ 1. The element e(0) in Γ(H) is called the vacuum vector.

1.2.3 Remark. It is well known that the exponential vector e(f) and the Boson

8



Fock space enjoy the following properties [42-44,65-67]

(i) Let ε = span{e(f) : f ∈ H}. Then ε is dense in Γ(H).

(ii) ∀f, g,∈ H, we have

〈e(f), e(g)〉 = exp〈f, g〉

(iii) The set e(f) : f ∈ H is linearly independent in Γ(H).

(iv) If H is a Hilbert space direct sum H = H1 ⊕ H2, then the Fock space Γ(H)

factorizes as

Γ(H) = Γ(H1)⊗ Γ(H2).

For arbitrary f1 ∈ H1, f2 ∈ H2, an exponential vector in Γ(H) is given by

e(f1, f2) = e(f1)⊗ e(f2)

(v) Since the exponential vectors are linearly independent, an operator with domain

ε is well defined by specifying its action on e(f), f ∈ H.

1.2.4 Notation. In what follows, ID is some inner product space with R as its

completion, and γ is some fixed Hilbert space.

(i) For each t ∈ R+, we write L2
γ(R+) (Resp. L2

γ([0, t)); resp. L2
γ([t,∞))), for the

Hilbert space of square integrable, γ-valued maps on R+ ≡ [0,∞) (resp. [0, t);

resp. [t,∞)).

(ii) The noncommutative stochastic processes which we shall discuss are densely

defined linear operators on R⊗ Γ(L2
γ(R+)); the inner product of this complex

Hilbert space will be denoted by 〈·, ·〉 and its norm by ‖ · ‖. For each t > 0, it is

well known [43, 65-67, 1′, 3′] that the Hilbert space L2
γ(R+) can be decomposed
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into a direct sum

L2
γ(R+) = L2

γ([0,

t))⊕L2
γ([t,∞))whichleadstoafactorizationoftheFockspaceΓ(L2

γ(R+)) given by

Γ(L2
γ(R+)) = Γ[L2

γ([0, t))⊗ L2
γ([t,∞))]

by Remark 1.2.3(iv).

(iii) Let IE, IEt and IEt, t > 0, be the linear spaces generated by the exponential vectors in

Γ(L2
γ(R+)), Γ(L2

γ([0, t))) and Γ(L2
γ([t,∞))), respectively,i.e.

IE = span{e(f), f ∈ L2
γR+)}, IEt = span{e(f), f ∈ L2

γ([0, t))}

and

IEt = span{e(f), f ∈ L2
γ([t,∞))}.

Then we adopt the following spaces as in [7,8]:

(i) A ≡ L+(ID⊗IE,R⊗ Γ(L2
γ(R+))),

(ii) At ≡ L+(ID⊗IEt, R⊗ Γ(L2
γ([0, t))))⊗ 1t,

(iii) At ≡ 1t ⊗ L+(ID⊗IE,R⊗ Γ(L2
γ([t,∞)))), t > 0,

where ⊗ denotes algebraic tensor product and 1t (resp. 1t) denotes the identity map

on

R⊗Γ(L2
γ[0, t)), (resp. Γ(L2

γ([t,∞))), t > 0

. note that At and At, t > 0, may be naturally identified with subspaces of A.

1.2.5 Definition. For η, ξ ∈ ID⊗IE, we define ‖ · ‖ηξ on A by

‖x‖ηξ = |〈η, xξ〉|, x ∈ A.

Then {‖ · ‖ηξ, η, ξ ∈ ID⊗IE} is a family of seminorms on A; we write τw for the locally

convex Hausdorff topology on A determined by this family.
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1.2.6 Notation. We denote by Ã, Ãt and Ãt the completions of the locally convex

spaces (A, τw), (At, τw) and (At, τw), t > 0, respectively. We remark that the net

{Ãt : t ∈ R+} furnishes a filtration of Ã.
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1.3 Boson Quantum Stochastic Integration

Before defining the quantum stochastic integral employed in the subsequent chap-

ters,we present a number of important notations and definitions.

1.3.1 Definition.

Let I ⊆ R+.

(i) A map X : I → Ã is called a stochastic process indexed by I.

(ii) A stochastic process X is called adapted if X(t) ∈ Ãt for each t ∈ I. And we

write Ad(Ã) for the set of all adapted stochastic processes indexed by I.

(iii) A member X of Ad(Ã) is called

(a) weakly absolutely continuous if the map

t −→ 〈η,X(t)ξ〉, t ∈ I

is absolutely continuous for arbitrary η, ξ ∈ ID⊗IE. We denote this subset of

Ad(Ã) by Ad(Ã)wac.

(b) locally absolutely P -integrable if the map ‖x(·)‖ηξ is Lebesgue measurable

and integrable on [t0, t) ⊆ I for each t ∈ I, p ∈ (0,∞) and arbitrary η, ξ ∈ ID⊗IE.

We denote this subset of Ad(Ã) by Lploc(Ã).

1.3.2 Definition. Let B(γ) denote the Banach space of bounded endomorphisms

of γ and let the spaces L∞γ,loc(R+) and L∞B(γ),loc(R+) be defined by L∞γ,loc(R+) = {f :

R+ → γ| f is linear, measurable and locally bounded function on R+}

L∞B(γ),loc(R+) = {π : R+ → B(γ)| π is linear, measurable and locally bounded function

on R+}

For f ∈ L∞γ,loc(R+) and π ∈ L∞B(γ),loc(R+), we define πf ∈ L∞γ,loc(R+) by (πf)(t) =
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π(t)f(t), t ∈ R+.

Also for f ∈ L2
γ(R+) and π ∈ L∞B(γ),loc(R+), we define the operators a(f), a+(f) and

λ(π) ∈ L+(ID,Γ(L2
γ(R+))) as follows;

a(f)e(g) = 〈f, g〉L2
γ(R+)e(g)

a+(f)e(g) =
d

dσ
e(g + σf)|σ=0

λ(π)e(g) =
d

dσ
e(eσπf)|σ=0

for g ∈ L2
γ(R+).

1.3.3 Definition.The operators a(f), a+(f) and λ(π) for arbitrary f ∈ L∞γ,loc(R+)

and π ∈ L∞B(γ),loc(R+) give rise to the operator-valued maps Af , A
+
f and Λπ defined

by

Af (t) ≡ a(fχ[0,t))

A+
f (t) ≡ a+(fχ[0,t))

Λπ(t) ≡ λ(πχ[0,t))

t ∈ R+ where χI denotes the indicator function of the Borel set I ⊆ R+.

1.3.4 Remark. The operators a(f), a+(f), and λ(π) are the annihilation, creation

and gauge operators of quantum field theory.

The maps Af , A
+
f , and Λπ are the stochastic processes, called the annihilation,creation

and gauge processes, respectively,when their values are identified with their ampli-

ations on R⊗Γ(L2
γ(R+)); i.e. for any r ∈

{
Af , A

+
f ,Λπ

}
and η = c ⊗ e(α), with

α ∈ L2
γ(R+), c ∈ R, then r(t)(c⊗ e(α)) = r(t)c⊗ e(α).

These are the stochastic integrators in the Hudson and Parthasarathy [42] formula-

tion of the Boson quantum stochastic integration which we adopt in the sequel.

Next we give the definition of the stochastic integrals.
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1.3.5 Definition. A stochastic process p ∈ Ad(Ã) is called simple if there exists

an increasing sequence tn, n = 0, 1, 2, ... with t0 = 0 and tn → ∞ such that for each

n ≥ 0,

p(t) = p(tn) and t ∈ [tn, tn+1)

1.3.6 Definition. Let p, q, u, v ∈ Ad(Ã) be simple adapted stochastic processes and

f, g ∈ L∞γ,loc(R+) and π ∈ L∞B(γ),loc(R+). Then the family of operators M = {M(t) :

t ≥ 0} in Ad(Ã) defined by

M(0) = 0

M(t) = M(tn) + p(tn)(Λπ(t)− Λπ(tn)) + q(tn)(Af (t)− Af (tn))

+u(tn)(A+
g (t)− A+

g (tn)) + v(tn)(t− tn), tn < t < tn+1 (1.3.1)

is called the stochastic integral of p, q, u, v with respect to Λπ, Af , A
+
g and the Lebesgue

measure t. It is denoted in integral form by

M(t) =

∫ t

0

(p(s)dΛπ(s) + q(s)dAf (s) + u(s)dA+
g (s) + v(s)ds)

and understood in differential form as

M(0) = 0

dM(t) = p(t)dΛπ(t) + q(t)dAf (t) + u(t)dA+
g (t) + v(t)dt,

Next we present some results due to Hudson and Parthasarathy established in [7-9,

30].

1.3.1 Theorem. (a) Let p, q, u, v be simple adapted stochastic processes in Ad(Ã)

and let M be their stochastic integral. If η, ξ ∈ ID⊗IE with η = c ⊗ e(α), ξ =

d⊗ e(β), c, d ∈ ID, α, β ∈ L∞γ,loc(R+), and t ≥ 0, then

〈η,M(t)ξ〉 =

∫ t

0

〈η, {〈α(s), π(s)β(s)〉γp(s)

+〈f(s), β(s)〉γq(s) + 〈α(s), g(s)〉γu(s) + v(s)}ξ〉ds (1.3.2)
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(b) Assume that the following hold. For j = 1, 2

(i) pj, qj, uj, vj are simple adapted processes.

(ii) fj, gj ∈ L∞γ,loc(R+) and πj ∈ L∞B(γ),loc(R+)

(iii) Mj(t) =
∫ t

0
(pj(s)dΛπj(s) + qj(s)dAfj(s) + uj(s)dA

+
gj

(s) + vj(s)ds)

Then for arbitrary η, ξ ∈ ID⊗IE such that η = c⊗ e(α), η = d⊗ e(β),

α, β ∈ L∞γ,loc(R+), we have

〈M1(t)η,M2(t)ξ〉 =

∫ t

0

{〈M1(s)η, {〈α(s), π2(s)β(s)〉γp2(s)

+〈f2(s), β(s)〉γq2(s) + 〈α(s), g2(s)〉γu2(s) + v2(s)]ξ〉

+〈[〈β(s), π1(s)α(s)〉γp1(s) + 〈f1(s), α(s)〉γq1(s)

+〈β(s), g1(s)〉γu1(s) + v1(s)]η,M2(s)ξ〉

+〈π1(s)α(s)⊗p1(s)η + g1(s)⊗u1(s)η,

π2(s)β(s)⊗p2(s)ξ + g2(s)⊗u2(s)ξ〉}ds (1.3.3)

(c) Let T > 0 and 0 ≤ t ≤ T. Then, under the hypothesis of item (a) above, there is

a finite constant KT,ξ such that

‖M(t)ξ ‖2≤ 6K2
T,ξ

∫ T

0

et−s{‖p(s)ξ‖2 + ‖q(s)ξ‖2 + ‖u(s)ξ‖2 + ‖v(s)ξ‖2}ds,

ξ ∈ ID⊗IE. (1.3.4)

(d) The results (a) - (c) above remain true if for each integrand F ∈ {p, q, u.v} the

map t −→ F (t)ξ is measurable and satisfies∫ t

0

‖F (s)ξ‖2ds <∞ ∀ t > 0 and ∀ ξ ∈ ID⊗IE.

1.3.7 Remark: Equations (1.3.2) and (1.3.3) are called the first and second funda-

mental formulae of quantum stochastic calculus. Equation (1.3.3) is essentially Ito’s

formula for simple integrands. Inequality (1.3.4) is a corollary of the second funda-

mental formula. Extension of the stochastic integral given by Definition (1.3.6) to the
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integrands in L2
loc(Ã) is not as straight forward as in the classical Ito case. Here we

require estimates of the integral in the family of seminorms {‖.‖ηξ, η, ξ ∈ ID⊗IE} that

generates the topology of Ã, rather than an isometry. First, we present the following

established results in [7-9].

1.3.2 Proposition. Let p ∈ L2
loc(Ã). Then there exists a sequence p(n), n = 1, 2, ...

of simple adapted processes such that for each t > 0,and for arbitrary η, ξ ∈ ID⊗IE,

lim
n→∞

∫ t

0

‖p(s)− p(n)(s)‖2
ηξds = 0 (1.3.5)

1.3.3 Proposition.Assume that the following hold

(i) p, q, u, v are simple processes in Ad(Ã).

(ii) M(t) =
∫ t

0
(p(s)dΛπ(s)+q(s)dAf (s)+u(s)dA+

g (s)+v(s)ds) for each t ∈ [0, T ], T >

0.

For arbitrary η, ξ ∈ ID⊗IE with η = c ⊗ e(α), ξ = d ⊗ e(β), c, d ∈ ID, α, β ∈

L∞γ,loc(R+), let Kηξ,T be given by

Kηξ,T = sup0≤s≤Tmax{|〈α(s), π(s)β(s)〉|, |〈f(s), β(s)〉|, |〈α(s), g(s)〉|, 1}

Then

‖M(t)‖ηξ ≤ Kη,ξ,T

∫ T

0

[‖p(s)‖ηξ + ‖q(s)‖ηξ + ‖u(s)‖ηξ + ‖v(s)‖ηξ]ds (1.3.6)

1.3.8 Remark. (Extension of Quantum Stochastic Integral)

Let p, q, u, v be elements of L2
loc(Ã). Then by Proposition 1.3.2 there exists simple

adapted processes pn, qn, un, vn which approximate p, q, u, v in L2
loc(Ã). We now set

Mn(t) =

∫ t

0

(pn(s)dΛπ(s) + qn(s)dAf (s) + un(s)dA+
g (s) + vn(s)ds)
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Applying the inequality (1.3.6) to the difference Mn(t) −Mm(t),m, n ∈ N, we have

that the sequenceMn(t) is a Cauchy sequence in (Ã) and therefore converges to a limit

in (Ã) by the completeness of the locally convex space. The limit M(t) is independent

of the choice of approximating sequences and is defined to be the integral

M(t) =

∫ t

0

(p(s)dΛπ(s) + q(s)dAf (s) + u(s)dA+
g (s) + v(s)ds).

By employing the uniformity of the convergence on finite intervals, we may pass to the

limit of approximations by simple processes, so that Theorem 1.3.1(a) for coefficients

p, q, u, v belonging to L2
loc(Ã) remains valid.

Next, we present some concepts and definitions which are intended for reference pur-

pose in this study. Such concepts are already contained in texts written by many

authors [28, 48, 60, 78, 6
′
, 7
′
].

1.3.9 Notations.

(i) For each ω ∈ Ω (Ω is a non-empty set), the map t → X(t, ω) is called the

corresponding sample path, realization or trajectory of the stochastic process.

(ii) Wiener Process, W = {W (t)}t≥0: This is also called the Brownian motion in

honour of R. Brown who in (1826-1827) observed the irregular motion of pollen

particles in water and given by the notation B = {B(t)}t≥0 .

(iii) Martingales; Let X(t) : t ∈ I, I = [0,∞), be a stochastic process defined on a

probability space (Ω, F, P ) such that E(|X(t)|) <∞ for all t ≥ 0.

If E(Xt / Fs) = Xs, forall t ≥ s ≥ 0 where {Ft}t≥0 is a filtration to which the

process is adapted. Then X(.) is called a martingale.
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1.4 Spaces of Sesquilinear-form-Valued Maps

We shall employ certain spaces of maps whose values are sesquilinear forms on ID⊗IE.

We have the following definitions and notations as in [7-9].

1.4.1 Notation. (i) We denote the space of sesquilinear forms on ID⊗IE by sesq(ID⊗IE).

Thus,

sesq(ID⊗IE) = {a : ID⊗IE × ID⊗IE → C| the map (η, ξ) → a(η, ξ) is linear in ξ and

conjugate linear in η, ∀ η, ξ ∈ ID⊗IE}

(ii) Let I ⊆ R+, we denote by L0(I, ID⊗IE) the set of all sesq(ID⊗IE)− valued maps

on I. i, e. L0(I, ID⊗IE) = {u : I → sesq(ID⊗IE)}.

1.4.2 Remark. L0(I, ID⊗IE) acquires the structure of a linear space if the linear

combination αu+ βv, α, β ∈ C, of u and v in L0(I, ID⊗IE) is defined by

(αu+ βv)(t)(η, ξ) = αu(t)(η, ξ) + βv(t)(η, ξ), t ∈ I, η, ξ ∈ ID⊗IE.

We observe also that every Ã− valued map P on I is L0(I, ID⊗IE), since P may be

identified with the map whose value at t ∈ I is the sesquilinear form

(η, ξ)→ 〈η, P (t)ξ〉, η, ξ ∈ ID⊗IE

1.4.3 Definition. A member z ∈ L0(I, ID⊗IE) is:

(i) absolutely continuous if the map t → z(t)(η, ξ) is absolutely continuous for

arbitrary η, ξ ∈ ID⊗IE.

(ii) of bounded variation if over all partition {tj}nj=0 of I,

sup
H

(
n∑
j=1

|z(tj)(η, ξ)− z(tj−1)(η, ξ)|

)
<∞
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(iii) of essentially bounded variation if z is equal almost everywhere to some member

of L0(I, ID⊗IE) of bounded variation.

(iv) A stochastic process X : I → Ã is of bounded variation if

sup
(∑

|〈η,X(tj)ξ〉 − 〈η,X(tj−1)ξ〉|
)
<∞

for arbitrary η, ξ ∈ ID⊗IE and where supremum is taken over all partitions

{tj}Nj=1 of I.

1.4.4 Notation. We denote by BV (Ã), the set of all stochastic processes of bounded

variation on I.

1.4.5 Definition.

(i) For X ∈ BV (Ã), define for arbitrary η, ξ ∈ ID⊗IE,

V ar[a,b]Xηξ = sup
τ

(
n∑
j=1

‖X(tj)−X(tj−1)‖ηξ

)

where τ is the collection of all partition of the interval [a, b] ⊆ I. If [a, b] = I, we

simply write V arIXηξ = V arη,ξX. Then {V arη,ξX, η, ξ ∈ ID⊗IE} is a family

of seminorms which generates a locally convex topology on BV (Ã).
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1.4.6 Notation.

(i) We denote by BV (Ã); the completion of BV (Ã) in the said topology.

(ii) For any member Z of L0(I, ID⊗IE) of bounded variation, we write V ar[a,b]Zηξ

for its variation on [a, b] ⊆ I

(iii) for any arbitrary complex valued map f : I → C of bounded variation we write

V ar[a,b]f = sup
τ

(
n∑
j=1

|f(tj)− f(tj−1)|

)
,

For [a, b] ⊆ I, where τ is the collection of all partitions of [a, b].

(iv) for [a, b] ⊆ I, write V ar[a,b]f = V arf .
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1.5 Stochastic Differential Equations

We present Lipschitzian quantum stochastic differential equation in the framework of

[30] formulation of Lipschitzian quantum stochastic differential inclusions.

The following notations and definitions will be required subsequent sections.

1.5.1 Definition. A stochastic process Φ will be called locally absolutely p - in-

tegrable if the map t→ ‖Φ(t)‖ηξ, t ∈ R+, lies in Lploc(I) for arbitrary η, ξ ∈ ID⊗IE and

p ∈ (0,∞)

1.5.2 Notation. For p ∈ (0,∞) and I ⊆ R+, L
2
loc(I × Ã) denotes the set of maps

Φ : I×Ã → Ã such that the map t→ Φ(X(t), t) lies in Lploc(Ã) for every X ∈ Lploc(Ã).

In what follows, f, g ∈ L∞γ,loc(R+), π ∈ L∞B(γ),loc(R+), 1 is the identity map on

R ⊗ Γ(L2
γ(R+)). We introduce the process Af , A

+
g ,∧π and s → s1, s ∈ R+ as the

integrators.

1.5.3 Definition. Let E,F,G,H ∈ L2
loc(I×Ã) and (X0, t0) be a fixed point of I×Ã.

Then a relation of the form

X(t) = X0 +

∫ t

t0

E(X(s), s)d ∧π (s) + F (X(s), s)dAg(s)

+G(X(s), s)dAf+(s) +H(X(s), s)ds), t ∈ I (1.5.1)

will be called a stochastic integral equation with coefficients E,F,G,H and initial

data (X0, t0) if X(t0) = X0.

Equation (1.5.1) can be written in differential form as

dX(t) = E(X(t), t)d ∧π (t) + F (X(t), t)dAg(t) +G(X(t), t)dAf+(t) +H(X(t), t)dt

X(t0) = X0, almost all t ∈ I (1.5.2)

1.5.4 Definition: By a solution of equation (1.5.1), we mean a weakly absolutely
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continuous stochastic process φ ∈ L2
loc(Ã) such that

dφ(t) = E(φ(t), t)d ∧π (t) + F (φ(t), t)dAg(t) +G(φ(t), t)dAf+(t) +H(φ(t), t)dt

φ(t0) = X0, almost all t ∈ I

1.5.5 Definition: Let I ⊆ R+

(i) A map Φ : I × Ã −→ Ã will be called Lipschitzian if for any η, ξ ∈ ID⊗IE, there

exists a function

KΦ
ηξ : I −→ (0,∞)

lying in L1
loc(I) such that,

‖Φ(x, t)− Φ(y, t)‖ηξ ≤ KΦ
ηξ(t)‖x− y‖ηξ

for all x, y ∈ Ã and almost all t ∈ I. The functions {KΦ
ηξ(.) : η, ξ ∈ ID⊗IE} will be

called Lipschitz functions for Φ; these are constants if Φ does not depend explicitly

on t.

(ii) If for η, ξ ∈ ID⊗IE, Φηξ maps I×Ã to C, the complex field, then Φηξ will be called

Lipschitzian if

|Φηξ(x, t)− Φηξ(y, t)| ≤ KΦ
ηξ(t)‖x− y‖ηξ

for all x, y ∈ Ã and almost all t ∈ I.

(iii) If Φ is a map from I × Ã into the sesq(ID⊗IE) then for (x, t) ∈ I × Ã, the

value of Φ(x, t) at η, ξ ∈ ID⊗IE, will be called Lipschitzian (resp. continuous) if for

arbitrary η, ξ ∈ ID⊗IE, the map (x, t) −→ Φ(x, t)(η, ξ) from I × Ã to C is Lips-

chitzian(resp.continuous).
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1.6 Equivalent form of Quantum Stochastic

Differential Equation

In this section, we present some established results in [30] concerning equivalent forms

of quantum stochastic differential inclusions.

Except otherwise stated, E,F,G,H lie in L2
loc(I × Ã) and (x0, t0) is some fixed point

of I × Ã.

For η, ξ ∈ ID⊗IE, with η = c⊗ e(α) and ξ = d⊗ e(β),

define µαβ, γβ, σα : I −→ C by

µαβ = 〈α(t), β(t)〉γ

γβ = 〈f(t), β(t)〉γ

σα = 〈α(t), g(t)〉γ, t ∈ I

To these functions, associate the maps µE, γF, σG, P from I × Ã into the set of

sesquilinear forms on ID⊗IE defined by

(µE)(x, t)(η, ξ) = 〈η, µαβ(t)E(x, t)ξ〉

(γF )(x, t)(η, ξ) = 〈η, γα(t)F (x, t)ξ〉

(σG)(x, t)(η, ξ) = 〈η, σβ(t)G(x, t)ξ〉

P (x, t)(η, ξ) = (µE)(x, t)(η, ξ) + (γF )(x, t)(η, ξ) + (σG)(x, t)(η, ξ)

+H(x, t)(η, ξ)

η, ξ ∈ ID⊗IE, (x, t) ∈ I ×Ã where H(x, t)(η, ξ) := 〈η,H(x, t)ξ〉. P can also be written

in the form

P (x, t)(η, ξ) = 〈η, Pαβ(x, t)ξ〉

where

Pαβ : I × Ã −→ Ã

is given by

Pαβ(x, t) = µαβ(t)E(x, t) + γβ(t)F (x, t) + σα(t)G(x, t) +H(x, t)
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for (x, t) ∈ I × Ã.

1.6.1 Proposition: Let E,F,G,H lie in L2
loc(I × Ã). Then

(i) for arbitrary η, ξ ∈ ID⊗IE, and X ∈ L2
loc(Ã), the map t −→ P (X(t), t)(η, ξ) lie in

L1
loc(I).

(ii) the map P is

(a) Lipschitzian whenever E,F,G,H are Lipschitzian

(b) continuous whenever µE, γF, σG and H are continuous.

1.6.2 Theorem. Let E,F,G,H lie in L2
loc(I × Ã) and let (X0, t0) be a fixed point

of I × Ã. Then the stochastic integral equation

X(t) = X0 +

∫ t

t0

(E(X(s), s)d ∧π (s) + F (X(s), s)dAg(s)

+G(X(s), s)dAf+(s) +H(X(s), s)ds), t ∈ I (1.6.1)

is equivalent to the initial value nonclassical ordinary differential equation

d

dt
〈η,X(t)ξ〉 = P (X, t)(η, ξ)

X(t0) = X0, t ∈ [t0, T ], (1.6.2)

for arbitrary η, ξ ∈ ID⊗IE and almost all [t0, T ] ⊂ I.

1.6.3 Remark: Theorem 1.6.2 above has been established in [6]. The next the-

orem is a major result established in [30]. It concerns the existence and uniqueness of

solution of Lipschitzian quantum stochastic differential equation(1.3) with the Lips-

chitz condition W (t) = t.
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1.6.4 Theorem. Suppose that the coefficients E,F,G,H appearing in equation

(1.3) are Lipschitzian and belong to L2
loc(I × Ã). Then for any fixed point (X0, t0) of

I × Ã, there exists a unique adapted and weakly absolutely continuous solution Φ of

quantum stochastic differential equation (1.3) satisfying Φ(t0) = X0.
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1.7 Kurzweil Integrals Associated with

Quantum Stochastic Processes

In this section, The origin of the Kurzweil equations associated with quantum stochas-

tic processes within the frame work of [6, 87] is discussed. We first present some useful

definitions and notations.

1.7.1 Definition:

(i) Let an interval [a, b] ⊂ R be given. A pair (τ, J) of a point τ ∈ R and a compact

interval J ⊂ R is called a tagged interval, τ is the tag of J .

(ii) A finite collection ∆ = (τj, Jj), j = 1, ..., k of tagged intervals is called a sys-

tem in [a, b] if τj ∈ Jj ⊂ [a, b], for every j = 1, ..., k and the intervals Jj are

nonoverlapping, that is Int(Ji)
⋂
Int(Jj) = φ for i 6= j where Int(J) denotes

the interior of an interval J.

(iii) A system ∆ = (τj, Jj), j = 1, ..., k is called a partition of [a, b] if

k⋃
j=1

Jj = [a, b]

(iv) Given a positive function δ : [a, b]→ (0,+∞) called a gauge on [a, b], a tagged

interval (τ, J) with τ ∈ [a, b] is said to be δ-fine if

J ⊂ [τ − δ(τ), τ + δ(τ)].

(v) A system (in particular, a partition) 4 = {(τj; Jj), j = 1, . . . , k} is δ-fine if the

point interval pair (τj, Jj) is δ-fine for every j = 1, . . . , k.

Unless otherwise stated we shall let η, ξ ∈ ID⊗IE be arbitrary.

Assume that U : [t0, T ]× [t0, T ]→ Ã is an Ã-valued map of two variables τ, t ∈ [t0, T ].

We adopt the following as in [6].
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1.7.2 Notation: Consider the family of complex valued functions

U(τ, t)(η, ξ) := 〈η, U(τ, t)ξ〉 associated with the map U .

(i) We shall use the integral ∫ T

t0

DU(τ, t)(η, ξ)

to denote the Kurzweil integral of U(τ, t)(η, ξ) and write

(ii) S(U,D)(η, ξ) =
k∑
j=1

[U(τj, tj)(η, ξ)− U(τj, tj−1)(η, ξ)].

For the Riemann-Kurzweil sum corresponding to the function U(τ, t)(η, ξ) and the

partition

D : t0 < τ1 < t1 < · · · < tk = T of [t0, T ] ⊆ R+.

(iii) If f ; [t0, T ] → Ã is a stochastic process, then for arbitrary η, ξ ∈ ID⊗IE, we

set

U(τ, t)(η, ξ) = 〈η, f(τ)ξ〉

for τ, t ∈ [t0, T ] and write

S(U,D)(η, ξ) =
k∑
j=1

[U(τj, tj)(η, ξ)− U(τj, tj−1)(η, ξ)]

=
k∑
j=1

[〈η, f(τj)ξ〉(tj − tj−1)]

representing the classical Riemann sum for the function fηξ(t) := 〈η, f(t)ξ〉 and a

given partition D of [t0, T ] and we now write

(iv)

∫ T

t0

〈η, f(s)ξ〉ds =

∫ T

t0

D[fηξ(τ), t]

provided the Kurzweil integral

∫ T

t0

DU(τ, t)(η, ξ) exists in this case. Hence

∫ T

t0

DU(τ, t)(η, ξ) =

∫ T

t0

D[fηξ(τ), t] =

∫ T

t0

fηξ(s)ds (1.7.1)
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1.7.3 Remark: If U : [t0, T ]× [t0, T ]→ C be such that U is Kurzweil integrable over

[t0, T ], then for c ∈ [t0, T ], we have

lim
s→c

[∫ s

t0

DU(τ, t)− U(c, s) + U(c, c)

]
=

∫ c

t0

DU(τ, t) (1.7.2)

For several properties enjoyed by Kurzweil integrals and the existence of at least one

δ-fine partition D of [t0, T ] for a given gauge δ.
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1.8 Kurzweil Integrals associated with Quantum

Stochastic Differential Equations

(i) Let the map F : Ã × [t0, T ]→ sesq[ID⊗IE] be given as in equation (1.6). Then

we refer to the equation

d

dτ
〈η,X(τ)ξ〉 = DF (X(τ), t)(η, ξ); t ∈ [t0, T ] (1.8.1)

as the Kurzweil equation associated with equation (1.6.2).

(ii) A map Φ : [t0, T ]→ Ã is called a solution of equation (1.8.1) if

〈η.Φ(s2)ξ〉 − 〈η,Φ(s1)ξ〉 =

∫ s2

s1

DF (Φ(τ), t)(η, ξ) (1.8.2)

holds for every s1, s2 ∈ [t0, T ] identically.

Equation (1.8.1) is understood in integral form (1.8.2) via its solution.

The following are immediate consequence of the above definitions, they are estab-

lished results in [6].

1.8.1 Proposition. If a map Φ : [t0, T ] → Ã is a solution of the Kurzweil equation

(1.8.1) on [t0, T ], then for every u ∈ [t0, T ], the following holds

〈η,Φ(s)ξ〉 = 〈η,Φ(u)ξ〉+

∫ s

u

DF (Φ(τ), t)(η, ξ); s ∈ [t0, T ] (1.8.3)

Consequently if a map Φ : [t0, T ]→ Ã satisfies the integral equation (1.8.3) for some

u ∈ [t0, T ] and all s ∈ [t0, T ] then Φ is a solution of equation (1.8.1).

1.8.2 Proposition. If Φ : [t0, T ]→ Ã is a solution of the Kurzweil equation (1.8.1)

on [t0, T ], then

lim
s→σ

[〈η,Φ(s)ξ〉 − F (Φ(σ), s)(η, ξ) + F (Φ(σ), σ)(η, ξ)] = 〈η,Φ(σ)ξ〉 (1.8.4)

1.8.3 Remark: By virtue of Proposition 1.8.2, the following approximation holds:

If Φ : [t0, T ] → Ã is a solution of equation (1.8.1), then for every σ ∈ [t0, T ] and for
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arbitrary η.ξ ∈ ID⊗IE, the matrix element

〈η,Φ(s)ξ〉 ≈ 〈η,Φ(σ)ξ〉+ F (Φ(s), s)(η, ξ)− F (Φ(σ), σ)(η, ξ)

provided that s in [t0, T ] is sufficiently close to σ.

The following section concerns the class of sesquilinear form - valued maps P :

Ã × [t0, T ]→ sesq[ID⊗IE] which are Kurzweil integrable.
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1.9 Class of Kurzweil Integrable Sesquilinear

form-valued Maps

1.9.1 Definition: For each η, ξ ∈ ID⊗IE, let hηξ : [t0, T ] → R be a family of non-

decreasing functions defined on [t0, T ] and W : [0,∞) → R be a continuous and

increasing function such that W (0) = 0. Then the map F : Ã× [t0, T ]→ sesq(ID⊗IE)

is said to belong to the class F (Ã × [t0, T ], hηξ,W ) for each η, ξ ∈ ID⊗IE if for all

x, y ∈ Ã, t1, t2 ∈ [t0, T ]

(i) |F (x, t2)(η, ξ)− F (x, t1)(η, ξ)| ≤ |hηξ(t2)− hηξ(t1)| (1.9.1)

(ii) |F (x, t2)(η, ξ)− F (x, t1)(η, ξ)− F (y, t2)(η, ξ) + F (y, t1)(η, ξ)|

≤ W (‖x− y‖ηξ)|hηξ(t2)− hηξ(t1)| (1.9.2)

Next, we present some established results in [6] and some results which are simple

extensions of similar results in [87] to the present noncommutative quantum setting.

1.9.2 Theorem. Assume that the following conditions hold:

(i) the maps U,Um : [t0, T ]×[t0, T ]→ Ã are such that (τ, t)→ Um(τ, t)(η, ξ) are real

valued and Kurzweil integrable over [t0, T ] for each η, ξ ∈ ID⊗IE ∀ m = 1, 2, . . . .

(ii) there is a gauge w on [t0, T ] such that for every ε > 0, there exists a map

p : [t0, T ] → N and a family of super additive interval functions Φηξ on [t0, T ]

defined for closed intervals J ⊂ [t0, T ] with Φηξ([t0, T ]) < ε such that for every

τ ∈ [t0, T ]

|Um(τ, J)(η, ξ)− U(τ, J)(η, ξ)| < Φηξ(J)

provided that m > p(τ), and (τ, J) is an w-fine tagged interval with τ ∈ J ⊆

[t0T ].

(iii) there exist real valued Kurzweil integrable functions

Vηξ, Wηξ : [t0, T ]→ R and a gauge θ on [t0, T ] such that for allm ∈ N, τ ∈ [t0, T ],

Vηξ(τ, J) ≤ Um(τ, J)(η, ξ) ≤ Wηξ(τ, J).
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for any θ-fine interval (τ, J), ∀ η, ξ ∈ ID⊗IE.

Then the map (τ, t)→ U(τ, t)(η, ξ) is Kurzweil integrable over [t0, T ] and that

lim
m→∞

∫ T

t0

DUm(τ, t)(η, ξ) =

∫ T

t0

DU(τ, t)(η, ξ).

1.9.3 Lemma. Let U : [t0, T ]× [t0, T ]→ Ã be Kurzweil integrable over [t0, T ]. Given

ε > 0 assume that

(i) the gauge δ on [t0, T ] is such that∣∣∣∣∣
k∑
j=1

[U(τj, αj)(η, ξ)− U(τj, αj−1)(η, ξ)]−
∫ T

t0

DU(τ, t)(η, ξ)

∣∣∣∣∣ < ε

for every δ - fine partition D = {α0, τ1, α1, . . . , αk−1, τk, αk} of [t0, T ].

(ii) t0 ≤ β1 ≤ α1 ≤ γ1 ≤ β2 ≤ α2 ≤ γ2 ≤ · · · ≤ βm ≤ αm ≤ γm ≤ T rep-

resents a δ - fine system (αj, [βj, γj]), j = 1, 2, ...,m, i.e. αj ∈ [βj, γj] ⊂

[αj − δ(αj), αj + δ(αj)], j = 1, 2, ...,m

then

∣∣∣∣∣
m∑
j=1

[U(αj, γj)(η, ξ)− U(αj, βj)(η, ξ)]−
∫ γj

βj

DU(τ, t)(η, ξ)

∣∣∣∣∣ < ε

Proof: The proofs are simple adaptation of arguments employed in in Lemma 1.13

[87] to the present noncommutative quantum setting.

The following theorems are extensions of theorems 1.14, 1.16 and 1.35 in [87] to this

present noncommutative quantum setting.

1.9.4 Theorem. Assume that the following holds.

(i) the function U : [t0, T ]×[t0, T ]→ Ã is given for which the integral
∫ T
t0
DU(τ, t)(η, ξ)

exists.
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(ii) If Vηξ : [t0, T ]× [t0, T ]→ R is such that the integral
∫ T
t0
DVηξ(τ, t) exists and there

is a gauge θ on [t0, T ] such that

(iii) |t− τ | .|U(τ, t)(η, ξ)− U(τ, τ)(η, ξ)| ≤ (t− τ).(Vη,ξ(τ, t)− Vη,ξ(τ, τ))

for every t ∈ [τ − θ(τ), τ + θ(τ)]

then the inequality ∣∣∣∣∫ T

t0

DU(τ, t)(η, ξ)

∣∣∣∣ ≤ ∫ T

t0

DVη,ξ(τ, t) (1.9.3)

holds.

Proof: Assume that ε > 0 is given. Since the integrals
∫ T
t0
DU(τ, t)(η, ξ),

∫ T
t0
DVη,ξ(τ, t)

exist, there is a gauge δ on [a, b] with δ(s) ≤ θ(s) for s ∈ [t0, T ] such that for every

δ-fine partition

D = {a0, τ1, α1, ..., αk−1, τk, αk}

of [t0, T ] we have∣∣∣∣∣
k∑
j=1

[U(τj, αj)(η, ξ)− U(τj, αj−1)(η, ξ)]−
∫ T

t0

DU(τ, t)(η, ξ)

∣∣∣∣∣ < ε (1.9.4)

From hypothesis (iii), we get

|U(τi, αi)(η, ξ)− U(τi, τi)(η, ξ)| ≤ Vη,ξ(τi, αi)− Vη,ξ(τi, τi)

when αi > τi and

|U(τi, αi)(η, ξ)− U(τi, τi)(η, ξ)| ≤ Vη,ξ(τi, τi)− Vη,ξ(τi, αi)

when αi < τi. Hence for i=1,2,...,k we have

|U(τi, αi)(η, ξ)− U(τi, αi−1)(η, ξ)| ≤ |U(τi, αi)(η, ξ)− U(τi, τi)(η, ξ)|

+|U(τi, τi)(η, ξ)− U(τi, αi−1)(η, ξ)| ≤ Vη,ξ(τi, αi)− Vη,ξ(τi, αi−1)
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By (1.9.4) we get∣∣∣∣∫ T

t0

DU(τ, t)(η, ξ)

∣∣∣∣ ≤
∣∣∣∣∣
k∑
j=1

[U(τj, αj)(η, ξ)− U(τj, αj−1)(η, ξ)]−
∫ T

t0

DU(τ, t)(η, ξ)

∣∣∣∣∣+∣∣∣∣∣
k∑
j=1

[U(τj, αj)(η, ξ)− U(τj, αj−1)(η, ξ)]

∣∣∣∣∣
< ε+

k∑
j=1

[Vη,ξ(τj, αj)− Vη,ξ(τj, αj−1]

= ε+
k∑
j=1

[Vη,ξ(τj, αj)− Vη,ξ(τj, αj−1]−
∫ T

t0

DVη,ξ(τ, t) +

∫ T

t0

DVη,ξ(τ, t)

< 2ε+

∫ T

t0

DVη,ξ(τ, t)

Since ε > 0 was arbitrary, the inequality (1.9.3) is satisfied. This theorem gives an

estimate of the integral
∫ T
t0
DU(τ, t)(η, ξ) by another integral of a real valued function.

(Since C ≡ R2).

1.9.5 Theorem.

(i) Let U : [t0, T ] × [t0, T ] → Ã be such that (τ, t) → U(τ, t)(η, ξ) is Kurzweil

integrable over [t0, c] for c ∈ [t0, T ] and that the limit

lim
c→T−

[∫ c

t0

DU(τ, t)(η, ξ)− U(T, c)(η, ξ) + U(T, T )(η, ξ)

]
= I (1.9.5)

exists for all η, ξ ∈ ID⊗IE. Then

∫ T

t0

DU(τ, t)(η, ξ) exists and equals I.

(ii) Let U : [t0, T ] × [t0, T ] → Ã be such that (τ, t) → U(τ, t)(η, ξ) is Kurzweil

integrable over [t, T ] and that the limit

lim
c→0+

[∫ T

c

DU(τ, t)(η, ξ)− U(t0, c)(η, ξ) + U(t0, t0)(η, ξ)

]
= I (1.9.6)

exists for all η, ξ ∈ ID⊗IE. Then∫ T

t0

DU(τ, t)(η, ξ) exists and equals I
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(iii) Let U : [t0, T ] × [t0, T ] → Ã be such that (τ, t) → U(τ, t)(η, ξ) is Kurzweil

integrable over [t0, T ]. Then for c ∈ [t0, T ].

lim
s→c

[∫ c

t0

DU(τ, t)(η, ξ)− U(c, s)(η, ξ) + U(c, c)(η, ξ)

]
=

∫ c

t0

DU(τ, t)(η, ξ)

(1.9.7)

for all η, ξ ∈ ID⊗IE.

Proof: Assume that ε > 0 is given by (i) for every ε > 0 we can find a B ∈ [t0, T ]

such that for every c ∈ [B, T ) the inequality∣∣∣∣∫ c

t0

DU(τ, t)(η, ξ)− U(T, c)(η, ξ) + U(τ, T )(η, ξ)

∣∣∣∣ < ε (1.9.8)

is satisfied.

Assume that t0 = c0 < c1 < ... is an increasing sequence (cp)
∞
p=1 of points cp ∈ [t0, T )

with limp→∞ cp = T . By the assumption we have u ∈ [t0, cp] for every p = 1, 2, . . .

and therefore for every p = 1, 2, . . . , there exists a gauge Wp on [t0, T ] such that

Wp : [t0, cp]→ (0,+∞) and for any wp-fine partition D of [t0, cp] we have∣∣∣∣S(U,D)(η, ξ)−
∫ cp

t0

DU(τ, t)(η, ξ)

∣∣∣∣ < ε

2p+1
, p = 1, 2, . . . (1.9.9).

For every τ ∈ [t0, T ] there is exactly one p(τ) = 1, 2, . . . for which τ ∈ [cp(τ)−1, cp(τ)].

Given τ ∈ [t0, T ] let us choose ŵ(τ) > 0 such that ŵ(τ) ≤ Wp(τ)(τ) and [τ−ŵ(τ), τ+

w̄(τ)] ∩ [t0, T ] ⊂ [t0, cp(τ)). Assume that c ∈ [t0, T ] is given and that

D̂ = {α0, τ1, α1, . . . , αk−2, τk−1, αk−1}

is a ŵ-fine partition of [t0, c]. If p(τj) = p then [αj−1, αj] ⊂ [τj − ŵ(τj), τj + ŵ(τj)] ⊂

[t0, cp] and also [αj−1, αj] ⊂ [τj − wp(τj), τj + wp(τ)j] let

k−1∑
j=1,p(τj)=p

[
U(τj, αj)(η, ξ)− U(τj, αj−1)(η, ξ)−

∫ αj

αj−1

DU(τ, t)(η, ξ)

]

be the sum of those terms in the corresponding “total” sum

k−1∑
j=1

[
U(τj, αj)(η, ξ)− U(τj, αj−1)(η, ξ)−

∫ αj

αj−1

DU(τ, t)(η, ξ)

]
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for which the tags τj satisfy the relation τj ∈ [cp−1, cp). Since 1.9.4 holds, we obtain

by Lemma (1.9.3)∣∣∣∣∣∣
k−1∑

j=1,p(τj)=p

[U(τj, αj)(η, ξ)− U(τj, αj=1)(η, ξ)−
∫ αj

αj−1

DU(τ, t)(η, ξ)

∣∣∣∣∣∣ < ε

2p+1

and finally,∣∣∣∣∣
k−1∑
j=1

[U(τj, αj)(η, ξ)− U(τj, αj−1)(η, ξ)]−
∫ c

t0

DU(τ, t)(η, ξ)

∣∣∣∣∣
=

∣∣∣∣∣
k−1∑
j=1

〈η, f(τj)ξ〉(τj − αj−1)−
∫ c

t0

D[fηξ(τ), t]

∣∣∣∣∣
=

∣∣∣∣∣
k−1∑
j=1

[U(τj, αj)(η, ξ)− U(τj, αj−1)(η, ξ)−
∫ αj

αj−1

DU(τ, t)(η, ξ)

∣∣∣∣∣
≤

∞∑
p=1

∣∣∣∣∣∣
k−1∑

j=1,p(τj)=p

[U(τj, αj)(η, ξ)− U(τj, αj−1)(η, ξ)]−
∫ αj

αj−1

DU(τ, t)(η, ξ)

∣∣∣∣∣∣
≤

∞∑
p=1

ε

2p+1
= ε

. Define now a gauge w on [t0, T ] as follows.

For τ ∈ [t0, T ] set 0 < w(τ) < min{T − τ, ŵ(τ)} while

0 < w(τ) < T −B

If D = {α0, τ1, α1, . . . , αk−1, τk, αk} is an arbitrary w-fine partition of [t0, T ] then by

the choice of the gauge w we have τk = αk = T and αk−1 ∈ [B, T ]. Using (1.9.3) we

get

|S(U,D)(η, ξ)− I| =

=

∣∣∣∣∣
k−1∑
j=1

[U(τj, αj)(η, ξ)− U(τj, αj−1)(η, ξ)− U(τj, αk)(η, ξ)− U(τj, αk−1)(η, ξ)

∣∣∣∣∣
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≤

∣∣∣∣∣
k−1∑
j=1

[U(τj, αj)(η, ξ)− U(τj, αj−1)(η, ξ)−
∫ αk−1

t0

DU(τ, t)(η, ξ)− I

∣∣∣∣∣
+

∣∣∣∣∫ αk−1

t0

DU(τ, t)(η, ξ)− U(T, αk−1)(η, ξ) + U(T, T )(η, ξ)− I
∣∣∣∣ <

< ε+

∣∣∣∣∣
k−1∑
j=1

[U(τj, αj)(η, ξ)− U(τj, αj−1)(η, ξ)]−
∫ αk−1

t0

DU(τ, t)(η, ξ)

∣∣∣∣∣
Since αk−1 < T and D̂ = {α0, τ1, α1, · · · , αk−2, τk−1, αk−1}, is a ŵ-fine partition of

[t0, αk−1], the second term on the right hand side of the last inequality can be esti-

mated by ε as shown above from which we obtain

|S(U,D)(η, ξ)− I| < 2ε

and this inequality yields the existence of the integral∫ T

t0

DU(τ, t)(η, ξ)

as well as the equality ∫ T

t0

DU(τ, t)(η, ξ) = I

Remark: To prove (iii), we let c0 ∈ [t0, T ] so that by (1.9.8)(iii) for every ε > 0, we

can find a,B ∈ [c, T ] such that for every t0 ∈ [B, T ] the inequality∣∣∣∣∫ T

c

DU(τ, t)(η, ξ) + U(t0, c)(η, ξ)− U(t0, t0)(η, ξ)− I
∣∣∣∣ < ε (1.9.10)

is satisfied and in a similar way to the prove of (i) we obtain∫ T

t0

DU(τ, t)(η, ξ) = I

Proof of (iii) Let ε > 0 be given and let w be a gauge on [t0, T ] which corresponds

to ε by the definition of the class F(Ã × [t0, T ], hηξ,W ), the inequality∣∣∣∣S(U,D)(η, ξ)−
∫ T

t0

DU(τ, t)(η, ξ)

∣∣∣∣ < ε
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holds for every w-fine partition D of [t0, T ]. If s ∈ [c− w(c), c + w(c)] ⊂ [t0, T ] then

by Lemma 1.9.3, we get∣∣∣∣U(c, s)(η, ξ)− U(c, c)(η, ξ)−
∫ s

c

DU(τ, t)(η, ξ)

∣∣∣∣ < ε

that is ∣∣∣∣∫ s

t0

DU(τ, t)(η, ξ)− U(c, s)(η, ξ) + U(c, c)(η, ξ)−
∫ c

t0

DU(τ, t)(η, ξ)

∣∣∣∣
=

∣∣∣∣∫ s

c

DU(τ, t)(η, ξ)− U(c, s)(η, ξ) + U(c, c)(η, ξ)

∣∣∣∣ < ε

which yields (iii). And the proof is completed.

Remark: Theorem 1.9.2 is a convergence result established in [6] while theorem

1.9.4 concerns some fundamental properties of the Kurzweil integral and the associ-

ated QSDE.

The next results are established in [6] and concerns the existence of the integral in-

volved in the definition of the Kurzweil equation (1.8.1).

1.9.6 Theorem. Assume that the map (x, t)→ F (x, t)(η, ξ) is of class

F(Ã × [t0, T ], hηξ,W ), and X : [a, b] → Ã, [a, b] ⊆ [t0, T ] is the limit of a sequence

{Xk}k∈N of processes Xk : [a, b]→ Ã such that∫ b

a

DF (Xk(τ), t)(η, ξ) exists for every k ∈ N.

Then the integral ∫ b

a

DF (X(τ), t)(η, ξ) exists and∫ b

s

DF (X(τ), t)(η, ξ) = lim
k→∞

∫ b

a

DF (Xk(τ), t)(η, ξ)

.
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1.9.7 Theorem. Assume that the map (x, t)→ F (x, t)(η, ξ) is of class

F(Ã × [t0, T ], hηξ,W ) and that X : [a, b] → Ã is the limit of a sequence of simple

processes. Then the integral

∫ b

a

DF (X(τ), t)(η, ξ) exists for arbitrary η, ξ ∈ ID⊗IE.

1.9.8 Theorem. Assume that the map (x, t)→ F (x, t)(η, ξ) is of class

F(Ã × [t0, T ], hηξ,W ) and X : [a, b]→ Ã, [a, b] ⊆ [t0, T ] is of bounded variation, then

the integral ∫ b

a

DF (X(τ), t)(η, ξ) exists.

The proofs of theorems 1.9.6, 1.9.7 and 1.9.8 are found in [6].

The following results are simple extensions of similar results in [87] to the present

generalized noncommutative quantum setting.

1.9.9 Lemma: Assume that the map (x, t)→ F (x, t)(η, ξ) if of class

F (Ã × [t0, T ], hηξ,W ). If [a, b] ⊆ [t0, T ] and X : [a, b] → Ã for all x ∈ Ã and if the

integral ∫ b

a

DF (X(τ), t)(η, ξ)

exists, then for every t1, t2 ∈ [a, b] the inequality∣∣∣∣∫ t2

t1

DF (X(τ), t)(η, ξ)

∣∣∣∣ ≤ |hηξ(t2)− hηξ(t1)| (1.9.11)

is satisfied.

Proof: Using (1.9.1) and (1.9.2)

|t− τ | · |F (x(τ), t)(η, ξ)− F (x(τ), τ)(η, ξ)| ≤ (t− τ)(hηξ(t)− hηξ(τ)

for any τ, t ∈ [a, b]. The integral

∫ b

a

dhηξ(t) exists and

∫ s2

s1

dhηξ(t) = hηξ(s2)− hηξ(s1)
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for every s1, s2 ∈ [a, b].

Therefore (1.9.11) is an immediate consequence of Theorem 1.9.4.

1.9.10 Lemma: Assume that the map (x, t)→ F (x, t)(η, ξ) is of class

F(Ã × [t0, T ], hηξ,W ). If [a, b] ⊆ [t0, T ] and x : [a, b]→ Ã is a solution of (1.7) then

the inequality

‖x(t2)− x(t1)‖ηξ ≤ |hηξ(t2)− hηξ(t1)| (1.9.12)

holds for every t1, t2 ∈ [a, b].

Proof: The result follows directly from Lemma (1.9.9) if we take into account that

by definition we have

|〈η, x(s2)ξ〉 − 〈η, x(s1)ξ〉| =
∣∣∣∣∫ s2

s1

DF (x(τ), t)(η, ξ)

∣∣∣∣
for every s1, s2 ∈ [a, b].

= |F (x(τ), s2)(η, ξ)− F (x(τ), s1)(η, ξ)| ≤ |hηξ(s2)− hηξ(s1)|

1.9.11 Corollary: Assume that the map (x, t)→ F (x, t)(η, ξ) is of class

F(Ã × [to, T ], hηξ,W ). If [a, b] ⊆ [t0, T ] and X : [a, b]→ Ã is a solution of (1.7) then

X is of bounded variation on [a, b] and

V arX[a,b] ≤ hηξ(b)− hηξ(a) < +∞ (1.9.13)

Moreover, every point in [a, b] at which the function hηξ is continuous is a continuity

point of the solution X : [a, b]→ Ã.

Proof: Let a = S0 < S1 < · · · < Sk = b be an arbitrary division of the interval [a, b].

By ( 1.9.12 ) we have

k∑
j=1

‖x(sj)− x(sj−1)‖ηξ ≤
k∑
j=1

|hηξ(sj)− hηξ(sj−1)| < hηξ(b)− hηξ(a)
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passing to the supremum over all divisions of [a, b] we obtain (1.9.13). The second

statement is a consequence of the inequality (1.9.12).

In the next section, we present a summary of some established results of Ayoola

[6] concerning the equivalence of the Kurzweil equation (1.7) and the associated Lip-

schitzian quantum stochastic differential equation

d

dt
〈η,X(t)ξ〉 = P (X(t), t)(η, ξ)

where the map (X, t) −→ P (X, t)(η, ξ) is of class C(Ã × [t0, T ],W ) and W (t) = t.
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1.10 Equivalence of Kurzweil equation and the

associated Lipschitzian Quantum Stochastic

Differential Equation

1.10.1 Notation: The class C(Ã× [t0, T ],W ), denotes the class of sesquilinear form-

valued maps which are Lipschitzian and satisfy the Caratheodory conditions.

1.10.2 Definition: A map P : Ã × [t0, T ] → sesq[ID⊗IE] belongs to the class

C(Ã × [t0, T ],W ) if for arbitrary η, ξ ∈ ID⊗IE

(i) P (x, .)(η, ξ) is measurable for each x ∈ Ã∫ t
t0
Mηξds <∞ and |P (x, .)(η, ξ)| 6Mηξ(s), (x, s) ∈ Ã × [t0, T ]

(iii) There exists measurable functions Kηξ : [t0, T ]→ R+ such that for each

t ∈ [t0, T ],
∫ t
t0
Kηξds <∞, and

|P (x, s)(η, ξ)− P (y, s)(η, ξ)| ≤ Kp
ηξ(s)W (‖x− y‖ηξ)

For (x, s), (y, s) ∈ Ã × [t0, T ] and where for (i) -(iii) W (t) = t. and

hηξ(t) =

∫ t

t0

Mηξ(s)ds+

∫ t

t0

Kηξ(s)ds

1.10.3 Definition: For (X, t) ∈ Ã × [t0, T ] and P belonging to the class

C(Ã × [t0, T ],W ), we define for arbitrary η, ξ ∈ ID⊗IE},

F (X, t)(η, ξ) =

∫ t

t0

P (X, s)(η, ξ)ds (1.10.1)

The next result connects the two classes of maps defined above.

1.10.1 Theorem. Assume that for arbitrary η, ξ ∈ ID⊗IE, the map

P : Ã × [t0, T ]→ sesq(ID⊗IE) is of class C(Ã× [t0, T ],W ). Then for every

x, y ∈ Ã, t1, t2 ∈ [t0, T ], F (x, t)(η, ξ) defined by (1.10.1) satisfies
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(i) |F (x, t2)(η, ξ)− F (x, t1)(η, ξ)| ≤
∫ t2

t1

Mηξ(s)ds

(ii) |F (x, t2)(η, ξ)− F (x, t1) + F (y, t1)− F (y, t2)|

≤ W (‖x− y‖ηξ)
∫ t2

t1

Kp
ηξ(s)ds

(iii) The map F (x, t)(η, ξ) belong to the class F(Ã × [t0, T ], hηξ,W ) for each η, ξ ∈

ID⊗IE, where

hηξ(t) =

∫ t

t0

Mηξ(s)ds+

∫ t

t0

Kp
ηξ(s)ds.

The next result establishes the equivalence of the Kurzweil equation and the

associated QSDE

1.10.2 Theorem. If X : [a, b] −→ Ã, [a, b] ⊆ [t0, T ] is the limit of simple processes

then ∫ b

a

DF (X(τ), t)(η, ξ) =

∫ b

a

P (X(s), s)(η, ξ)ds (1.10.2)

The next result establishes the existence of solution for the Kurzweil equation asso-

ciated with the Lipschitzian QSDE (1.5).

1.10.3 Theorem. A stochastic process X : [t0, T ] → Ã is a solution of equation

(1.5) if and only if X is a solution of the Kurzweil equation

d

dτ
〈η,X(τ)ξ〉 = DF (X(τ), t)(η, ξ) (1.10.3)

on [t0, T ], t ∈ [t0, T ], and for arbitrary η, ξ ∈ ID⊗IE).

1.10.4 Remark: If X is a solution of (1.5) on [t0, T ], then by the existence and

uniqueness results established in [6, 30], X is adapted and weakly absolutely contin-

uous and lie in L2
loc(Ã).
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1.11 Statement of the Problem

The technique of topological dynamics can only be applied to the study of quantum

stochastic differential equations when sufficient analytical properties of solution are

established. As with most ordinary differential equations, we cannot study the

qualitative properties of solution of quantum stochastic differential equations

(QSDEs) without knowing if the equation actually has a unique solution.

Therefore, the study of existence and uniqueness of solutions is vital to the analysis

of qualitative properties of solutions of QSDEs. Results on existence of solution for

the weak forms of QSDE is subject to the Lipschitz condition W (t) = t. This

restrict the class under which the results are are applicable. There is therefore the

need to establish existence of solution under a more general Lipschitz condition.

These generalizations motivate the following questions:

(i) Suppose a quantum stochastic differential equation does not satisfy the

Lipschitz condition W (t) = t?

(ii) How can we possibly establish that a solution exists for such an equation?

(iii) is the solution unique?

(iv) is the solution stable?

(v) how well does the solution behave when it depends continuously on a

parameter?
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1.12 Aims

The aim of this research is to establish a basis for the application of the technique

of topological dynamics to the study of quantum stochatic differential equation as in

classical ordinary differential equations.

1.13 Objectives

To achieve this aim, the following objectives are outlined:

(i) To establish existence and uniqueness of solution of the Kurzweil equation as-

sociated with quantum stochastic differential equations under a more general

Lipschitz condition.

(ii) To investigate variational stability, variational attracting and variational asymp-

totic stability of solution.

(iii) To investigate converse variational stability of solution.

(iv) To investigate continuous dependence of solution on parameters of the quantum

stochastic differential equation and the associated Kurzweil equations.

1.14 Justification

In view of the foregoing, this research is strongly motivated by the need to extend

the solution space of quantum stochastic differential equation to a class of equations

that satisfy a more general Lipschitz condition and to create a framework so that the

technique of topological dynamics can be applied to the study of quantum stochastic

differential equations introduced above.
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Chapter 2

Literature Review

2.1 Introduction

In this chapter, we shall review some important results on existence of solution, sta-

bility of solution and continuous dependence of solution on parameters by various

authors. Some of these results are vital for the extension of results on existence of

solution of quantum stochastic differential equations associated with the Kurzweil

equation for a class of equations that do not necessarily satisfy the Lipschitz

condition.

It is worth mentioning that to the best of our knowledge, from the literatures con-

sulted, variational stability and continuous dependence of solution on parameters

have not been considered within the context of Ayoola and Ekhaguere’s [6-9, 30] for-

mulations of quantum stochastic differential equations and inclusions introduced in

chapter one.

The review shall essentially follow the sequence outlined below;

(2.2) Existence and Uniqueness of Solution of Ordinary Differential Equations (ODEs).

(2.3) Existence of Solution and Continuous Dependence of Solution on Parameters

of Classical Kurzweil Equation.

(2.4) Existence and Uniqueness of Solution of SDEs and QSDEs.
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(2.5) Stability of Solutions.

2.2 Existence of Solution of Ordinary Differential

Equations

Most results on existence of solution revealed consistent use of the Lipschitz function

to establish existence of solution of ordinary differential equations.

In the theory of ordinary differential equations [12, 21, 25, 27, 40, 41A, 41B, 55, 91,

100, 10
′
], Lipschitz continuity is the central condition of the Picard-Lindelof theorem

which guarantees the existence and uniqueness of solution to an initial value problem.

The method of successive approximation was used extensively in establishing existence

result in the above references. Some of the proofs rely on transforming the differential

equations, and applying the fixed point theorems [26, 49, 93, 97]. It was shown that

the sequence of successive approximations converged and that the limit is the solution

to the problem. The Gronwall’s Lemma was used to establish uniqueness of solution.

The present approach to the concept of an ordinary differential equation goes

back to C. Caratheodory [87]. Given an ordinary differential equation of the form

ẋ = f(x, t) (2.2.1)

The starting point for Caratheodory’s generalized approach to ordinary differential

equations of the form (2.2.1) is the integral equation given by

x(t) = x(α) +

∫ t

α

f(x(s), s)ds (2.2.2)

where the Lebesgue integral is involved in (2.2.2). The fundamental question of

the existence of a solution of the ordinary differential equation (2.2.1) is treated by

Caratheodory as the question of existence of solution of the integral equation (2.2.2)

with the Lebesgue integral on the right hand side.

By the properties of the Lebesgue integral, a function x : J → Rn satisfying (2.2.2)

is necessarily absolutely continuous in its interval of definition because the indefinite
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Lebesgue integral has this properties. Therefore it cannot be expected that a solution

of (2.2.1) in the sense of Caratheodory possesses a derivative everywhere in its domain

of definition. Generalized solutions to (2.2.1) are absolutely continuous functions for

which their derivative exist almost everywhere with respect to the Lebesgue measure.

Caratheodory’s proof of existence of a solution to the initial value problem (2.2.1)

makes use of successive approximations.

The local version of the existence theorem for a solution of (2.2.1) in the Caratheodory

setting can be found in [27, 35, 57]. Within this context, the possibility of using

Perron’s concept of the nonabsolutely convergent integral in the integral equation

(2.2.2) was also investigated. Hence it was established that when looking for a solution

of (2.2.2), the Perron integral
∫ t
α
f(x(s), s)ds should first exist for every t ∈ [α, α+ Ω]

and therefore any function satisfying (2.2.2) behaves like the indefinite integral of a

Perron integrable function.

In [41B] Henstock is following the approach of Caratheodory in deriving existence

results for the integral equation (2.2.2). For the same reason as mentioned above (i.e.

the case studied by Caratheodory with the Lebesgue integral). To establish existence

of solution it was assumed that the function f : Rn× [a, b]→ Rn is continuous, Perron

integrable,and satisfy some other conditions. Henstock’s conditions for the existence

of a solution of (2.2.1), are almost the same as Caratheodory’s conditions except for

the condition that makes it possible to interchange the order of the limit and the

integral.

Considering the results in [35] the notion of a solution of the ordinary differential

equation (2.2.1) was weakened to the case of a function defined on a nondegenerate

interval with x continuous on the given interval and differentiable almost everywhere.

This concept is more general than the concept of Caratheodory, absolute continuity is

not required for the solution. It was pointed out that if x is a function which satisfies

x(t) = x(α) + (P )

∫ t

α

f(x(s), s)ds
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for α, t ∈ J then it is a solution of (2.2.1) in the above weakened sense. The funda-

mental existence and unicity results for such solutions of (2.2.1) are given in [35] for

the case when f satisfies Henstock’s conditions and the Lipschitz condition

‖f(x, t)− f(y, t)‖ ≤ L(t)‖x− y‖

locally in the domain of f with L integrable in the Lebesgue sense. The result in [35]

concerning solutions in the weakened sense are reduced to the above mentioned case

of solutions in the Perron-Henstock sense.

2.3 Existence of Solution and Continuous Depen-

dence on Parameters of Classical Kurzweil

Equations

In order to generalize certain results on continuous dependence of solutions of ordi-

nary differential equations with respect to parameters, J. Kurzweil introduced what he

called generalized ordinary differential equations (GODEs) for euclidean and Banach

space-valued functions. Among other applications, the theory of GODEs has proved

to be useful in investigating topological dynamics of ordinary differential equations.

The generalized differential equations were thoroughly studied in [47, 52, 53-55, 79-87,

84 - 86], in which Kurzweil obtained important new results on continuous dependence

on a parameter for differential equations. The convergence effects for a sequence of

ordinary differential equations with the sequence converging in the usual way to the

Dirac function was established.

The methods of generalized differential equations were extended by Kurzweil also to

the case of differential equations in a Banach space. Here new results concerning par-

tial differential equations and some types of boundary value problems were obtained.

This was quite a new phenomenon in the theory of differential equations. This con-

tributions inspired many mathematicians working in the theory of partial differential
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equations as observed by [47].

In many practical situations, the dynamical systems described by the differential

equations contain external parameters as well as the dependent variable. In such a

case it is necessary to investigate the existence of solution and the behaviour of such

a solution with respect to the given parameters. Following the line of Kurzweil, the

ideas of continuous dependence of solution on parameters was also developed by some

authors who pointed out that in order to have continuous dependence on a parameter,

a certain ”integralcontinuity” of the right hand side of the differential equation is

sufficient [51, 53].

However in [51], continuous dependence of solution on a parameter for the general-

ized ordinary differential (Kurzweil) equation was investigated. The starting point

of Kurzweil is to consider continuous functions fk(x, t), k = 0, 1, . . . , where xk(t)

denote the solution of the equation

dx

dt
= fk(x, t), x(0) = 0 (3.3.1)

and x0(t) denotes the solution of the generalized form of equation (3.3.1) with k

replaced by 0.

dx

dt
= DF0(x, t) (3.3.2)

if there exists such a subsequence {kj} such that xkj(t) → x0(t) with j → ∞. In

such case the fact that xkj(t)→ x0(t) means that the solution x0(t) depends contin-

uously on the parameter k. The main objective here, is to include in the theory of

generalized ordinary differential equations the convergence effect of equations (3.3.1)

with k replaced by 0 i.e.

dx

dt
= 0 = f0(x, t), x(0) = 0 (3.3.3)

In [54] a theorem on continuous dependence of solution on a parameter for

generalized ordinary differential equation defined in [51] was studied. The solutions

are of bounded variation. Results on continuous dependence on a parameter are ap-
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plied to classical differential equations with a disturbing term which approximates the

Dirac function. However, only few related literatures revealed results on continuous

dependence of solution on parameters [3, 4, 27, 40, 47, 53 - 55, 87].

The main motivation for studying continuous dependence of solution on parameters

for this class of QSDEs, is the results due to [3, 4, 51, 54, 87] where the differential

equation was used to obtain approximate results due to the convergence effect of the

given differential equation. Again, Kurzweil in his seminal papers [51, 52], introduced

the Kurzweil equations. He defined the generalized differential equations and proved

an existence theorem for another class of generalized equations.

The approach of J. Kurzweil shows how the new approach to the general integration

theory was growing up from the needs of ordinary differential equations. In particular,

the presence of rapidly oscillating external forces was the main impulse for introduc-

ing a new concept of convergence into the theory of ordinary differential equations

instead of the Lebesgue integrals or classical Riemann integral.

Kurzweil showed that generalized differential equations admit discontinuous functions

as solutions. The solution whose existence is demonstrated has bounded variation and

is continuous from the left. The approach in [51] differs from simple existence results

for ordinary differential equations in that the existence domain for a solution of the

generalized differential equation is an interval for the given initial condition. In ar-

riving at the result in [51], the method of successive approximation was employed.

However, in [3, 4, 26, 87, 96] the fixed point method was employed to establish ex-

istence results. Schwabik [79 - 87] established results on existence of solution for a

class of equations that do not necessarily satisfy the Lipschitz condition. Schwabik’s

conditions for existence of solution are very similar to Kurzweil’s conditions and Art-

stein’s conditions [3, 4, 51].
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2.4 Existence of Solution of Stochastic Differential

Equations and Quantum Stochastic

Differential Equations

As with deterministic ordinary and partial differential equations, existence and unique-

ness of solution of stochastic differential equations have been considered by many

authors [48, 60-63, 71A, 71B, 94, 95, 101]. In [95] a class of stochastic differential

equations with non-Lipschitz conditions was studied. A unique strong solution is ob-

tained and the non confluence of the solutions of the stochastic differential equations

was also established. The dependence with respect to initial values was also inves-

tigated. Here the solution of the SDE depends on the growth behavior of the non

constant coefficients.

The result of [95] generalizes the classical Lipschitz condition for existence and unique-

ness of solutions and also the linear growth conditions for the non-explosion of so-

lutions [48, 60]. Again in [100], the existence of solution of SDE was established

with an improvement on the conditions of [95]. As an application, a class of infinite

dimensional stochastic differential equations over lattice fields were proved to have a

unique solution.

F. Shizan [95] gave a survey on the recent developments in stochastic differential

equations essentially in two parts; a study beyond Lipschitz conditions and isotropic

flows corresponding to the critical Sobolev exponent. For the first case, he considered

again two categories of situation:

(i) the coefficients verify local Lipschitz without global Lipschitz conditions;

(ii) the coefficients do not verify local Lipschitz conditions.

In [68], the basic tools for Bosonic Calculus were developed. A necesary and sufficient

condition for the existence of a unitary evolution satisfying a quantum stochastic dif-

ferential equation with bounded coefficients was obtained. This theory has many
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applications, such as in the dilation of dynamical semi groups, the construction of Q

diffusion in the sense of [14] and modelling physical systems. The QSDE is unitarily

equivalent to a symmetric boundary value problem (BVP) for the Schrodinger equa-

tion [38]. It was proved that the solution of the Hudson and Parthasarathy QSDE in

the Fock space coincide with the solution of a symmetric (BVP) for the Schrodinger

equation in the interaction representation generated by the energy operator of the

environment.

In [16], it was shown that a stochastic differential equation of the form

dXt = F (Xt, t)dWt +G(Xt, t)dWt +H(Xt, t)dt

has a unique solution in the L2− space of the Clifford algebra for any initial condi-

tion provided that the coefficients F,G,H satisfy a Lipschitz condition with respect to

changes in the initial condition, and in the coefficients F,G,H.

J. Martinlingsay and G. Adam [59A] established and proved the existence and unique-

ness theorems for QSDE with nontrivial initial conditions for coefficients with com-

pletely bounded columns. Applications are given for the case of finite-dimensional

initial space or, more generally, for coefficients satisfying a finite local condition.

Necessary and sufficient conditions are obtained for a conjugate pair of quantum

stochastic Cocycles on a finite dimension operator space to strongly satisfy such a

QSDE. This gives an alternative appoach to quantum stochastic convolution cocycles

on co-algebra.

The theory of quantum stochastic differential equations, which are non commutative

generalizations of classical stochastic differential equations, have undergone rapid de-

velopments in recent times [15 - 18, 34, 43-46, 61, 68-70, 98]. The recent work done

by Ekhaguere and Ayoola [6 - 9, 30, 31] have been of immense contribution to nu-

merical solutions of Stochastic differential equations (SDEs) and quantum stochastic

differential equations (QSDEs). Some underlying principles present in many of these

papers, will be of immense contribution in extending the solution space of QSDEs to
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solutions that do not necessarily depend on the Lipschitz condition.

Ekhaguere [30] approach in the study of quantum stochastic differential inclusion

(QSDI) within the frame work of Hudson and Parthasarathy formulation of quan-

tum stochastic differential equations(QSDEs) is a major contribution in simplifying

QSDEs (1.1) to the form (1.3). Results concerning the existence of solution of a

Lipschitz QSDI and the relationship between the solutions of such an inclusion and

those of its convexification were studied. This result also represents a generalization

of the Gronwall Filippov existence theorem and the Filippov - Wazewski theorem for

classical differential inclusions. A quantum stochastic differential equation is a special

case of quantum stochastic differential inclusion.

In the paper [31], Ekhaguere studied quantum stochastic differential inclusions of hy-

permaximal monotone type, under very general conditions. Using a nice choice of the

partitions of time interval, Ekhaguere introduced discrete schemes which approximate

the quantum stochastic differential inclusions. Results of how the solutions of two

such schemes compare was established alongside some proofs on uniform convergence

of the sequence of approximating schemes. Lastly, existence of an evolution operator

corresponding to each such inclusion was proved. However as mentioned earlier there

have been corresponding developments in their numerical solutions. Unique and uni-

tary analytic solutions of some of these equations are known to exist but are difficult

to come by.

Ayoola in [6 - 8], has contributed immensely to the development of numerical schemes

which is a major breakthrough in SDEs and QSDEs. Discrete schemes that

approximate matrix elements of solution of the form (1.3) were established. This was

accomplished by assuming some smoothness conditions on the map t → 〈η,X(t)ξ〉,

Lipschitz and continuity conditions on the map (η, ξ)→ P (t,X)(η, ξ).

Questions of convergence and consistency in respect of discrete schemes that

approximate matrix elements of solutions of QSDE (1.3) were also addressed.
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The introduction of these schemes was facilitated by the differentiability of the matrix

elements 〈η,X(t)ξ〉 of solution X of problem (1.3) since they have the advantage of

being differentiable.

In [7], as an appendix, the existence and uniqueness of solution of equation (1.3)

introduced in chapter one was established by supposing that the coefficients E,F,G,H

appearing in (1.3) belong to L2
loc(I ×Ã) and are Lipschitzian. Also the map (η, ξ)→

P (t, x)(η, ξ) is a sesquilinear form for fixed (t, x). The explicit form of this map

is given by equation (1.6). Ayoola [8] also established the Lagrangian quadrature

scheme. Although this scheme produced better results than the Euler scheme but

subject to the Lipschitz condition and some other conditions.

However in [6], the equivalent form of an inclusion, which is a first order non classical

initial value ordinary differential equation(1.5) was studied. The Kurzweil equation

(1.7) associated with quantum stochastic differential equation (1.5) was introduced

and studied. It was established that equations (1.5) and (1.7) are equivalent. And

hence existence of solution of QSDE (1.5) imply existence of solution of the associated

Kurzweil equation (1.7) and conversely. The results were used to obtain a reasonably

high accurate approximate solution for QSDEs which is better than the Euler scheme

and other multistep schemes considered in [7, 8].

This scheme is applicable to a wide class of equations that satisfy the Lipschitz and

Caratheodory conditions. To the best of our knowledge, no other significant contribu-

tions have so far been reported in the literature concerning existence of solution for a

class of quantum stochastic differential equation that satisfy a more general Lipschitz

condition.

In analogy to ordinary differential equations, where existence of solution for a class

of equation that fails to satisfy the Lipschitz condition were studied and established,

in this thesis, we shall establish existence of solution for a class of quantum stochas-

tic differential equation that satisfy a more general Lipschitz condition especially for
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those class of equations that will fail to satisfy the Lipschitz condition. Thereby,

making the results in [6] a special case of the results established here.

2.5 Stability of Solution

The theory of qualitative properties of solutions of ordinary differential equations

and generalized ordinary differential equations such as stability, convergence, bound-

edness, etc. have received series of attention in recent years [2, 13, 50, 59B, 63, 66,

67, 72, 73, 79, 83, 74 - 78].

Stability means insensitivity of the state of the system to small changes in the initial

state or parameters of the system. For a stable system the trajectories which are

close to each other at a specific instant should therefore, remain close to each other

at all subsequent instants.

Lypunov [59B] introduced the concept of stability of a dynamical system. Two

methods for dealing with stability problems were introduced. While the first method

is of a special nature, the second method (direct method) has developed into an extra

ordinary useful tool. The method is based on a real- valued Lyapunov function V,

which can be viewed as a general distance from the origin. Lyapunov established

sufficient conditions for stability. However, Perestjuk [71A, 71B] showed that

Lyapunov’s conditions are not only sufficient but necessary as well. Sufficient condi-

tions for uniform stability in terms of a certain Lyapunov function were also formu-

lated.

In [35], Lyapunov’s second method was employed to establish integral and integral

asymptotic stability of ordinary differential systems with respect to impulsive pertur-

bations. The objective of this investigation was to obtain sufficient conditions for the

integral and integral asymptotic stability of the trivial solution of the given equation.

The proofs of these results crucially depend on almost everywhere differentiability of

56



the function U , and this property is guaranteed because U is a function of bounded

variation.

Again in [79, 81, 83, 92, 98, 99], the concept of variational stability was also intro-

duced and studied. by H. Okamura. T. Vrkoc̆ [99] considered Caratheodory equations

and pointed out that Okamura’s variational stability is equivalent to his concept of

integral stability. There is an improvement of the results in [99] given in [23].

In the case of stochastic differential equations, it turns out that there are at least three

different types of stochastic stability: stability in probability, almost sure stability and

moment stability. Bucy recognized that stochastic Lyapunov function should have

the super-martingale property and gave sufficient criteria for stability in probability

and moment stability. Almost sure stability was considered by Has’minskii for linear

stochastic differential equations. Stochastic stability has been one of the most active

areas in stochastic analysis and many mathematicians have devoted their interest to

it.

In [2, 13, 24, 48, 50, 56,], the Lyapunov’s method was used to establish stability re-

sults for the given solution. Continuity and positive-definite conditions were assumed.

However, in [7] the stability of the quantum stochastic differential equation was es-

tablished using the simple process (Xn(t)) as an iterate to the initial conditions.

There are other methods of establishing stability of a stochastic differential equation

as explained above but the closest and most applicable to our approach is the result

due to [59B, 87] where a Lyapunov function is used with some conditions imposed

on it. Aside from the Lyapunov method, there are also other methods such as the

Lagrange method, but Lyapunov method has proved very effective in establishing sta-

bility results for most differential equations [41A, 41B, 74, 75, 83, 91]. In summary,

Lyapunov stability of y ≡ 0 means that if a solution y(t) starts near y = 0 it remains

near y = 0 in the future (t ≥ 0); and Lyapunov asymptotic stability of y ≡ 0 means

that, in addition y(t)→ 0 as t→∞ [40, 73, 100].
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The contributions on existence and uniqueness of solution of Kurzweil equations and

the associated QSDEs made by Ayoola, Ekaguere [6, 30] and contributions made by

other authors cited above will be generalized here. The equations have been developed

using Fock space stochastic calculus introduced by Hudson and Parthasarathy [44],

and are non-commutative generalizations of classical stochastic differential equations

[46, 68 - 70].
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Chapter 3

Methodology

3.1 Introduction

In this chapter, we shall discuss the methods we used to establish the major results

on existence of solution, variational stability and continuous dependence of solution

on parameters. This chapter will consist of three sections. Section 3.1 shall concern

the method of establishing our result on existence and uniqueness of solution of the

Kurzweil equation (1.7) associated with QSDEs (1.5). In section 3.2, we shall discuss

the method employed in establishing results on variational stability and lastly, we

shall discuss the method of establishing results on continuous dependence of solution

on parameters in section 3.3.

For existence of solution,we adopt the method of successive approximation employed

in [30] to establish the main result on existence of solution. Since the equivalence of

the quantum stochastic differential equation and the associated Kurzweil equation has

been established in [6], we shall establish the existence of solution of equation (1.5)

using the equivalent quantum stochastic differential equation (1.3). The existence of

solution of the QSDE (1.5) will then imply the existence of solution of the associated

Kurzweil equation (1.7).

The methods we shall discuss in sections 3.3 and 3.4 are extensions of the methods

employed in [3, 4, 87] to the present noncommutative quantum setting. The discussion

shall follow the outline bellow:
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(3.2) Method of proof on Existence and Uniqueness of Solution.

(3.3) Method of proof on Variational Stability of Solution.

(3.4) Method of proof on Continuous Dependence on Parameters.

3.2 Method of proof on Existence and Uniqueness

of Solution

We consider the map (x, s)→ P (x, s)(η, ξ) which is of class

C(Ã × [t0, T ],W ),W (t) 6= t. The existence of solution of the QSDE (1.3) will be

established as follows:

by constructing a τw - Cauchy sequence {Φn(t)}n≥0 of the successive approximations

of Φ with the property that the sequence { d
dτ
〈η,Φn(τ)ξ〉}n≥0 is also Cauchy in C for

arbitrary η, ξ ∈ ID⊗IE.

We Define

Φn+1(t) = X0 +

∫ t

t0

(E(Φn(s), s)d ∧π (s) + F (Φn(s), s)dA+
g (s)

+G(Φn(s), s)dAf (s) +H(Φn(t), t)ds).

for n ≥ 0 and establish the convergence of these successive approximations. This is

possible since Φn is a cauchy sequence in Ã and must surely converge uniformly to

some Φ in Ã since the space Ã is complete. Lastly we show that Φ satisfies the given

quantum stochastic differential equation. This is also possible since the sequence of

stochastic processes Φn are simple processes whose limit exists.

To establish uniqueness of solution, we adopt the most common technique to proving

uniqueness. That is, assume that there exist two solutions say x and y that satisfy

the given conditions, and then logically deducing their equality by applying the Gron-

wall’s inequality. The solution of the QSDE (1.3) will then imply the solution of the

Kurzweil equation (1.7) associated with the QSDE (1.5). This is also possible since
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the equivalence of equations (1.5) and (1.7) has been established in [6].

3.3 Method of proof on Variational Stability of

Solution

In this section we discuss the method of establishing variational stability and asymp-

totic variational stability of solution of equation (1.7). Since equation (1.5) is

equivalent to equation (1.7), the results will also hold for equation (1.5). Because it is

difficult to explicitly write the solution to the given equation, we employ Lyapunov’s

method to establish results on all kinds of variational stability of the trivial solution

x ≡ 0 of equation (1.7). Lyapunov’s method enables one to investigate stability of

solution without explicitly solving the differential equation by making use of a real-

valued function called the Lyapunov’s function that satisfies some conditions such as

positive definite, continuity, etc.

In this case, we assume that the maps, (X, t) −→ P (x, t)(η, ξ) and (x, t) −→ F (x, t)(η, ξ)

are of class C(Ã × [t0, T ],W ),W (t) 6= t and F (Ã × [t0, T ], hηξ,W ) respectively. The

stochastic processes considered here are also of bounded variation as in [13, 87].

Assume that for every initial value x(t0) = x0 ∈ Ã, there exists a unique solution

which is denoted by x(t). Assume further that

F (0, t)(η, ξ) = 0 for all t ≥ t0

So equation (1.7) introduced in section 1.1 has the solution x ≡ 0 corresponding to

the initial value x(t0) = 0. This solution is called the trivial solution.

To establish variational stability, it is only needful to assume that the function

V (x, t)(η, ξ) is real-valued, bounded and achieves its minimum at x = 0. The func-

tion V (x, t)(η, ξ) has the guaranteed property that as the trajectory moves, the value

of this function along the trajectories strictly decreases. Since V (x, t)(η, ξ) is lower

bounded by zero and is strictly decreasing, it must converge to a nonnegative limit
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as time goes to infinity. Indeed all the conditions imply that V (x, t)(η, ξ) → 0 as

t → ∞. Since x = 0 is the only point in space where V (x, t)(η, ξ) vanishes, we can

conclude that x(t) goes to the origin as time goes to infinity.

Once again we emphasize that the significance of Lyapunov’s meyhod is that it al-

lows stability of the system to be verified without explicitly solving the differential

equation (1.7). Lyapunov’s method, in effect, turns the question of determining sta-

bility into a search for a so-called Lyapunov function, a positive definite function of

the state that decreases locally along trajectories. The type of theorems that prove

existence of Lyapunov functions for every stable system are called converse Lyapunov

theorems. This we shall establish by assuming knowledge of variational stability of

the solution of equation (1.7).
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3.4 Method of proof on Continuous Dependence

on Parameters

For continuous dependence of solution on a parameter we adopt the method of con-

vergence employed in [87] to our present noncommutative quantum setting. Since

the solution of equation (1.5) belongs to an infinite dimensional locally convex space,

a sequence {Xn} in Ã converges to an element X in Ã if and only if the sequence

{〈η,Xnξ〉} converges to {〈η,Xξ〉} in the complex field for all η, ξ ∈ ID⊗IE. Also since

the stochastic process x : [a, b] → Ã lie in Ad(Ã)wac ∩ BV (Ã), by theorem 1.9.6 the

integrals ∫ b

a

DF (x(τ), t)(η, ξ) and

∫ b

a

P (x, t)(η, ξ)dt exist

where

F (x, t)(η, ξ) =

∫ b

a

P (x, t)(η, ξ)dt

Again by theorem 1.9.6 we show that the integrals∫ b

a

DFk(x(τ), t)(η, ξ) and

∫ b

a

DF0(x(τ), t)(η, ξ)

exist and by taking the limit as k →∞ we can show that the two integrals are equal

to each other. This is also possible since the stochastic process x1, x2, . . . , xk are sim-

ple processes and lie in Ad(Ã)wac ∩BV (Ã) and hence when k →∞, Fk → F0.
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Chapter 4

Existence and Uniqueness of
Solution of Kurzweil equations
associated with Quantum
Stochastic Differential Equations

4.1 Introduction

In this section, we establish existence and uniqueness of solution for the equivalent

form of the quantum stochastic differential equation (1.5) introduced in chapter one.

We consider the case of QSDE where the coefficients satisfy a more general Lipschitz

condition of which the Lipschitz condition considered in [6] will be a special case of

the results here.

On this occasion, we consider the case when the map (x, t) −→ P (x, t)(η, ξ) is of

class C(Ã × [t0, T ],W ) and W (t) 6= t. This generalizes the lipschitz case considered

in [6] where W (t) = t. The results here consequently widens the process for which

the theory of quantum stochastic differential equation is applicable.

We adopt the method of successive approximations as in [7, 30] to establish the results

here. We also use the notations and definitions of the spaces and concepts presented

in chapter 1.
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4.2 Existence of Solution

We consider the following quantum stochastic differential equation introduced in

chapter one.

dX(t) = E(X(t), t)d ∧π (t) + F (X(t), t)dAg(t)

+G(X(t), t)dAf+(t) +H(X(t), t)dt), X(t0) = X0, t ∈ I (4.2.1)

We establish the existence and uniqueness of solution of equation (4.2.1) under the

conditions of the following definition.

4.2.1 Definition A map P : Ã × [t0, T ] → sesq[ID⊗IE] is said to be of class

C(Ã × [t0, T ],W ),W (t) 6= t if for arbitrary η, ξ ∈ ID⊗IE

(i) P (x, .)(η, ξ) is measurable for each x ∈ Ã

(ii) There exists a family of measurable functions Mηξ : [t0, T ] → R+ such that∫ t
t0
Mηξ(s)ds <∞ and |P (x, .)(η, ξ)| 6Mηξ(s), (x, s) ∈ Ã × [t0, T ]

(iii) There exists measurable functions Kηξ : [t0, T ] → R+ such that for each t ∈

[t0, T ],
∫ t
t0
Kηξ(s)ds <∞, and

|P (x, s)(η, ξ)− P (y, s)(η, ξ)| ≤ Kp
ηξ(s)W (‖x− y‖ηξ)

For (x, s), (y, s) ∈ Ã × [t0, T ] and

hηξ(t) =

∫ t

t0

Mηξ(s)ds+

∫ t

t0

Kηξ(s)ds

4.2.2 Definition For (x, t) ∈ Ã× [t0, T ] and P belonging to class C(Ã× [t0, T ],W ),

with W (t) 6= t, we define for arbitrary η, ξ ∈ ID⊗IE},

F (x, t)(η, ξ) =

∫ t

t0

P (x, s)(η, ξ)ds (4.2.2)
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Next we present and establish a major result.

4.2.1 Theorem

(i) Let P (x, t)(η, ξ) be of class C(Ã × [t0, T ],W ),W (t) 6= t.

(ii) Assume that the coefficients E,F,G,H appearing in equation (4.2.1) satisfy the

general Lipschitz condition and belong to L2
loc(I × Ã).

Then for any fixed point (X0, t0) ∈ Ã × I there exists a unique adapted and

weakly absolutely continuous solution Φ of the quantum stochastic differential

equation (4.2.1) satisfying Φ(t0) = X0.

Proof. We start by constructing a τw− Cauchy sequence {Φn(t)}n≥0 of successive ap-

proximations of Φ in Ã. All through except otherwise stated η, ξ ∈ ID⊗IE is arbitrary.

Fix T > t0, t ∈ [t0, T ]. Define Φ0(t) = X0, and for n ≥ 0

Φn+1(t) = X0 +

∫ t

t0

(E(Φn(s), s)d ∧π (s) + F (Φn(s), s)dA+
g (s)

+G(Φn(s), s)dAf (s) +H(Φn(s), s)ds).

We let each Φn(t), n ≥ 1 define an adapted weakly absolutely continuous process in

L2
loc(Ã).

By hypothesis, E(X0, s), F (X0, s), G(X0, s), and H(X0, s) belong to Ãs for s ∈ [t0, T ]

and E(X0, .), F (X0, .), G(X0, .), and H(X0, .) lie in L2
loc(Ã). Therefore the quantum

stochastic integral which defines Φ1(t) exists for t ∈ [t0, T ].

By equation (1.3.2), Φ1(t) is weakly absolutely continuous and hence locally square

integrable.

Assume now that Φn(t) is adapted and weakly absolutely continuous, then each

E(Φn(s), s), F (Φn(s), s), G(Φn(s), s) and H(Φn(s), s) is adapted and lie in L2
loc(Ã).

Thus Φn+1(t) is adapted and well defined.

Again by equation(1.3.2), Φn+1(t) is a weakly absolutely continuous process in L2
loc(Ã).
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Hence we have proved our claim by induction. We consider the convergence of the

successive approximations.

By equation (1.3.2) and the definition of the map P in section 1.6 we have,

‖ Φn+1(t)− Φn(t) ‖ηξ=| 〈η, (Φn+1(t)− Φn(t))ξ〉 |=

= |
∫ t

t0

(P (Φn(s), s)(η, ξ)− P (Φn−1(s), s)(η, ξ))ds| (4.2.3)

Remark. The hypothesis (ii) of proposition 1.6.1 holds in this case but with the

general Lipschitz condition W (t) 6= t.

Hence since the coefficients E,F,G,H are Lipschitzian, by proposition 1.6.1(ii), the

map (x, t)→ P (X, t)(η, ξ) also satisfy the general Lipschitz condition with Lipschitz

function Kp
ηξ : [t0, T ]→ (0,∞) lying in L1

loc([t0, T ]) and is also of class

C(Ã × [t0, T ],W ),W (t) 6= t i.e,

|P (x, t)(η, ξ)− P (y, t)(η, ξ)| ≤ Kp
ηξ(t)W (‖ x− y ‖ηξ)

for all x, y ∈ Ã, t ∈ [t0, T ].

Hence substituting the last inequality in (4.2.3), we get

‖ Φn+1(t)− Φn(t) ‖ηξ≤
∫ t

t0

Kp
ηξ(s)W (‖ Φn(s)− Φn−1(s) ‖ηξ)ds (4.2.4)

Since the map s −→ ‖Φ1(s)−X0‖ηξ is continuous on [t0, T ], we put

Rηξ = sup
s∈[t0,T ]

‖Φ1(s)−X0‖ηξ, s ∈ [t0, T ]

this implies that ‖Φ1(s) −X0‖ηξ ≤ Rηξ and ⇒ W (‖Φ1(s) −X0‖ηξ) ≤ W (Rηξ) since

W (t) 6= t.

Also let

Mηξ(t) =

∫ t

t0

Kp
ηξ(s)ds

From (4.2.4) we have

‖ Φn+1(t)− Φn(t) ‖ηξ≤
W (Rηξ)(Mηξ(t))

n

n!
, n = 1, 2, ... (4.2.5)
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This we prove by induction as follows.

For n = 1, inequality (4.2.5) holds by considering (4.2.4). Assume that (4.2.5) holds

for n = k

i.e.

‖ Φk+1(t)− Φk(t) ‖ηξ≤
W (Rηξ)(Mηξ(t))

k

k!
, n = 1, 2, ... (4.2.6)

then by (4.2.4)

‖Φk+2(t)− Φk+1(t)‖ηξ ≤
∫ t

t0

Kp
ηξ(s)W (‖Φk+1(s)− Φk(s)‖ηξ)ds

=

∫ t

t0

Kp
ηξ(s)

W (Rηξ)(Mηξ(s))
k

k!
ds

≤ W (Rηξ)

k!

∫ t

t0

Kp
ηξ(s)(Mηξ(s))

kds by (4.2.6)

By applying integration by parts, we obtain∫ t

t0

Kp
ηξ(s)(Mηξ(s))

k =
(Mηξ(t))

k+1

k + 1
(4.2.7)

Therefore,

W‖Φk+2(t)− Φk+1(t)‖ηξ ≤
W (Rηξ)(Mηξ(t))

k+1

(k + 1)!

So that (4.2.5) holds for n = k + 1 and so holds for n = 1, 2, 3, ....

Therefore, for any n > k,

‖ Φn+1(t)− Φk+1(t) ‖ηξ= ‖Σn
m=k+1(Φm+1(t)− Φm(t)‖ηξ

≤ Σn
m=k+1‖Φm+1(t)− Φm(t)‖ηξ

≤ Σn
m=k+1

W (Rηξ)(Mηξ(T ))m

m!

It follows that Φn(t) is a cauchy sequence in Ã and converges uniformly to some Φ(t).

Since Φn(t) is adapted and weakly absolutely continuous, the same is true of Φ(t).

Next we show that Φ(t) satisfies the quantum stochastic differential equation (4.2.1).
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Surely Φ(t0) = X(t0) = X0.

By equation (1.3.2)∥∥∥∥∫ t

t0

[E(Φn(s), s)d ∧π (s) + F (Φn(s), s)dA+
g (s) +G(Φn(s), s)dAf (s) +H(Φn(s), s)ds]

∥∥∥∥
ηξ

−
∥∥∥∥∫ t

t0

[E(Φ(s), s)d ∧π (s) + F (Φ(s), s)dA+
g (s) +G(Φ(s), s)dAf (s) +H(Φ(s), s)ds]

∥∥∥∥
ηξ

=

∣∣∣∣∫ t

t0

(P (Φn(s), s)(η, ξ)− P (Φ(s), s)(η, ξ))ds

∣∣∣∣
≤
∫ t

t0

Kp
ηξ(s)W (‖ Φn(s)− Φ(s) ‖ηξ) −→ 0 as n −→∞

Since Φn(s) −→ Φ(s) in Ã uniformly on [t0, T ].

Thus

Φ(t) = lim
n→∞

Φn+1(t)

= X0 + lim
n→∞

(

∫ t

t0

(E(Φn(s), s)d ∧π (s) + F (Φn(s), s)dA+
g (s)

+G(Φn(s), s)dAf (s) +H(Φn(s), s)ds)

= X0 +

∫ t

t0

(E(Φ(s), s)d ∧π (s) + F (Φ(s), s)dA+
g (s)

+G(Φ(s), s)dAf (s) +H(Φ(s), s)ds).

That is Φ(t), t ∈ [t0, T ] is a solution of equation (4.2.1).
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4.3 Uniqueness of Solution

Suppose that Y (t), t ∈ [t0, T ] is another adapted weakly absolutely continuous solu-

tion with Y (t0) = X0. Then, by equation (1.3.2), we obtain again

‖ Φ(t)− Y (t) ‖ηξ= |
∫ t

t0

(P (Φ(s), s)(η, ξ)− P (Y (s), s)(η, ξ))ds|

≤
∫ t

t0

Kp
ηξ(s)W (‖ Φ(t)− Y (s) ‖ηξ)ds

Since the integral
∫ t
t0
Kp
ηξ(s) exists on [t0, T ], it is also essentially bounded on the

given interval. Hence, there exists a constant Cηξ,t such that

ess sup Kp
ηξ(s) = Cηξ,t, s ∈ [t0, T ].

Thus

‖ Φ(t)− Y (t) ‖ηξ≤ Cηξ,t

∫ t

t0

W (‖ Φ(s)− Y (s) ‖ηξ)ds

By the Gronwall’s inequality, we conclude that Φ(t) = Y (t),∈ [t0, T ]. Hence the

solution is unique.

4.3.1 Remark

The results on existence and uniqueness of solution of quantum stochastic differential

equation established here implies existence of solution of the associated Kurzweil

equation (1.7) for a class of equation that satisfy the general Lipschitz condition

W (t) 6= t.
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Chapter 5

Variational Stability of Kurzweil
Equations associated with
Quantum Stochastic Differential
Equations

5.1 Introduction

Most differential equations, deterministic or stochastic, cannot be solved explicitly

[37-40, 48, 63, 91, 94, 4
′
, 7
′
], nevertheless we can often deduce a lot of useful informa-

tion by qualitative analysis about the behaviuor of their solutions from the functional

form of their coefficients. The long term asymptotic behaviour and sensitivity of the

solutions to small changes is of great interest. This is very important especially in

measurement errors, initial values and many more.

In this section, we study variational stability of the unperturbed equation (1.5) and

variational stability with respect to perturbations of the quantum stochastic differ-

ential equation (1.5) introduced in chapter one. Variational stability is a generalized

concept which is suitable for the class of generalized nonclassical ordinary differential

equations studied in chapter 4 because of the local finitness of the variation of a so-

lution.

We employ the Kurzweil equation associated with this class of quantum stochastic

differential equation(QSDE) to establish results on variational stability, variational
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attracting, variational asymptotic stability and converse variational stability.

It is important to mention here, that results on variational stability are not only re-

stricted to the general case considered here but are applicable to the case studied in

the literatures with the Lipschitz condition W (t) = t.

The next section will be divided into three sections 5.2, 5.3 and 5.4. Section 5.2 will

be devoted to the concept of variational stability of the Kurzweil equation associated

with QSDE. Here, results on variational stability, variational attracting, relationship

between variational attracting and asymptotic variational stability will be established

using their definitions and the converse method.

In section 5.3, we shall establish some auxiliary results which will be used to estab-

lish the main results on variational stability and asymptotic variational stability. We

shall use Lyapunov’s method to establish the major results on variational stability

and asymptotic variational stability of the Kurzweil equations associated with

QSDEs.

Lastly, in section 5.4, the converse of the theorems on variational stability and

varaitional asymptotic stability will be discussed. It is worth mentioning that con-

verse variational stability is more like a search for a Lyapunov’s function [39, 52, 72,

87]. It gaurantees the existence of a Lyapunov function.

5.2 Concepts and Definitions of Variational

Stability

We introduce the concept of variational stability of quantum stochastic differential

equations driven by the Hudson - Parthasarathy integrators ∧π(t), A+
g (t), Af (t)

dX(t) = E(X(t), t)d ∧π (t) + F (X(t), t)dA+
g (t)

+G(X(t), t)dAf (t) +H(X(t), t)dt

X(t0) = X0, t ∈ [0, T ] (5.2.1)
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We shall consider the Kurzweil equation associated with the equivalent form of (5.2.1).

As in the references [6, 7, 30] solutions of (5.2.1) are Ã - valued processes where Ã is

a locally convex space defined previously. We adopt the definitions and notations of

the following spaces defined in chapter one Ad(Ã), Ad(Ã)wac, L
p
loc(Ã), L2

loc(Ã) and

BV (Ã). For arbitrary η, ξ ∈ ID⊗IE, the equivalent form of (5.2.1) is given by

d

dt
〈η,X(t)ξ〉 = P (X(t), t)(η, ξ)

X(0) = X0, t ∈ [0, T ] (5.2.2)

where the map (x, t) → P (x, t)(η, ξ) is as defined by equation (1.6). We employ the

associated Kurzweil equation introduced in chapter one given by

d

dτ
〈η,X(τ)ξ〉 = DF (X(τ), t)(η, ξ)

X(0) = X0, t ∈ [0, T ], (5.2.3)

where

F (X, t)(η, ξ) =

∫ t

0

P (X, s)(η, ξ)ds (5.2.4)

In chapter four, it has also been shown that the map (x, t)→ F (x, t)(η, ξ) is of class

F(Ã × [0, T ], hηξ,W ) and the map (x, t) −→ P (x, t)(η, ξ) is of class C(Ã × [0, T ],W )

respectively.

Existence of solution has been established. Consequently, existence results enables

one to investigate the variational stability of solution. This investigation is made

possible since solutions of equation (5.2.3) (and therefore of (5.2.2)) are quantum

stochastic processes of bounded variations. Variational stability deals with the mea-

surement of the distance between solutions in the space of stochastic processes of

bounded variation using the seminorms defined by their bounded variations.

Since the solution X ∈ Ad(Ã)wac of equation (5.2.3) are stochastic processes of
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bounded variations, we introduce and study the issue of variational stability of (5.2.3)

in analogy to the case of generalized ordinary differential equation of classical type

[87].

In addition to other assumptions, assume that the map (x, t) −→ F (x, t)(η, ξ) satisfies

F (0, t2)(η, ξ)− F (0, t1)(η, ξ) = 0 (5.2.5)

For every t1, t2 ∈ [0, T ] and for arbitrary η, ξ ∈ ID⊗IE.

This assumption evidently implies that∫ s2

s1

DF (0, s)(η, ξ) = F (0, s2)(η, ξ)− F (0, s1)(η, ξ) = 0

=

∫ s2

s1

P (0, s)(η, ξ)ds = 0, s1, s2 ∈ [0, T ]

and therefore the trivial process given by X(s) = 0, for s ∈ [0, T ] is a solution of the

Kurzweil equation (5.2.3).

Next we introduce some concepts of stability of the trivial solution X(s) = 0, s ∈ [0, T ]

of equation (5.2.3).

5.2.1 Definition: The trivial solution X ≡ 0 of equation (5.2.3) is said to be

variationally stable if for every ε > 0, there exists δ(η, ξ, ε) := δηξ > 0 such that

if Y : [0, T ]→ Ã is a stochastic process lying in Ad(Ã)wac ∩BV (Ã) with

‖Y (0)‖ηξ < δηξ

and

V ar

(
〈η, Y (s)ξ〉 −

∫ s

0

DF (Y (τ), t)(η, ξ)

)
< δηξ

then we have

‖Y (t)‖ηξ < ε

For all t ∈ [0, T ] and for all η, ξ ∈ ID⊗IE.
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5.2.2 Definition: The trivial solution X ≡ 0 of equation (5.2.3) is said to be

variationally attracting if there exists δ0 > 0 and for every ε > 0, there exists

A = A(ε), 0 ≤ A(ε) < T and B(η, ξ, ε) = B > 0 such that if

Y ∈ Ad(Ã)wac ∩BV (Ã) with ‖Y (0)‖ηξ < δ0 and

V ar

(
〈η, Y (s)ξ〉 −

∫ s

0

DF (Y (τ), t)(η, ξ)

)
< B

then

‖Y (t)‖ηξ < ε, for all t ∈ [A, T ]

5.2.3 Definition: The trivial solutionX ≡ 0 of equation (5.2.3) is called variationally

asymptotically stable if it is variationally stable and variationally attracting.

Together with (5.2.1) we consider the perturbed QSDE

dX(t) = E(X(t), t)d ∧π (t) + F (X(t), t)dA+
g (t)

+G(X(t), t)dAf (t) + (H(X(t), t) + p(t))dt

X(t) = X0 (5.2.6)

where p ∈ Ad(Ã)wac ∩BV (Ã) The perturbed equivalent form of (5.2.6) is given by

d

dt
〈n,X(t)ξ〉 = P (X(t), t)(η, ξ) + 〈η, p(t)ξ〉

X(0) = X0 (5.2.7)

The Kurzweil equation associated with the perturbed QSDE (5.2.2) then becomes

d

dτ
〈η,X(τ)ξ〉 = D[F (X(τ), t)(η, ξ) +Q(t)(η, ξ)] (5.2.8)

where Q : [0, T ]→ Ã belongs to Ad(Ã)wac ∩BV (Ã) as well.

We remark here that the map given by equation (5.2.7) is of class C(Ã × [t0, T ],W )

where

F (X, t)(η, ξ) =

∫ t

t0

P (X, s)(η, ξ)ds
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and

〈η, p(t)ξ〉 := Q(t)(η, ξ)

It follows that

|F (x, t2)(η, ξ) +Q(t2)(η, ξ)− F (x, t1)(η, ξ)−Q(t1)(η, ξ)|

≤ |hηξ(t2) + V ar[0,t2]Q(t)− hηξ(t1)− V ar[0,t1]Q(t)|

For x ∈ Ã, and t1, t2 ∈ [0, T ]

and

|F (x, t2)(η, ξ) +Q(t2)(η, ξ)− F (x, t1)(η, ξ)−Q(t1)(η, ξ)

−(F (y, t2)(η, ξ) +Q(t2)(η, ξ)− F (y, t1)(η, ξ)−Q(t1)(η, ξ))|

≤ W (‖x− y‖ηξ)|hηξ(t2)− hηξ(t1)|

≤ W (‖x− y‖ηξ)|hηξ(t2) + V ar[0,t2]Q− hηξ(t1)− V ar[0,t1]Q|

and therefore the right hand side F (x, t)(η, ξ) + Q(t)(η, ξ) of equation (5.2.8) is of

class F(Ã × [0, T ], h̃ηξ,W ) where

h̃ηξ(t) = hηξ(t) + V ar[0,t]Q(t)(η, ξ),

and all fundamental results (e.g. the existence of solution) hold for equation (5.2.8)

and hence (5.2.7).

5.2.4 Definition: The trivial solution X ≡ 0 of equation (5.2.3) is said to be varia-

tionally stable with respect to perturbations if for every ε > 0 there exists δ = δηξ > 0

such that if ‖Y0‖ηξ < δηξ, Y0 ∈ Ã and the stochastic process Q belongs to the set

Ad(Ã)wac ∩BV (Ã) such that

V ar(Q(t)(η, ξ)) < δηξ, then ‖Y (t)‖ηξ < ε
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for t ∈ [0, T ] where Y (t) is a solution of (5.2.8) with Y (0) = Y0.

5.2.5 Definition: The solution X ≡ 0 of (5.2.3) is called attracting with respect to

perturbations if there exists δ0 > 0 and for every ε > 0, there is a A = A(ε) ≥ 0 and

B(η, ξ, ε) = B > 0 such that if

‖Y0‖ηξ < δ0, Y0 ∈ Ã

and Q ∈ Ad(Ã)wac ∩BV (Ã) satisfying V ar(Q(t)(η, ξ)) < B,

then

‖Y (t)‖ηξ < ε,

for all t ∈ [A, T ], where Y (t) is a solution of (5.2.8).

5.2.6 Definition: The trivial solution X ≡ 0 of equation (5.2.3) is called asymptot-

ically stable with respect to perturbations if it is stable and attracting with respect

to perturbations.

5.2.7 Notation: Denote by BV (Ã)
⋂
Ad(Ã)wac the set of all adapted stochastic

processes ϕ : [0, T ]→ Ã that are weakly absolutely continuous and of bounded vari-

ation on [t0, T ].

Remark: In analogy to the case of generalized ordinary differential equation [87],

the concept of variational stability introduced in this section concerning QSDE(5.2.1)

comes from the following idea.

If a certain stochastic process Y : [0, T ] → Ã is such that the initial value Y (0) lies

in some small neighbourhood of the trivial process X ≡ 0 in the locally convex space

Ã and the variation of the complex valued function

〈η, Y (s)ξ〉 = 〈η, Y (0)ξ〉 −
∫ s

0

DF (Y (τ), t)(η, ξ)
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on [0, T ] is small enough for all η, ξ ∈ ID⊗IE, then Y (t) also lies in some small neigh-

bourhood of the trivial process for all t ∈ [0, T ].

However, the stability with respect to perturbations is occasioned by the desirability

that the solutions of the perturbed associated Kurzweil equation (5.2.8) be close to

zero on the given interval [0, T ] whenever the initial value Y (0) is close to zero and

the variation of the perturbation term Q(t)(η, ξ) of equation (5.2.8) is small enough.

The next results shows the equivalence of these concepts of stability given by the

above definitions.

5.2.1 Theorem:

(a) The trivial solution X ≡ 0 of the Kurzweil equation (5.2.3) associated with the

equivalent form (5.2.2) of QSDE (5.2.1) is variationally stable if and only if it

is stable with respect to perturbation.

(b) The trivial solution X ≡ 0 of (5.2.3) is variationally attracting if and only if it

is attracting with respect to perturbations.

Proof (a)(i) Assume that the trivial solution of (5.2.3) is variationally stable.

For a given ε > 0, let δηξ = δηξ(ε) > 0 be given by Definition 5.2.1, assume that Y0 ∈ Ã

such that ‖Y0‖ηξ < δηξ and V ar(Q(t)(η, ξ)) < δηξ ∀ η, ξ ∈ ID⊗IE and Y (t), t ∈ [0, T ]

is a solution of (5.2.8) satisfying Y (0) = Y0. Since Y is a solution of (5.2.8) and hence

of (5.2.7), then Y ∈ Ad(Ã)wac ∩BV (Ã) and satisfies for any s1, s2 ∈ [0, T ]

〈η, Y (s2)ξ〉 − 〈η, Y (s1)ξ〉 =

∫ s2

s1

DF (Y (τ), t)(η, ξ) +Q(s2)(η, ξ)−Q(s1)(η, ξ)

Hence, by the additivity of the Kurzweil integrals

〈η, Y (s2)ξ〉 −
∫ s2

0

DF (Y (τ), t)(η, ξ)− 〈η, Y (s1)ξ〉

+

∫ s1

0

DF (Y (τ), t)(η, ξ) = Q(s2)(η, ξ)−Q(s1)(η, ξ)
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for any s1, s2 ∈ [0, T ].

Consequently,

V ar[0,T ]

(
〈η, Y (s)ξ〉 −

∫ s

0

DF (Y (τ), t)(η, ξ)

)
= V ar[0,T ](Q(τ)(η, ξ)) < δηξ

By the assumption of variational stability of the trivial solution, we have

‖Y (t)‖ηξ < ε, t ∈ [0, T ].

This implies that the trivial solution x ≡ 0 of (5.2.3) is stable with respect to pertur-

bations.

(ii) Assume that the trivial solution of (5.2.3) is stable with respect to perturba-

tions. For ε > 0, let δ > 0 be given by definition (5.2.4). Suppose that the process

Y : [0, T ]→ Ã lying in the set Ad(eA)wac ∩BV (Ã), is a solution of (5.2.8) such that

‖Y (0)‖ηξ < δηξ and

V ar[0,T ]

(
〈η, Y (s)ξ〉 −

∫ s

0

DF (Y (τ), t)(η, ξ)

)
< δηξ

for s1, s2 ∈ [0, T ], we have

〈η, Y (s2)ξ〉 − 〈η, Y (s1)ξ〉 =

∫ s2

s1

DF (Y (τ), t)(η, ξ) + 〈η, Y (s2)ξ〉 −

−
∫ s2

0

DF (Y (τ), t)(η, ξ)− 〈η, Y (s1)ξ〉+

+

∫ s1

0

DF (Y (τ), t)(η, ξ)

=

∫ s2

s1

DF (Y (τ), t)(η, ξ) +Q(s2)(η, ξ)−Q(s1)(η, ξ) (5.2.9)

where

Q(s)(η, ξ) = 〈η, Y (s)ξ〉 −
∫ s

0

DF (Y (τ), t)(η, ξ), for s ∈ [0, T ]

Since Q ∈ Ad(Ã)wac ∩ BV (Ã) and (5.2.9) shows that the stochastic process Y is a

solution of equation(5.2.8) on [0, T ] with this Q and ‖Y (0)‖ηξ < δηξ. Moreover

V ar[0,T ]

(
〈η, Y (s)ξ〉 −

∫ s

0

DF (Y (τ), t)(η, ξ)

)
< δηξ
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Hence by the assumption of stability with respect to perturbations we get ‖Y (t)‖ηξ < ε

for t ∈ [0, T ] and X ≡ 0 is variationally stable.

(b)(i) Assume that the trivial solution of (5.2.3) is variationally attracting. Then

there exists a δ0 > 0 and for a given ε > 0 also A > 0 and B > 0, by the Definition

5.2.2. If now Y0 ∈ Ã is such that ‖Y (0)‖ηξ < δ0, Q belong to the set

Y ∈ Ad(Ã)wac ∩BV (Ã) where V arQ[0,T ] < δηξ and y(t) is a solution of (5.2.3) then

V ar[0,T ]

(
〈η, Y (s)ξ〉 −

∫ s

0

DF (Y (τ), t)(η, ξ)

)
= V ar(Q(t)(η, ξ)) < B

Hence by Definition 5.2.2 we have ‖Y (t)‖ηξ < ε ∀ t ∈ [A, T ] and X ≡ 0 is

variationally attracting with respect to perturbations.

(ii) If X ≡ 0 is attracting with respect to perturbations, for ε > 0, let δ0 > 0,

A = A(ε) ≥ 0 , B = B(ε) > 0 be given by Definition 5.2.5 such that ‖Y (0)‖ηξ < δ0.

Assume that Y : [0, T ]→ Ã lies in the space

Ad(Ã)wac ∩BV (Ã), such that ‖Y (0)‖ηξ < δ0, Y (0) ∈ Ã and

V ar[0,T ]

(
〈η, Y (s)ξ〉 −

∫ s

0

DF (Y (τ), t)(η, ξ)

)
< B

s ∈ [0, T ], then for s1, s2 ∈ [0, T ], we have

〈η.Y (s2)ξ〉 − 〈η, Y (s1)ξ〉 =

∫ s2

s1

DF (Y (τ), t)(η, ξ)

+〈η, Y (s2)ξ〉 −
∫ s2

0

DF (Y (τ), t)(η, ξ)

−〈η, Y (s1)ξ〉+

∫ s1

0

DF (Y (τ), t)(η, ξ)

=

∫ s2

s1

DF (Y (τ), t)(η, ξ) +Q(s2)(η, ξ)−Q(s1)(η, ξ)

Hence, we can set

Q(s)(η, ξ) = 〈η, Y (s)ξ〉 −
∫ s

0

DF (Y (τ), t)(η, ξ) (5.2.10)

for s ∈ [0, T ]

So that from Definition 5.2.5, since Y is a solution of (5.2.8) on [0, T ] with this Q and
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‖Y (0)‖ηξ < δ0 such that

V ar(Q(t)(η, ξ)) < B, then from (5.2.10) we get

V ar(Q(s)(η, ξ)) < B ⇒ V ar

(
〈η, Y (s)ξ〉 −

∫ s

0

DF (Y (τ), t)(η, ξ)

)
< B

and by the assumption of attracting with respect to perturbation we get

‖Y (t)‖ηξ < ε ∀ t ∈ [A, T ]

and X ≡ 0 is variationally attracting.

The following result is a consequence of Theorem 5.2.1, Definition 5.2.3 and 5.2.6.

5.2.2 Theorem: The trivial solution X ≡ 0 of equation (5.2.3) is variationally

asymptotically stable if and only if it is asymptotically stable with respect to pertur-

bations.
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5.3 Variational Stability and Asymptotic Variational

Stability using the Lyapunov’s Method

The following auxiliary results will be used to establish the main results in this section.

5.3.1 Proposition: Assume that [a, b] ⊂ [0, T ] and that there exists family of func-

tions fηξ, gηξ : [a, b]→ R defined and continuous on [a, b]. If for every σ ∈ [a, b] there

exists ∂(σ) > 0 such that for every β ∈ (0, ∂(σ)) the inequality

fηξ(σ + β)− fηξ(σ) ≤ gηξ(σ + β)− gηξ(σ)

holds, then

fηξ(s)− fηξ(a) ≤ gηξ(s)− gηξ(a)

for all s ∈ [a, b].

Proof. Let us denote

Mηξ = {s ∈ [a, b]; fηξ(σ)− fηξ(a) ≤ gηξ(σ)− gηξ(a), σ ∈ [a, s] ⊂ [0, T ]}

and set ζ = supMηξ. Since

fηξ(a+ β)− fηξ(a) ≤ gηξ(a+ β)− gηξ(a)

for β ∈ (0, ∂(a)) and ∂(a) > 0, the set Mηξ is non-empty, ζ > a and

fηξ(s)− fηξ(a) ≤ gηξ(s)− gηξ(a) for every s < ζ.

Using the continuity of fηξ and gηξ we have also that

fηξ(ζ)− fηξ(a) ≤ gηξ(ζ)− gηξ(a).

If ζ < b then by assumption we have

fηξ(ζ + β)− fηξ(ζ) ≤ gηξ(ζ + β)− gηξ(ζ).
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for every β ∈ (0, ∂(ζ)), ∂(ζ) > 0 and therefore also

fηξ(ζ + β)− fηξ(a) = fηξ(ζ + β)− fηξ(ζ) + fηξ(ζ) + fηξ(a)

≤ gηξ(ζ + β)− gηξ(ζ) + gηξ(ζ)− gηξ(a) = gηξ(ζ + β)− gηξ(a)

This implies that ζ + β ∈ Mηξ for β ∈ (0, ∂(ζ)), i.e. ζ < supMηξ and this contradic-

tion yields ζ = b and Mηξ = [a, b] and the proof is complete.

5.3.2 Lemma Since C ∼= R2 we assume the following:

(i) the map (x, t) −→ V (x, t)(η, ξ) is real-valued such that for every x ∈ Ã , the

real-valued map t −→ V (x, t)(η, ξ) is continuous on [0, T ].

(ii) |V (x, t)(η, ξ)− V (y, t)(η, ξ)| ≤ K‖x− y‖ηξ (5.3.1)

for every x, y ∈ Ã, t ∈ [0, T ] with a constant Kηξ := K > 0.

(iii) there is a real valued map Φηξ : Ã → R such that for every solution

x : [0, T ]→ Ã of equation (5.2.3), we have

lim
β→0

sup
V (x(t+ β), t+ β)(η, ξ)− V (x(t), t)(η, ξ)

β
≤ Φηξ(x(t)) (5.3.2)

for t ∈ [0, T ]

(iv) If Y : [0, t1]→ Ã, [0, t1] ⊂ [0, T ] belongs to Ad(Ã)wac ∩BV (Ã),

then the inequality

V (X(t1), t1)(η, ξ) ≤ V (X(0), 0)(η, ξ) +KV ar[0,t1]

(
〈η, Y (s)ξ〉 −

∫ s

0

DF (Y (τ), t)(η, ξ)

)
+Mηξ(t1 − 0) (5.3.3)
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holds, where Mηξ = sup
t∈[0,t1]

Φηξ(Y (t)).

Proof. Let y : [0, t1] → Ã belong to Ad(Ã)wac ∩ BV (Ã) be given and let σ ∈

[0, t1] ⊂ [0, T ] be an arbitrary point. Hence the real-valued function V (y(t), t)(η, ξ) is

continuous on [0, t1].

Assume that x : [σ, σ + β1(σ)] ⊂ [0, T ] → Ã is a solution of (5.2.3) on the interval

[σ, σ + β1(σ)], β1(σ) > 0 with the initial condition x(σ) = y(σ). The existence of

such a solution is guaranteed by the existence results established in chapter 4. By

the assumption (5.3.1) we then have

V (y(σ + β), σ + β)(η, ξ) − V (x(σ + β), σ + β)(η, ξ)

≤ K‖y(σ + β)− x(σ + β)‖ηξ

= K

∣∣∣∣〈η, y(σ + β)ξ〉 − 〈η, y(σ)ξ〉 −
∫ σ+β

σ

DF (x(τ), t)(η, ξ)

∣∣∣∣ (∗∗)

for every β ∈ [0, β1(σ)].

Remark the last inequality is obtained from the following

K

∣∣∣∣〈η, y(σ + β)ξ〉 − 〈η, y(σ)ξ〉 −
∫ σ+β

0

DF (x(τ), t)(η, ξ)

∣∣∣∣
= K‖y(σ + β)− y(σ)− x(σ + β) + x(σ)‖η,ξ, where x(σ) = y(σ)

and ∫ σ+β

σ

DF (x(τ), t)(η, ξ) = x(σ + β)− x(σ)

By this inequality (∗∗) and by (5.3.2) we obtain

V (y(σ + β), σ + β)(η, ξ)− V (x(σ), σ)(η, ξ)

= V (y(σ + β), σ + β)(η, ξ)− V (x(σ + β), σ + β)(η, ξ)

+V (x(σ + β), σ + β)(η, ξ)− V (x(σ), σ)(η, ξ) ≤

≤ K

∣∣∣∣〈η, y(σ + β)ξ〉 − 〈η, y(σ)ξ〉 −
∫ σ+β

σ

DF (x(τ), t)(η, ξ)

∣∣∣∣+ βηξΦ(y(β))

≤ K

∣∣∣∣〈η, y(σ + β)ξ〉 − 〈η, y(σ)ξ〉 −
∫ σ+β

σ

DF (x(τ), t)(η, ξ)

∣∣∣∣+ βMηξ + βε

84



where ε > 0 is arbitrary and β ∈ (0, β2(σ)) with β2(σ) ≤ β1(σ),

β2(σ) > 0 is sufficiently small.

Setting

〈η,Q(s)ξ〉 = 〈η, p(s)ξ〉 = 〈η, y(s)ξ〉 −
∫ s

0

DF (y(τ), t)(η, ξ)

for s ∈ [0, t1].

As (η, ξ) −→ Q(s)(η, ξ) is a sesquilinear form, there exists Q : [0, t1] → Ã lying in

Ad(Ã)wac
⋂
BV (Ã), such that Q(s)(η, ξ) = 〈η,Q(s)ξ〉.

The last inequality can be used to derive the following estimates

V (y(σ + β), σ + β)(η, ξ)− V (x(σ), σ)(η, ξ)

≤ K

∣∣∣∣〈η, y(σ + β)ξ〉 − 〈η, y(σ)ξ〉 −
∫ σ+β

σ

DF (y(τ), t)(η, ξ)

∣∣∣∣
+K

∣∣∣∣∫ σ+β

σ

D[F (y(τ), t)(η, ξ)− F (x(τ), t)(η, ξ)]

∣∣∣∣+ βMηξ + βε

≤ K|Q(σ + β)(η, ξ)−Q(σ)(η, ξ)|+ βMηξ + βε

+K

∣∣∣∣∫ σ+β

σ

D[F (y(τ), t)(η, ξ)− F (x(τ), t)(η, ξ)]

∣∣∣∣
≤ K

(
V ar[0,σ+β]Q(t)(η, ξ)− V ar[0,σ]Q(t)(η, ξ)

)
+ βMηξ

+εβ +K

∣∣∣∣∫ σ+β

σ

D[F (y(τ), t)(η, ξ)− F (x(τ), t)(η, ξ)]

∣∣∣∣ (5.3.4)

for every β ∈ (0, β2(σ)).

Considering the last term in (5.3.4), since the map (x, t) −→ F (x, t)(η, ξ) is of class
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F(Ã×[0, T ], hηξ,W ) we obtain by Theorem 1.9.4 and Theorem 1.9.5 (iii) the estimate∣∣∣∣∫ σ+β

σ

D[F (y(τ), t)(η, ξ)− F (x(τ), t)(η, ξ)]

∣∣∣∣
≤
∫ σ+β

σ

W (‖y(τ)− x(τ)‖ηξ)dhηξ(τ)

= lim
α→0

[∫ σ+α

σ

W (‖y(τ)− x(τ)‖ηξ)dhηξ(τ) +

∫ σ+β

σ+α

W (‖y(τ)− x(τ)‖ηξ)dhηξ(τ)

]
= W (‖y(σ)− x(σ)‖ηξ)(hηξ(σ)− hηξ(σ)) + lim

α→0

∫ σ+β

σ+α

W (‖y(τ)− x(τ)‖ηξ)dhηξ(τ)

= lim
α→0

∫ σ+β

σ+α

W (‖y(τ)− x(τ)‖ηξ)dhηξ(τ)

≤ sup
s∈[σ,σ+β]

W (‖y(s)− x(s)‖ηξ) lim
α→0

(hηξ(σ + β)− hηξ(σ + α))

= sup
s∈[σ,σ+β]

W (‖y(s)− x(s)‖ηξ)(hηξ(σ + β)− hηξ(σ)), (5.3.5)

because y(σ) = x(σ) and W (‖y(σ)− x(σ)‖ηξ) = 0.

For s ∈ [σ, σ + β2(σ)] we have

〈η, y(s)ξ〉 − 〈η, x(s)ξ〉 = 〈η, y(s)ξ〉 − 〈η, y(σ)ξ〉 −
∫ s

σ

DF (x(τ), t)(η, ξ)

and therefore

lim
s→σ1

(〈η, y(s)ξ〉 − 〈η, x(s)ξ〉) = 〈η, y(σ1)ξ〉 − 〈η, y(σ)ξ〉 −

lim
s→σ1

(F (x(σ), s)(η, ξ)− F (x(σ), σ)(η, ξ))

= 〈η, y(σ1)ξ〉 − 〈η, y(σ)ξ〉 − (F (x(σ), σ1)(η, ξ)− F (x(σ), σ)(η, ξ))

= 〈η,Q(σ1)ξ〉 − 〈η,Q(σ)ξ〉, σ1 > σ

and also

lim
s→σ1
‖y(s)− x(s)‖ηξ = |Q(σ1)(η, ξ)−Q(σ)(η, ξ)| (5.2.6)

For every ε > 0 we define

α =
ε

K(hηξ(t1)− hηξ(0) + 1)
> 0 (5.3.7)

and assume that r = r(α) > 0 is such that W (r) < α. Further, we choose

γ ∈ [0,
r

2
] ⊂ [0, T ].
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Since (5.3.6) holds, there is an β3(σ) ∈ (0, β2(σ)) such that

‖y(s)− x(s)‖ηξ ≤ |Q(σ1)(η, ξ)−Q(σ)(η, ξ)|+ γ (5.3.8)

for s ∈ (σ, σ + β3(σ)) and also

W (‖y(s)− x(s)‖ηξ) ≤ W (|Q(σ1)(η, ξ)−Q(σ)(η, ξ)|+ γ) (5.3.9)

for s ∈ (σ, σ + β3(σ)).

Setting:

N(α) := N(α, η, ξ) =
{
σ1 ∈ [0, T ]; |Q(σ1)(η, ξ)−Q(σ)(η, ξ)| ≥ r

2

}
since Q lies in BV (Ã), the set N(α) is finite and we denote by l(α) the number of

elements N(α).

If σ ∈ [0, T ]\N(α) and s ∈ (σ, σ + β3(σ)) then by (5.3.9) we have

W (‖y(s)− x(s)‖ηξ) ≤ W
(r

2
+ γ
)
< W

(r
2

+
r

2

)
= W (r) < α

and by (5.3.5) also∣∣∣∣∫ σ+β

σ

D[F (y(τ), t)(η, ξ)− F (x(τ), t)(η, ξ)]

∣∣∣∣ ≤ α(hηξ(σ + β)− hηξ(σ)) (5.3.10)

whenever β ∈ (0, β3(σ)).

If σ ∈ [0, T ] ∩ N(α) then there exists β4(σ) ∈ (0, β3(σ)) such that for β ∈ (0, β4(σ))

we set

hηξ(β + σ)− hηξ(σ1) = |hηξ(σ + β)− hηξ(σ1)|

<
α

(l(α) + 1)W (|Q(σ1)(η, ξ)−Q(σ)(η, ξ)|+ γ)

σ1 ∈ [0, T ], σ1 > σ > 0.

Hence (5.3.5) and (5.3.9) yield∣∣∣∣∫ σ+β

σ

D[F (y(τ), t)(η, ξ)− F (x(τ), t)(η, ξ)]

∣∣∣∣
≤ W (|Q(σ1)(η, ξ)−Q(σ)(η, ξ)|+ γ)

α

(l(α) + 1)W (|Q(σ1)(η, ξ)−Q(σ)(η, ξ)|+ γ)

=
α

l(α) + 1
(5.3.11)
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for every β ∈ [σ, σ + β4(σ)].

Since the function hηξ,α : [0, T ]→ R is nondecreasing and continuous on [0, T ], we set

V ar[t1,t2]hηξ,α(t) = hηξ,α(t2)− hηξ,α(t1) =
α

l(α) + 1
l(α) < α (5.3.12)

for every t1, t2 ∈ [0, T ] and from (5.3.7) and (5.3.12) we have

hηξ,α(t2)− hηξ,α(t1) < α[hηξ(t2)− hηξ(t1) + 1] =
ε

K
(5.3.13)

and by (5.3.10), (5.3.11) and by the definition of hηξ,α we obtain the inequality∣∣∣∣∫ σ+β

σ

DF (y(τ), t)(η, ξ)−DF (x(τ), t)(η, ξ)

∣∣∣∣ ≤
≤ |hηξ,α(σ + β)− hηξ,α(σ)|

for β ∈ [0, ∂(σ)] and (5.3.4) gives

V (y(σ+β), σ+β)(η, ξ)−V (x(σ), σ)(η, ξ) ≤ K
(
V ar[0,σ+β]Q(σ + β)(η, ξ)− V ar[0,σ]Q(σ)(η, ξ)

)
+βMηξ + βε+K(hηξ,α(σ + β)− hηξ,α(σ)) = gηξ(σ + β)− gηξ(σ) (5.3.14)

for all σ ∈ [0, T ] and β ∈ [0, ∂(σ)]

where

gηξ(t) = KV ar[0,T ]Q(t)(η, ξ) +Mηξ(t) + ε(t) +Khηξ,α(t), t ∈ [0, T ]

The function gηξ is of bounded variation on [0, T ] and continuous on [0, T ].

From Proposition 5.2.3 and (5.3.13) we obtain by (5.3.14) the inequality

V (y(t2), t2)(η, ξ)− V (y(t1), t1)(η, ξ) ≤ gηξ(t2)− gηξ(t1)

= K V ar[t1,t2]Q(t)(η, ξ) +Mηξ(t2 − t1) + ε(t2 − t1) +K(hηξ,α(t2)− hηξ,α(t1))

< K V ar[t1,t2]Q(t)(η, ξ) +Mηξ(t2 − t1) + ε(t2 − t1) + ε

for t1, t2 ∈ [0.T ], since ε > 0 can be arbitrary, we obtain from this inequality the

result in (5.3.3) and the proof is completed.
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The following definition will be used in the next theorem.

5.3.1 Definition: The real valued map (x, t) −→ V (x, t)(η, ξ) is said to be posi-

tive definite if

(i) There exists a continuous nondecreasing function b : [0,∞) −→ R such that

b(0) = 0 and

(ii) V (x, t)(η, ξ) ≥ b(‖x‖ηξ) for all (x, t) ∈ Ã × [0, T ]

(iii) V (0, t)(η, ξ) = 0, for all (x, t) ∈ Ã × [0, T ]

The next theorems are the Lyapunov type theorems on the variational stability of

solution of equation (5.2.3). As usual, η, ξ ∈ ID⊗IE are arbitrary.

5.3.3 Theorem Suppose that the following conditions hold:

(i) the real valued map t −→ V (x, t)(η, ξ) is continuous on [0, T ] for every x ∈ Ã.

(ii) the map (x, t) −→ V (x, t)(η, ξ) is positive definite in the sense of definition

(5.3.1) above.

(iii) V (0, t)(η, ξ) = 0 and |V (x, t)(η, ξ) − V (y, t)(η, ξ)| ≤ K‖x − y‖ηξ ∀ x, y ∈

Ã, Kηξ := K > 0 being a constant.

(iv) the map (x, t) −→ V (x, t)(η, ξ) is non-increasing along every solution x(t) of

equation (5.2.3)

then, the trivial solution X ≡ 0 of (5.2.3) is variationally stable.

Proof: Since we assumed that the map (x, t) −→ V (x, t)(η, ξ) is non-increasing

whenever x : [0, T ]→ Ã, is a solution of (5.2.3)
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we have from equation (5.3.2) in Lemma 5.3.2

lim sup
β→0

V (x(t+ β), t+ β)(η, ξ)− V (x(t), t)(η, ξ)

β
≤ 0 (5.3.15)

for t ∈ [0, T ].

To establish the theorem, we shall show that the conditions of variational stability

according to definition (5.2.1) are fulfilled under these assumptions.

by lemma 5.3.2 the map (x, t) −→ V (x, t)(η, ξ), satisfies the following.

(i) Let ε > 0 and let y : [0, t1]→ Ã lie in Ad(Ã)wac ∩BV (Ã) be given.

Then we have

lim sup
β→0

V (x(t+ β), t+ β)(η, ξ)− V (x(t), t)(η, ξ)

β
≤ 0

for every t ∈ [0, T ].

by replacing Φηξx(t) in (5.3.2) with Φηξx(t) ≡ 0.

(ii) Again since the map (x, t) −→ V (x, t)(η, ξ), is continuous, we obtain the relation

|V (x, t)(η, ξ)− V (y, t)(η, ξ)| ≤ Kηξ‖x− y‖ηξ

for every x, y ∈ Ã, t ∈ [0, T ] with a constant K > 0.

Hence we obtain by (5.3.3) in Lemma 5.3.2, (iii) in definition (5.3.1) and hypothesis

(iii) the inequality

V (y(r), r)(η, ξ) ≤ V (y(0), 0)(η, ξ) +K V ar[0,r]

(
〈η, y(s)ξ〉 −

∫ s

0

DF (y(τ), t)(η, ξ)

)
≤ K‖y(0)‖ηξ +K V ar[0,r]

(
〈η, y(s)ξ〉 −

∫ s

0

DF (y(τ), t)(η, ξ)

)
(5.3.16)

which holds for every r ∈ [0, t1] ⊂ [0, T ], s ∈ [0, T ].

Setting α(ε) = infr≤ε b(r). Then α(ε) > 0 for ε > 0 and lim
ε→0

α(ε) = 0.

Further, choose δηξ > 0 such that 2Kδηξ < α(ε).

If in this situation the function y is such that

‖y(0)‖ηξ < δηξ
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and

V ar[0,t1]

(
〈η, y(s)ξ〉 −

∫ s

0

DF (y(τ), t)(η, ξ)

)
< δηξ

then by (5.3.16) we obtain the inequality

V (y(r), r)(η, ξ) ≤ 2Kδηξ (5.3.17)

provided r ∈ [0, t1].

If there exists a t̂ ∈ [0, t1] such that ‖y(t̂)‖ηξ ≥ ε then by(ii) of definition (5.3.1) we

get the inequality

V (y(t̂), t̂)(η, ξ) ≥ b(‖y(t̂)‖ηξ) ≥ inf
r≤ε

b(r) = α(ε)

which contradicts (5.3.17). Hence ‖y(t)‖ηξ < ε for all t ∈ [0, t1] and by Definition

(5.2.1) the solution X ≡ 0 of equation (5.2.3) is variationally stable.

5.3.4 Theorem: Suppose that the following conditions hold:

(i) the map (x, t) −→ V (x, t)(η, ξ) satisfy the hypothesis of Theorem 5.3.3.

(ii) lim supβ→0
V (x(t+β),t+β)(η,ξ)−V (x(t),t)(η,ξ)

β
≤ Φηξ(x(t) holds for every solution x ∈ Ã

of equation (5.2.3)

(iii) Φηξ : Ã → R is continuous with Φηξ(0) = 0, Φηξ(x) > 0 for x 6= 0.

Then the trivial solution X ≡ 0 of (5.2.3) is variationally asymptotically stable.

Proof: From hypothesis (ii) above, the map V (x, t)(η, ξ) is non-increasing along

every solution X(t) of (5.2.3) and therefore by Theorem 5.3.3 the trivial solution

X ≡ 0 of (5.2.3) is variationally stable. By Definition (5.2.3) it remains to show

that the solution X ≡ 0 of equation (5.2.3) is variationally attracting in the sense

of Definition (5.2.2). From the variational stability of the trivial solution X ≡ 0 of
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equation (5.2.3) there is a δ0 > 0 such that if y : [0, T ] → Ã ∈ Ad(Ã)wac ∩ BV (Ã)

and such that ‖y(0)‖ηξ < δ0,

V ar[0,T ]

(
〈η, Y (s)ξ〉 −

∫ s

0

DF (y(τ), t)(η, ξ)

)
< δ0,

then set ‖y(t)‖ηξ < a, a > 0 for t ∈ [0, T ], i.e. y : [0, T ]→ Ã is continuous on [0, T ].

Let ε > 0 be arbitrary. From the variational stability of the trivial solution we obtain

that there is a δηξ(ε) > 0 such that for every y : [0, T ]→ Ã ∈ Ad(Ã)wac ∩ BV (Ã) on

[0, T ] and such that

‖y(0)‖ηξ < δηξ(ε) (5.3.18)

and

V ar[0,T ]

(
〈η, y(s)ξ〉 −

∫ s

0

DF (y(τ), t)(η, ξ)

)
< δ(ε), (5.3.19)

we have

‖y(t)‖ηξ < ε (5.3.20)

for t ∈ [0, T ].

Again set B(ε) = min(δηξ(0), δηξ(ε)) and

A(ε) = −Kδ0 +B(ε)

Mηξ

> 0

where

Mηξ = sup{−Φηξ(x);B(ε) ≤ ‖x‖ηξ < ε} = − inf{Φηξ(x);B(ε) ≤ ‖x‖ηξ < ε} < 0

and assume that

y : [0, T ]→ Ã ∈ Ad(Ã)wac ∩BV (Ã)

and such that

‖y(t)‖ηξ < δ0,

V ar[0,T ]

(
〈η, y(s)ξ〉 −

∫ s

0

DF (y(t), t)(η, ξ)

)
< B(ε) (5.3.21)
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Assume that 0 < A(ε) < T . We show that there exists a t∗ ∈ [0, A] ⊂ [0, T ] such

that ‖y(t∗)‖ηξ < B(ε). Assume the contrary i.e., ‖y(s)‖ηξ ≥ B(ε) for every s ∈ [0, A].

Lemma 5.3.2 yields

V (y(A), A)(η, ξ)− V (y(0), 0)(η, ξ)

≤ KV ar[O,A]

(
〈η, y(s)ξ〉 −

∫ s

0

DF (y(t), t)(η, ξ)

)
+MηξA(ε) <

< KB(ε) +Mηξ
−K(δ0 +B(ε))

Mηξ

= −Kδ0.

Hence,

V (y(A), A)(η, ξ)) ≤ V (y(0), 0)(η, ξ)−Kδ0 ≤ K‖y(0)‖ηξ −Kδ0 < Kδ0 −Kδ0 = 0

and this contradicts the inequality

V (y(A), A)(η, ξ) ≥ b(‖y(A)‖ηξ) ≥ b(B(ε) > 0.

Hence necessarily there is a t∗ ∈ [0, A] such that

‖y(t∗)‖ηξ < B(ε)

and by (5.3.21) we have ‖y(t)‖ηξ < ε for t ∈ [t∗, T ] ⊂ [0, T ] because (5.3.18) and

(5.3.19) hold in view of the choice of B(ε) and (5.3.20) is satisfied for the case t∗ = 0.

Consequently, also ‖y(t)‖ηξ < ε for t ∈ [0, T ], T > A, because t∗ ∈ [0, A] and therefore

the trivial solution x ≡ 0 is a variationally attracting solution of (5.2.3).

Therefore, by Definition 5.2.3, the trivial solution of (5.2.3) is variationally asymp-

totically stable and thus the result is established.
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5.4 Converse Variational Stability Theorems

This section is devoted to the converse of the stability results, namely

Theorems 5.3.3 and 5.3.4. The main goal here is to show that the variational stability

and asymptotic variational stability imply the existence of Lyapunov functions with

the properties described in Theorems 5.3.3 and 5.3.4. First we establish some auxil-

iary results. We introduce a modified notion of the variation of a stochastic process

to suit the concept of converse variational stability.

5.4.1 Definition Assume that Φ : [a, b] → Ã is a given stochastic process. For

a given decomposition

D : a = α0 < α1 < · · · < αk = b

of the interval [a, b] ⊆ [0, T ] and for every λ ≥ 0 define

uλ(Φ, D, η, ξ) =
k∑
j=1

e−λ(b−αj−1)‖φ(αj)− Φ(αj−1)‖ηξ

and set

eλV ar[a,b]Φηξ = sup
D
uλ(Φ, D, η, ξ)

where the supremum is taken over all decompositions D of the interval [a, b].

5.4.2 Definition The number eλV ar[a,b]Φηξ is called the eλ-variation of the map

t→ 〈η,Φ(t)ξ〉 over the interval [a, b].

5.4.3 Notation Denote by BV (Ã)
⋂
Ad(Ã)wac := A the set of all adapted stochas-

tic processes ϕ : [0, T ] → Ã that are weakly absolutely continuous and of bounded

variation on [t0, T ].
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5.4.1 Lemma: If −∞ < a < b < +∞ and Φ : [a, b] → Ã is a stochastic

process,then for every λ ≥ 0 we have

e−λ(b−a)V ar[a,b]Φηξ ≤ eλV ar[a,b]Φηξ ≤ V ar[a,b]Φηξ (5.4.1)

If a ≤ c ≤ b, λ ≥ 0 then the identity

eλV ar[a,b]Φηξ = e−λ(b−c)eλV ar[a,c]Φηξ + eλV ar[c,b]Φηξ (5.4.2)

holds.

Proof. For every λ ≥ 0 and every decomposition D of [a, b] we have

e−λ(b−a) ≤ e−λ(b−αj−1) ≤ e0 = 1 for j = 1, 2, . . . , k

Therefore
e−λ(b−a)u0(Φ, D, η, ξ) ≤ uλ(Φ, D, η, ξ)

≤ u0(Φ, D, η, ξ) =
k∑
j=1

|Φ(αj)(η, ξ)− Φ(αj−1)(η, ξ)|

and passing to the supremum over all finite decomposition D of [a, b] we obtain the

inequality (5.4.1)

e−λ(b−a)V ar[a,b]Φηξ ≤ eλV ar[a,b]Φηξ ≤ V ar[a,b]Φηξ

. The second statement can be established by restricting ourselves to the case of

decomposition D which contain the point c as a node, i.e.

D : a = α0 < αl < · · · < αl−1 < αl = c < αl+1 < · · · < αk = b
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then

uλ(Φ, D)(η, ξ) =
k∑
j=1

e−λ(b−αj−1)|〈η,Φ(αj)ξ〉 − 〈η,Φ(αj−1)ξ〉|

=
l∑

j=1

e−λ(b−αj−1)|Φ(αj)(η, ξ)− Φ(αj−1)(η, ξ)|

+
k∑

j=l+1

eλ(b−αj−1)|Φ(αj)(η, ξ)− Φ(αj−1)(η, ξ)|

= e−λ(b−c)
l∑

j=1

e−λ(c−αj−1)|Φ(αj)(η, ξ)− Φ(αj−1)(η, ξ)|

+
k∑

j=l+1

eλ(b−αj−1)|Φ(αj)(η, ξ)− Φ(αj−1)(η, ξ)|

= e−λ(b−c)uλ(Φ, D1, η, ξ) + uλ(Φ, D2, η, ξ) (5.4.3)

where

D1 : a = α0 < α1 < · · · < αl−1 < αl = c

and

D2 : c = αl < αl+1 < · · · < αk = b

are decompositions of [a, c] and [c, b], respectively. On the other hand, any two such

decompositions D1 and D2 form a decomposition D of the interval [a, b].

The equality

eλV ar[a,b]Φηξ = e−λ(b−c)eλV ar[a,c]Φηξ + eλV ar[c,b]Φηξ

now easily follows from (5.4.3) when we pass the corresponding suprema.

5.4.2 Corollary: Assume that the following hold.

(i)If a ≤ c ≤ b and λ ≥ 0 then

eλV ar[a,c]Φηξ ≤ eλV ar[a,b]Φηξ (5.4.4)
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(ii) Let ϕ(0) = 0, ϕ(t) = x and set sup
s∈[a,t]

‖ϕ(s)‖ηξ < a for a > 0, t > 0, ϕ ∈ A .

(iii) For λ ≥ 0, s ≥ 0 and x ∈ Ã set

V (λ, η, ξ)(x, s) := Vλ(x, s)(η, ξ) = inf
ϕ∈A

{
eλV ar[0,s]

(
〈η, ϕ(σ)ξ〉 −

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)}
,

if s > 0 and

Vλ(x, s)(η, ξ) := ‖x‖ηξ if s = 0 (5.4.5).

Note that the definition of Vλ(x, s)(η, ξ) makes sense because for ϕ ∈ A the integral∫ σ

0

DF (ϕ(τ), t)(η, ξ) is a function of bounded variation in the variable σ and therefore

the function

〈η, ϕ(σ)ξ〉 −
∫ σ

0

DF (ϕ(τ), t)(η, ξ)

is of bounded variation on [0, s] as well and the eλ-variation of this function is bounded.

The trivial process ϕ ≡ 0 evidently belongs to A for x = 0 and therefore we have

Vλ(0, s)(η, ξ) = 0 (5.4.6)

for every s ≥ 0 and λ ≥ 0 because

〈η, ϕ(σ)ξ〉 −
∫ σ

0

DF (ϕ(τ), t)(η, ξ) = 0

for σ > 0.

Since

eλV ar[0,s]

(
〈η, ϕ(σ)ξ〉 −

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)
≥ 0

for every ϕ ∈ A, we have by the definition (5.4.5) also the inequality

Vλ(x, s)(η, ξ) ≥ 0 (5.4.7)

for every s ≥ 0 and x ∈ Ã.

5.4.3 Lemma: For x, y ∈ Ã, s ∈ [0, T ] and λ ≥ 0 the inequality

|Vλ(x, s)(η, ξ)− Vλ(y, s)(η, ξ)| ≤ ‖x− y‖ηξ (5.4.8)
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holds.

Proof. Assume that s > 0 and 0 < β < s.

Let ϕ ∈ A be arbitrary. Let ϕβ(σ) = ϕ(σ) for σ ∈ [0, s− β], and set

ϕβ(σ) = ϕ(σ − β) +
1

β
(y − ϕ(σ − β)) (σ − s+ β)

for σ ∈ [s− β, s].

The process ϕβ coincides with ϕ on [0, s−β] and is linear with ϕβ(s) = y on [s−β, s].

By definition ϕβ ∈ A and by (5.4.2) from Lemma 5.4.1 we obtain

Vλ(y, s)(η, ξ) ≤ eλV ar[0,s]

(
〈η, ϕβ(σ)ξ〉 −

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)
= e−λβeλV ar[0,s−β]

(
〈η, ϕ(σ)ξ〉 −

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)
+eλV ar[s−β,s]

(
〈η, ϕβ(σ)ξ〉 −

∫ σ

0

DF (ϕβ(τ), t)(η, ξ)

)
≤ e−λβeλV ar[0,s−β]

(
〈η, ϕ(σ)ξ〉 −

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)
+V ar[s−β,s] (〈η, ϕβ(σ)ξ〉) + V ar[s−β,s]

(∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)
≤ e−λβeλV ar[0,s−β]

(
〈η, ϕ(σ)ξ〉 −

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)
+‖y − ϕ(s− β)‖ηξ + hηξ(s)− hηξ(s− β), ϕ(s) = y.

Since for every β > 0 we have

e−λβeλV ar[0,s−β]

(
〈η, ϕ(σ)ξ〉 −

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)

= eλV ar[0,s]

(
〈η, ϕ(σ)ξ〉 −

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)

−eλV ar[s−β,s]

(
〈η, ϕ(σ)ξ〉 −

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)

≤ eλV ar[0,s]

(
〈η, ϕ(σ)ξ〉 −

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)
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by (5.4.6), we obtain for every β > 0 the inequality

Vλ(y, s)(η, ξ) ≤ eλV ar[0,s]

(
〈η, ϕ(σ)ξ〉 −

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)
+‖y − ϕ(s− β)‖ηξ + hηξ(s)− hηξ(s− β)

The function hηξ is assumed continuous on [0, T ] and the stochastic process ϕ is such

that t→ 〈η, ϕ(τ)ξ〉 is continuous on [0, T ] and therefore we have

lim
τ→s
〈η, ϕ(τ)ξ〉 = 〈η, ϕ(s)ξ〉 = 〈η, xξ〉;

moreover the last inequality is valid for every β > 0 and consequently we can pass to

the limit β → 0 in order to obtain

Vλ(y, s)(η, ξ) ≤ eλV ar[0,s]

(
〈η, ϕ(σ)ξ〉 −

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)
+ ‖x− y‖ηξ

for every ϕ ∈ A. Taking the infimum for all ϕ ∈ A on the right hand side of the last

inequality we arrive at

Vλ(y, s)(η, ξ) ≤ Vλ(x, s)(η, ξ) + ‖x− y‖ηξ (5.4.9)

Since this reasoning is fully symmetric with respect to x and y we similarly obtain

also

Vλ(x, s)(η, ξ) ≤ Vλ(y, s)(η, ξ) + ‖x− y‖ηξ

and this together with (5.4.9) yield (5.4.8) for s > 0.

If s = 0, then we have by definition

|Vλ(y, 0)(η, ξ)− Vλ(x, 0)(η, ξ)| = |‖y‖ηξ − ‖x‖ηξ| ≤ ‖x− y‖ηξ

this proves the Lemma.

5.4.4 Corollary: Since Vλ(0, s)(η, ξ) = 0 for every s ≥ 0, we have by (5.4.6) and

(5.4.8)

0 ≤ Vλ(x, s)(η, ξ) ≤ ‖x‖ηξ (5.4.10)
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5.4.5 Lemma: For y ∈ Ã, s, r ∈ [0, T ] and λ ≥ 0, the inequality

|Vλ(y, r)(η, ξ)− Vλ(y, s)(η, ξ)| ≤
(
1− e−λ|r−s|

)
a+ |hηξ(r)− hηξ(s)| (5.4.11)

holds.

Proof. Suppose that 0 ≤ s ≤ r and ϕ ∈ A is given. Set ‖y‖ηξ ≤ a. Then by

Lemma 5.4.1 we have

eλV ar[0,r]

(
〈η, ϕ(σ)ξ〉 −

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)

= e−λ(r−s)eλV ar[0,s]

(
〈η, ϕ(σ)ξ〉 −

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)

+eλV ar[s,r]

(
ϕ(σ)(η, ξ)−

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)

≥ e−λ(r−s)Vλ(ϕ(s), s)(η, ξ) + eλV ar[s,r]

(
〈η, ϕ(σ)ξ〉 −

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)

≥ e−λ(r−s)
[
Vλ (ϕ(s), s)) (η, ξ) + V ar[s,r] (ϕηξ(σ1))− V ar[s,r]

(∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)]
≥ e−λ(r−s) [Vλ(ϕ(s), s)(η, ξ) + ‖y − ϕ(s)‖ηξ + (hηξ(r)− hηξ(s))]

≥ e−λ(r−s) [Vλ(y, s)(η, ξ) + (hηξ(r)− hηξ(s))] (5.4.12)

The inequality (5.4.9) from Lemma 5.4.3 leads to

Vλ(ϕ(s), s)(η, ξ) + ‖y − ϕ(s)‖ηξ ≥ Vλ(y, s)(η, ξ)

Taking the infimum over ϕ ∈ A on the left hand side of (5.4.12) we have

Vλ(y, r)(η, ξ) ≥ e−λ(r−s) [Vλ(y, s)(η, ξ) + (hηξ(r)− hηξ(s)]

≥ e−λ(r−s)Vλ(y, s)(η, ξ) + (hηξ(r)− hηξ(s)) (5.4.13)

Now let ϕ ∈ A be arbitrary. We define

ϕ∗(σ)(η, ξ) = ϕ(σ)(η, ξ) for σ ∈ [0, s]
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and

ϕ∗(σ)(η, ξ) = y(η, ξ) for σ ∈ [s, r].

We then have ϕ∗(s)(η, ξ) = ϕ(s)(η, ξ) = y(η, ξ) := y, ϕ∗ ∈ A and by (5.4.1), (5.4.6)

we obtain

Vλ(y, r)(η, ξ) ≤ eλV ar[0,r]

(
ϕ∗(σ)(η, ξ)−

∫ σ

0

DF (ϕ∗(τ), t)(η, ξ)

)
= e−λ(r−s)eλV ar[0,s]

(
ϕ(σ)(η, ξ)−

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)
+eλV ar[s,r]

(
ϕ∗(σ)(η, ξ)−

∫ σ

0

DF (ϕ∗(τ), t)(η, ξ)

)
≤ e−λ(r−s)eλV ar[0,s]

(
ϕ(σ)(η, ξ)−

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)
+V ar[s,r]ϕ

∗(σ) + V ar[s,r]

∫ σ

0

DF (ϕ∗(τ), t)(η, ξ)

≤ e−λ(r−s)eλV ar[0,s]

(
ϕ(σ)(η, ξ)−

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)
+hηξ(r)− hηξ(s).

Taking the infimum over all ϕ ∈ A on the right hand side of this inequality we obtain

Vλ(y, r)(η, ξ) ≤ e−λ(r−s)Vλ(y, s)(η, ξ) + (hηξ(r)− hηξ(s))

Together with (5.4.13) we have

|Vλ(y, r)(η, ξ)− e−λ(r−s)Vλ(y, s)(η, ξ)| ≤ hηξ(r)− hηξ(s).

Hence, by (5.4.10) we get the inequality

|Vλ(y, r)(η, ξ)− Vλ(y, s)(η, ξ)| ≤ |Vλ(y, r)(η, ξ)− e−λ(r−s)Vλ(y, s)(η, ξ)|

+|1− e−λ(r−s)||Vλ(y, s)(η, ξ)|

≤ hηξ(r)− hηξ(s) + (1− e−λ(r−s))‖y‖ηξ

≤ hηξ(r)− hηξ(s) + (1− e−λ(r−s))a

because ‖y‖ηξ ≤ a. In this way we have obtained (5.4.11).

Assume that s = 0 and r > 0. Then by (5.4.10) and by the definition given in (5.4.5)
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we get

Vλ(y, r)(η, ξ)− Vλ(y, s)(η, ξ) = Vλ(y, r)(η, ξ)− Vλ(y, 0)(η, ξ)

= Vλ(y, r)(η, ξ)− ‖y‖ηξ ≤ 0 (5.4.14)

We derive an estimate from below. Assume that ϕ ∈ A. By (5.4.1) in Lemma 5.4.1

and Lemma 1.9.9, we have

eλV ar[0,r]

(
ϕ(σ)(η, ξ)−

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)

≥ eλV ar[0,r]ϕ− eλV ar[0,r]

(∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)

≥ e−λrV ar[0,r]ϕ− V ar[0,r]

(∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)
≥ e−λr|ϕ(σ)(η, ξ)− ϕ(0)(η, ξ)| − (hηξ(r)− hηξ(0))

= e−λr‖y‖ηξ − (hηξ(r)− hηξ(0))

Passing again to the infimum for ϕ ∈ A on the left hand side of this inequality we

get

Vλ(y, r)(η, ξ) ≥ e−λr‖y‖ηξ − (hηξ(r)− hηξ(0))

and
Vλ(y, r)(η, ξ)− Vλ(y, 0)(η, ξ) = Vλ(y, r)(η, ξ)‖y‖ηξ

≥ (e−λr − 1)‖y‖ηξ − (hηξ(r)− hηξ(0))

= −(1− e−λr)‖y‖ηξ − (hηξ(r)− hηξ(0))

This together with (5.4.14) yields

Vλ(y, r)(η, ξ)− Vλ(y, 0)(η, ξ)| ≤ (1− e−λr)‖y‖ηξ − (hηξ(r)− hηξ(0)),

and this means that the inequality (5.4.11) holds in this case too. The remaining case

of r = s = 0 is evident because

|Vλ(y, r)(η, ξ)− Vλ(y, s)(η, ξ)| = 0 =
(
1− e−λ|r−s|

)
a+ |hηξ(r)− hηξ(s)|
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For the case when r < s we obtain

|Vλ(y, s)(η, ξ)− Vλ(y, r)(η, ξ)| ≤
(
1− e−λ(s)

)
|‖y‖ηξ − (hηξ(s)− hηξ(r))

because the situation is symmetric in s and r. We have thus established results for

the case when s ≥ 0, s and r

By the previous Lemmas 5.4.3 and 5.4.5, we immediately conclude that the following

holds.

5.4.6 Corollary: For x, y ∈ Ã, r, s ∈ [0, T ] and λ ≥ 0 the inequality

|Vλ(x, s)(η, ξ)−Vλ(y, r)(η, ξ)| ≤ ‖x−y‖ηξ+(1−e−λ|r−s|)a+ |hηξ(r)−hηξ(s)| (5.4.15)

holds.

Next, we shall discuss the behaviour of the function Vλ(x, t)(η, ξ) defined by (5.4.5)

along the solutions of the Kurzweil equation

d

dτ
〈η,X(τ)ξ〉 = DF (X, t)(η, ξ) (5.2.3)

We still assume that the assumptions given at the beginning of this chapter are sat-

isfied for the right hand side F (x, t)(η, ξ).

The next result will be employed in what follows.

5.4.7 Lemma: Assume that ψ : [s, s + β(s)] → Ã is a solution of (5.2.3), s ≥ 0,

β(s) > 0, then for every λ the inequality

lim
β→0

sup
Vλ(ψ(s+ β), s+ β)(η, ξ)− Vλ(ψ(s), s)(η, ξ)

β
≤ −λVλ(ψ(s), s)(η, ξ) (5.4.16)

holds.

Proof: Let s ∈ [0, T ] and x ∈ Ã be given. Let us choose a > 0 such that

a > ‖x‖ηξ+hηξ(s+1)−hηξ(s). Assume that ϕ ∈ A is given and let ψ : [s, s+β(s)]→ Ã
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be a solution of (5.2.3) on [s, s+ β(s)] with ψ(s) = x where 0 < β(s) < 1. The exis-

tence of such a solution is guaranteed by the existence theorem in chapter 4.

For 0 < β < β(s) define

ϕβ(σ)(η, ξ) = ϕ(σ)(η, ξ) for σ ∈ [0, s]

and

ϕβ(σ)(η, ξ) = ψ(σ)(η, ξ) for σ ∈ [s, s+ β].

we have ϕ(s) = ψ(s) = ϕβ(s) = x. Then ϕβ ∈ A , for β ∈ [s, s + β] and since ψ is

weakly absolutely continuous and by the definition of a solution we have

|〈η, ψ(σ)ξ〉| =
∣∣∣∣〈η, x(s)ξ〉+

∫ σ

s

DF (ψ(τ), t)(η, ξ)

∣∣∣∣
≤ ‖x‖ηξ + hηξ(σ)− hηξ(s) ≤ ‖x‖ηξ + hηξ(s+ 1)− hηξ(s) < a

for σ ∈ [s, s+ β] and

Vλ(ψ(s+ β), s+ β)(η, ξ) ≤ eλV ar[0,s+β]

(
ϕ(σ)(η, ξ)−

∫ σ

0

DF (ϕβ(τ), t)(η, ξ)

)

= e−λβeλV ar[0,s]

(
ϕ(σ)(η, ξ)−

∫ σ

0

DF (ϕ(r), t)(η, ξ)

)

+eλV ar[s,s+β]

(
ϕ(σ)(η, ξ)−

∫ s

0

DF (ϕ(τ), t)(η, ξ)−
∫ σ

s

DF (ψ(τ), t)(η, ξ)

)

= e−λβeλV ar[0,s]

(
ϕ(σ)(η, ξ)−

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)

+eλV ar[s,s+β]

(
〈η, xξ〉 −

∫ s

0

DF (ϕ(τ), t)(η, ξ)

)

= e−λβeλV ar[0,s]

(
ϕ(σ)(η, ξ)−

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)
.

Taking the infimum for all ϕ ∈ A on the right hand side of this inequality we obtain

Vλ(ψ(s+ β), s+ β)(η, ξ) ≤ e−λβVλ(x, s)(η, ξ) = e−λβVλ(ψ(s), s)(η, ξ)
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This inequality yields

Vλ(ψ(s+ β), s+ β)(η, ξ)− Vλ(ψ(s), s)(η, ξ) ≤ (e−λβ − 1)Vλ(ψ(s), s)(η, ξ)

and also

Vλ(ψ(s+ β), s+ β)(η, ξ)− Vλ(ψ(s), s)(η, ξ)

β
≤ e−λβ − 1

β
Vλ(ψ(s), s)(η, ξ)

for every 0 < β < β(s).

Since lim
β→0

e−λβ − 1

β
= −λ we immediately obtain (5.4.16).

Now we establish the converse theorems to Theorems 5.3.3 and 5.3.4.

5.4.8 Theorem: Assume that the trivial solution x ≡ 0 of equation (5.2.3) is vari-

ationally stable then for every 0 < a < c, there exists a real-valued map V (x, t)(η, ξ)

satisfying the following conditions:

(i) for every x ∈ Ã the function t → V (x, t)(η, ξ) is of bounded variation in t and

continuous in t

(ii) V (0, t)(η, ξ) = 0 and |V (x, t)(η, ξ)− V (y, t)(η, ξ)| ≤ ‖x− y‖ηξ for x, y ∈ Ã, t ∈

[0, T ],

(iii) the function V (x, t)(η, ξ) is non-increasing along the solutions of the equation

(5.2.3),

(iv) the function V (x, t)(η, ξ) is positive definite if there is a continuous nondecreas-

ing real-valued function b : [0,+∞)→ R such that b(ρ) = 0 if and only if ρ = 0

and

b(‖x‖ηξ) ≤ V (x, t)(η, ξ).

for every x ∈ Ã, t ∈ [0, T ].

Proof: The candidate for the function V (x, s)(η, ξ) is the function V0(x, s)(η, ξ)
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defined by (5.4.5).

For λ = 0, i.e. we take Vλ(x, s)(η, ξ) = V0(x, s)(η, ξ) = V (x, s)(η, ξ). Hypothesis (i) is

established by Corollary 5.4.9. Hypothesis (ii) follow from (5.4.6) and from Lemma

5.4.3 i.e. The trivial process ϕ ≡ 0 evidently belongs to A for x = 0 and therefore we

have

V (0, s)(η, ξ) = 0 (5.4.6)

for every s ≥ 0 and λ ≥ 0, because

〈η, ϕ(σ)ξ〉 −
∫ σ

0

DF (ϕ(τ), t)(η, ξ) = 0

for σ > 0. The inequality |V (x, t)(η, ξ) − V (y, t)(η, ξ)| ≤ ‖x − y‖ηξ follows from the

proof of Lemma 5.4.3.

By Lemma 5.4.7 for every solution ψ : [s, s+ σ]→ Ã of equation (5.2.3) we have

lim
β→0

sup
Vλ(ψ(s+ β), s+ β)(η, ξ)− Vλ(ψ(s), s)(η, ξ)

β
≤ 0

and therefore (iii) is also satisfied.

It remains to show that the function V (x, t)(η, ξ) given in this way is positive definite.

This is the only point where the variational stability of the solution x ≡ 0 of equation

(5.2.3) is used.

Assume that there is an ε, 0 < ε < a and a sequence (xk, tk), k = 1, 2, . . . ,

ε ≤ ‖xk‖ηξ < a, tk → ∞ for k → ∞ such that V (xk, tk)(η, ξ) → 0 for k → ∞. Let

δ(ε) > 0 correspond to ε by Definition 5.2.4 of stability with respect to perturbations

(the variational stability of x ≡ 0 is equivalent to the stability with respect to per-

turbations of this solution by Theorem 5.2.1). Assume that k ∈ N is such that for

k > 0 we have V (xk, tk)(η, ξ) < δ(ε). Then there exists ϕk ∈ A such that for every

tk ∈ [0, T ]

V ar[0,tk]

(
ϕk(σ)(η, ξ)−

∫ σ

0

DF (ϕk(τ), t)(η, ξ)

)
< δ(ε)

We set

〈η,Q(σ)ξ〉 = 〈η, ϕk(σ)ξ〉 −
∫ σ

0

DF (ϕk(τ), t)(η, ξ) for σ ∈ [0, tk]
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〈η,Q(σ)ξ〉 = 〈η, xk(ξ〉 −
∫ tk

0

DF (ϕk(τ), t)(η, ξ) for σ ∈ [tk, T ], tk > 0

We then have

V ar[0,T ]〈η,Q(σ)ξ〉 = V ar[0,tk]

(
ϕk(σ)(η, ξ)−

∫ σ

0

DF (ϕk(τ), t)(η, ξ)

)
< δ(ε)

and the function 〈η,Q(.)ξ〉 is continuous on [0, T ]. For σ ∈ [0, t], we have

〈η, ϕk(σ)ξ〉 =

∫ σ

0

DF (ϕk(τ), t)(η, ξ) + 〈η, ϕk(σ)ξ〉

−
∫ σ

0

DF (ϕk(τ), t)(η, ξ)

=

∫ σ

0

DF (ϕk(τ), t)(η, ξ) + 〈η,Q(σ)ξ〉 − 〈η,Q(0)ξ〉

= 〈η, ϕk(0)ξ〉+

∫ σ

0

D[F (ϕk(τ), t)(η, ξ) + 〈η,Q(t)ξ〉]

because ϕk(0) = 0. Hence, ϕk is a solution of the equation

d

dτ
〈η, y(τ)ξ〉 = D[F (y(τ), t)(η, ξ) +Q(t)(η, ξ)]

and therefore, by the variational stability we have ‖ϕk(s)‖ηξ < ε for every s ∈ [0, tk].

Hence we also have ‖ϕk(tk)‖ηξ = ‖xk‖ηξ < ε and this contradicts our assumption. In

this way we obtain that the function V (x, t)(η, ξ) is

positive definite and (iv) is also satisfied.

The next statement is the converse for Theorem 5.3.4 on variational asymptotic sta-

bility.

5.4.9 Theorem: Assume that the trivial solution x ≡ 0 of equation (5.2.3) is varia-

tionally asymptotically stable then for every 0 < a < c there exists a real-valued map

U(x, t)(η, ξ) : Ã × [0, T ]→ R satisfying the following conditions:

(i) For every x ∈ Ã the map t→ U(x, t)(η, ξ) is continuous on [0, T ] and is locally

of bounded variation on [0, T ],
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(ii) U(0, t)(η, ξ) = 0 and

|U(x, t)(η, ξ)− U(y, t)(η, ξ)| ≤ ‖x− y‖ηξ for x, y ∈ Ã, t ∈ [0, T ],

(iii) For every solution ψ(σ) of the equation (5.2.3) defined for σ ≥ t, where ψ(t) =

x ∈ Ã the relation

lim
β→0

sup
U(ψ(t+ β), t+ β)(η, ξ)− U(x, t)(η, ξ)

β
≤ −U(x, t)(η, ξ)

holds,

(iv) the function Uηξ(x, t) is positive definite.

Proof: For x ∈ Ã, s ≥ 0 we set

U(x, s)(η, ξ) = V (x, s)(η, ξ)

where V0(x, s)(η, ξ) is the function defined by (5.3.5) for λ = 1. In the same way as

in the proof of Theorem 5.4.8 the map U(x, s)(η, ξ) satisfies (i), (ii) and (iii). (The

item (iii) is exactly the statement given in Lemma 5.4.7).

It remains to show that (iv) is satisfied for this choice of the function U(x, s)(η, ξ).

Since the solution x ≡ 0 of equation (5.2.3) is assumed to be variationally attracting

and by Theorem 5.2.1 it is also attracting with respect to perturbations and therefore

there exists δ0 > 0 and for every ε > 0 there is a A = A(ε) ≥ 0 and B = B(ε) > 0

such that if ‖y0‖ηξ < δ0, y0 ∈ Ã and Q ∈ BV (Ã)
⋂

(Ã)wac on [t0, t1] ⊂ [0, T ], and

V ar[t0,t1]p = V ar[t0,t1]Q < B(ε)

then

‖y(t)‖ηξ < ε

for all t ∈ [t0, t1] ∩ [t0 + A(ε), T ] and t0 ≥ 0 where y(t) is a solution of

d

dτ
〈η, x(τ)ξ〉 = D[F (x, t)(η, ξ) +Q(t)(η, ξ)] (5.2.7)
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with y(t0) = y0.

Assume that the map U is not positive definite then there exists ε, 0 < ε < a = δ0,

a > 0 and a sequence (xk, tk), k = 1, 2, . . . , assume also that ε ≤ ‖xk‖ηξ < a, tk →∞

for k →∞ such that U(xk, tk)→ 0 for k →∞. Choose k0 ∈ N such that for k ∈ N,

k > k0 we have tk > A(ε) + 1 and

U(xk, tk)(η, ξ) < B(ε)e−(A(ε)+1), xk ∈ Ã

According to the definition of the map U we choose ϕ ⊂ A such that

e1V ar[0,tk]

(
ϕ(σ)(η, ξ)−

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)
< B(ε)e−(A(ε)+1).

Define t0 = tk − (A(ε) + 1). Then t0 > 0 because tk > A(ε) + 1 and also tk =

t0 + A(ε) + 1 > t0 + A(ε).

Therefore,

e1V ar[t0,tk]

(
ϕ(σ)(η, ξ)−

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)
< B(ε)e−(A(ε)+1),

by inequality (5.4.1) in Lemma 5.4.1 also

e−(A(ε)+1)V ar[t0,tk]

(
ϕ(σ)(η, ξ)−

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)

= e−(tk−t0)V ar[t0,tk]

(
ϕ(σ)(η, ξ)−

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)
< B(ε)e−(A(ε)+1).

and therefore, we get

V ar[t0,tk]

(
ϕ(σ)(η, ξ)−

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)
< B(ε). (5.4.17)

For σ ∈ [t0, tk] define

〈η,Q(σ)ξ〉 = 〈η, ϕ(σ)ξ〉 −
∫ σ

0

DF (ϕ(τ), t)(η, ξ)

The function Q : [t0, tk] → Ã evidently lie in BV (Ã)
⋂

(Ã)wac and by the inequality

(5.4.17) we have

V ar[t0,tk]Q = V ar[t0,tk]

(
〈η, ϕ(σ)ξ〉 −

∫ σ

0

DF (ϕ(τ), t)(η, ξ)

)
< B(ε)
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V ar[t0,tk]Q < B(ε)

Moreover,

〈η, ϕ(σ)ξ〉 =

∫ σ

0

DF (ϕ(τ), t)(η, ξ) + 〈η, ϕ(σ)ξ〉 −
∫ σ

0

DF (ϕ(τ), t)(η, ξ) =

=

∫ σ

0

DF (ϕ(τ), t)(η, ξ) + 〈η,Q(σ)ξ〉

and also

〈η, ϕ(s)ξ〉 − 〈η, ϕ(t0)ξ〉 =

∫ s

t0

DF (ϕ(τ), t)(η, ξ) + 〈η,Q(s)ξ〉 − 〈η,Q(t0)ξ〉

=

∫ s

t0

D[F (ϕ(τ), t)(η, ξ) + 〈η,Q(t)ξ〉],

and this means that the function ϕ : [t0, tk]→ Ã is a solution of the equations (5.2.7)

and (5.2.8) with

‖ϕ(t0)‖ηξ ≤ a = δ0

because ϕ ∈ A for each tk ∈ [0, T ]. By the definition of variational attracting the

inequality ‖ϕ(t0)‖ηξ < ε holds for every t > t0 +A(ε). This is of course valid also for

the value t = tk > t0 + A(ε), i.e.

‖ϕ(tk)‖ηξ = ‖xk‖ηξ < ε

and this contradicts the assumption ‖xk‖ηξ ≥ ε. This yields the positive definiteness

of the real-valued map U . And the result is established.
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Chapter 6

Continuous Dependence on
Parameters of Kurzweil Equations
associated with Quantum
Stochastic Differential Equations

6.1 Introduction

This chapter is devoted to the investigation of continuous dependence on parameters

of solutions of Kurzweil equations associated with the quantum stochastic differen-

tial equations. Continuous dependence of solution on parameters has been used by

some authors to establish general results on existence of solution especially for the

Kurzweil equations associated with the classical differential equations and to derive

other special results such as averaging for generalized ordinary differential equations

[47, 51, 87].

The motivation for studying continuous dependence of solutions on parameters for

this class of noncommutative quantum stochastic differential equation (1.5) is to in-

clude in the theory of non classical ordinary differential equation and the associated

Kurzweil equation the convergence effect of equations (1.5) when it depends on a

parameter.

The next section will consist of two sections: section 6.2 and section 6.3. In section

6.2, we shall first establish some preliminary results. The main results will be estab-
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lished in section 6.3. The main results will be establised under two conditions: When

the stochastic processes are simple processes of bounded variation and when they are

just stochastic processes of bounded variation.

6.2 Preliminary Results

Through out this chapter, η, ξ ∈ ID⊗IE is an arbitrary pair of elements. In what

follows, we consider the sequence of coefficients Ek, Fk, Gk, Hk : Ã × [t0, T ] → Ã

belonging to the appropriate space as in equation (1.3) giving rise to a sequence of

QSDEs of the form (1.3) given by

dX(t) = Ek(X(t), t)dAf (t) + Fk(X(t), t)dA+
g (t)

+Gk(X(t), t)dΛΠ(t) +Hk(X(t), t)dt

X(t0) = X0, t ∈ [t0, T ], k = 0, 1, 2, .. (6.2.1)

The equivalent form of equation (6.2.1) is the following sequence of nonclassical or-

dinary differential equation

d

dt
〈η, x(t)ξ〉 = Pk(x, t)(η, ξ)

X(t0) = X0, t ∈ [t0, T ] (6.2.2)

Where the sequence of sesquilinear forms (X, t)→ Pk(X, t)(η, ξ), k = 0, 1, 2, ...

is assumed to be of class C(Ã × [t0, T ],W ).

By equation (1.6) in chapter one, the map Pk appearing in equation (6.2.2) has the

form

Pk(x, t)(η, ξ) = (µEk)(x, t)(η, ξ) + (γFk)(x, t)(η, ξ) + (σGk)(x, t)(η, ξ)

+Hk(x, t)(η, ξ), (x, t) ∈ Ã × [t0, T ] (6.2.3)

where Hk(x, t)(η, ξ) := 〈η,Hk(x, t)ξ〉.

The map Pk may some times be written as Pk(x, t)(η, ξ) = 〈η, Pk,αβ(x, t)ξ〉 where

112



Pk,αβ : Ã × I −→ Ã, I = [t0, T ] is given by

Pk,αβ(x, t) = µαβ(t)Ek(x, t) + γβ(t)Fk(x, t) + σα(t)Gk(x, t) +Hk(x, t)

for (x, t) ∈ Ã × I.

6.2.1 Definition

(i) Let the sequence of maps Pk : Ã × [t0, T ] −→ sesq(ID⊗IE) be given by equation

(6.2.3), define

Fk(X, t)(η, ξ) =

∫ t

t0

Pk(X(s), s)(η, ξ)ds.

Then we refer to the equation

d

dt
〈η,X(τ)ξ〉 = DFk(X(τ), t)(η, ξ) (6.2.4)

as the Kurzweil equation associated with equation (6.2.2).

let the space Ã and the functions hηξ,W be given as in chapter one.

6.2.1 Lemma: Assume the following hold:

Fk : G→ sesq(ID⊗IE) is of class F(G, hηξ,W ) for k = 0, 1, . . . and that

lim
k→∞

Fk(x, t)(η, ξ) = F0(x, t)(η, ξ) (6.2.5)

for (x, t) ∈ G,G = Ã × [t0, T ].

If x : [a, b]→ Ã, [a, b] ⊂ [t0, T ], x ∈ BV (Ã) then

lim
k→∞

∫ b

a

DFk(x(τ), t)(η, ξ) =

∫ b

a

DF0(x(τ), t)(η, ξ) (6.2.6)

We shall proof this Lemma when X is a simple process of bounded variation and also

the case when X is only of bounded variation.

Proof: Let ε > 0 be given. Assume that βηξ := β > 0 and

W (β) ≤ ε

2(hηξ(b)− hηξ(a) + 1)

113



Since x : [a, b] → Ã lie in BV (Ã) for every β > 0, there is a stochastic process

ϕ : [a, b]→ Ã such that

‖x(τ)− ϕ(τ)‖ηξ ≤ βηξ for τ ∈ [a, b] (6.2.7)

Therefore,

|Fk(x(τ), t2)(η, ξ)− Fk(x(τ), t1)(η, ξ)− Fk(ϕ(τ, t2)(η, ξ) + Fk(ϕ(τ), t1)(η, ξ)|

≤ W (‖x(τ)− ϕ(τ)‖ηξ)|hηξ(t2)− hηξ(t1)|

≤ W (β)|hηξ(t2)− hηξ(t1)|

for τ ∈ [a, b], t1, t2 ∈ [a, b] and k = 0, 1, . . . because Fk is of class F(G, hηξ,W ).

By Theorem 1.9.8 the integrals∫ b

a

DFk(x(τ), t)(η, ξ),

∫ b

a

DFk(ϕ(τ), t)(η, ξ)

exist and yields the estimate∣∣∣∣∫ b

a

D[Fk(x(τ), t)(η, ξ)− Fk(ϕ(τ), t)(η, ξ)]

∣∣∣∣
≤
∫ b

a

W (β)dhηξ(s) = W (β)(hηξ(b)− hηξ(a)) (6.2.8)

for every k = 0, 1, . . .

Again since Fk ∈ F(G, hηξ,W ) we have,

|Fk(x, t2)(η, ξ)− Fk(x, t1)(η, ξ)| ≤ |hηξ(t2)− hηξ(t1)|,

for every x ∈ Ã and t1, t2 ∈ [t0, T ] and this leads to the conclusion that

lim
ρ→0

Fk(x, t+ ρ)(η, ξ) = Fk(x, t)(η, ξ)

for every (x, t) ∈ G, k = 0, 1, . . . . Hence by (6.2.5), we obtain

lim
k→∞

Fk(x, t)(η, ξ) = lim
k→∞

lim
ρ→0

Fk(x, t+ ρ)(η, ξ)

= lim
ρ→0

lim
k→∞

Fk(x, t+ ρ)(η, ξ)

= lim
ρ→0

F0(x, t+ ρ)(η, ξ)

= F0(x, t)(η, ξ).
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Using this equality and assuming that ϕ(s) : [a, b] → Ã is a simple process then

there is a partition a = s1 < s2 < ... < sk = b of [a, b] such that ϕ(s) = cj ∈ Ã for

s ∈ (sj−1, sj), j = 1, 2, ..., k where cj, j = 1, 2, ..., k are finite number of elements of

Ã, sj−1 < sj+1 < σ0 < σ1 < σ2 < σj+1 < σj ∈ (sj−1, sj), we obtain by Theorem 1.9.7∫ sj

sj−1

DFk(ϕ(τ), t)(η, ξ) = Fk(cj, sj−1)(η, ξ)− Fk(cj, σ0)(η, ξ)− Fk(ϕ(sj), sj−1)(η, ξ)

+Fk(ϕ(sj), sj)(η, ξ) + Fk(cj, σ0)(η, ξ)− Fk(cj, sj+1)(η, ξ)

+Fk(ϕ(sj−1), sj+1)(η, ξ)− Fk(ϕ(sj−1), sj−1)(η, ξ)

= Fk(cj, sj−1)(η, ξ)− Fk(cj, sj+1)(η, ξ) +

+Fk(ϕ(sj−1), sj+1)(η, ξ)− Fk(ϕ(sj−1), sj−1)(η, ξ)−

−Fk(ϕ(sj), sj−1)(η, ξ) + Fk(ϕ(sj), sj)(η, ξ).

Repeating the above for the case when k is replaced with 0 and taking the limit of

the above as k →∞, we therefore,have

lim
k→∞

∫ sj

sj−1

D[Fk(ϕ(τ), t)(η, ξ)− F0(ϕ(τ), t)(η, ξ)] = 0 (6.2.9)

Since ϕ is a simple process, we obtain from (6.2.5) using the additivity of the integral

the relation

lim
k→∞

∫ b

a

D[Fk(ϕ(τ), t)(η, ξ)− F0(ϕ(τ), t)(η, ξ)] = 0 (6.2.10)

Next, we consider the stochastic process ϕ satisfying (6.2.7) which is not necessarily

a simple process but of bounded variation.
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We get the following estimate by using (6.2.8) as follows:∣∣∣∣∫ b

a

DFk(x(τ), t)(η, ξ)−
∫ b

a

DF0(x(τ), t)(η, ξ)

∣∣∣∣
≤
∣∣∣∣∫ b

a

DFk(x(τ)t)(η, ξ)−
∫ b

a

DFk(ϕ(τ), t)(η, ξ)

∣∣∣∣
+

∣∣∣∣∫ b

a

DF0(x(τ), t)(η, ξ)−
∫ b

a

DF0(ϕ(τ), t)(η, ξ)

∣∣∣∣
+

∣∣∣∣∫ b

a

DFk(ϕ(τ), t)(η, ξ)−
∫ b

a

DF0(ϕ(τ), t)(η, ξ)

∣∣∣∣
≤ 2W (β)(hηξ(b)− bηξ(a)) +

∣∣∣∣∫ b

a

DFk(ϕ(τ), t)(η, ξ)−
∫ b

a

DF0(ϕ(τ), t)(η, ξ)

∣∣∣∣
≤ ε+

∣∣∣∣∫ b

a

DFk(ϕ(τ), t)(η, ξ)−
∫ b

a

DF0(ϕ(τ), t)(η, ξ)

∣∣∣∣
by the choice of β. By taking the limit as k →∞ on both sides of this inequality we

obtain

lim
k→∞

∣∣∣∣∫ b

a

DFk(x(τ), t)(η, ξ)−
∫ b

a

DF0(x(τ), t)(η, ξ)

∣∣∣∣
≤ ε+ lim

k→∞

∣∣∣∣∫ b

a

DFk(ϕ(τ), t)(η, ξ)−
∫ b

a

DF0(ϕ(τ), t)(η, ξ)

∣∣∣∣
and since ε can be taken arbitrarily small we obtain the result

lim
k→∞

∫ b

a

DFk(ϕ(τ), t)(η, ξ) =

∫ b

a

DF0(ϕ(τ), t)(η, ξ)

6.3 Major Results

6.3.1 Theorem: Assume that the following hold:

(i) Fk : G→ Sesq(ID⊗IE) is of class F(G, hηξ,W ) for k = 0, 1, ....

(ii) lim
k→∞

Fk(x, t)(η, ξ) = F0(x, t)(η, ξ), (x, t) ∈ G (6.3.1)
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(iii) xk : [a, b]→ Ã, k = 1, 2, . . . is a solution of the Kurzweil equation

d

dτ
〈η, x(τ)ξ〉 = DFk(x, t)(η, ξ), on [a, b] ⊂ [t0, T ] (6.3.2)

(iv) lim
k→∞

xk(s) = x(s), s ∈ [a, b] (6.3.3)

Then

x : [a, b] → Ã is of bounded variation on [a, b] and it is a solution of the Kurzweil

equation

d

dτ
〈η, x(τ)ξ〉 = DF0(x, t)(η, ξ) on [a, b] (6.3.4)

Proof. By (1.9.12) of Lemma 1.9.10, we have

‖xk(s2)− xk(s1)‖ηξ ≤ |hηξ(s2)− hηξ(s1)|

for every k = 1, 2, . . . and s1, s2 ∈ [a, b].

Hence,

‖xk(s)‖ηξ ≤ ‖xk(a)‖ηξ + hηξ(s)− hηξ(a)

≤ ‖xk(a)‖ηξ + hηξ(b)− hηξ(a)

The last inequality is a consequence of the following statement.

Remark. Since x lie in BV (Ã), we have from definition that

V ar[a,b]Xk(η, ξ) = sup
τ

(
n∑
j=1

‖X(tj)−X(tj − 1)‖ηξ

)

then the above inequality holds.

and

var[a,b]xk(η, ξ) ≤ hηξ(b)− hηξ(a) (6.3.5)

By (6.3.3) we have xk(a)→ x(a) for k →∞ and therefore the sequence (xk) of simple

processes on [a, b] is bounded and by (6.3.5) of bounded variation on [a, b]. By Helly’s
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choice Theorem [8
′] there exists a subsequence of (xk) which converges uniformly to

a function

x ∈ Ad(Ã)wac ∩BV (Ã).

Hence we conclude by (6.4.3) that x : [a, b]→ Ã ∈ Ad(Ãwac ∩BV (Ã), and Theorems

1.9.7 and 1.9.8 lead to the conclusion that the integral∫ b

a

DF0(x(τ), t)(η, ξ) exists.

By definition of a solution of the Kurzweil equation (6.3.2) we have

〈η, xk(s2)ξ〉 − 〈η, xk(s1)ξ〉 =

∫ s2

s1

DFk(xk(τ), t)(η, ξ) (6.3.6)

for every s1, s2 ∈ [a, b] and k = 1, 2, . . . .

The aim here is to show that

lim
k→∞

∫ s2

s1

DFk(xk(τ), t)(η, ξ) =

∫ s2

s1

DF0(x(τ), t)(η, ξ) (6.3.7)

for any s1, s2 ∈ [a, b] because passing to the limit k →∞ in (6.3.6) we obtain

〈η, x(s2)ξ〉 − 〈η, x(s1)ξ〉 =

∫ s2

s1

DF0(x(τ), t)(η, ξ)

for every s1, s2 ∈ [a, b] provided (6.3.7) is true, and this means

that x : [a, b]→ Ã is a solution of (6.3.4) on the interval [a, b].

To prove (6.3.7), consider the difference∫ s2

s1

DFk(xk(τ), t)(η, ξ)−
∫ s2

s1

DF0(x(τ), t)(η, ξ)

=

∫ s2

s1

D[Fk(xk(τ), t)(η, ξ)− Fk(x(τ), t)(η, ξ)]

+

∫ s2

s1

D[Fk(x(τ), t)(η, ξ)− F0(x(τ), t)(η, ξ)]

for a ≤ s1 ≤ s2 ≤ b.

By lemma 6.2.1 we have

lim
k→∞

∫ s2

s1

D[Fk(x(τ), t)(η, ξ)− F0(x(τ), t)(η, ξ)] = 0 (6.3.8)
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Since the map Fk : G→ sesq(ID⊗IE) is of class F(G, hηξ,W ) for k = 0, 1, . . . we have

|Fk(xk(τ), t2)(η, ξ)− Fk(xk(τ), t1)(η, ξ)− Fk(x(τ), t2)(η, ξ) + Fk(x(τ), t1)(η, ξ)|

≤ W (‖xk(τ)− x(τ)‖ηξ)|hηξ(t2)− hηξ(t1)| (6.3.9)

for τ, t1, t2 ∈ [a, b].

The stochastic processes xk − x, k = 1, 2, . . . lie in Ad(Ã)wac ∩ BV (Ã) and therefore

the functions W (‖xk(τ)−x(τ)‖ηξ) also lie in Ad(Ã)wac ∩BV (Ã). Hence by Theorem

1.9.8 and Lemma 1.9.9 the integrals∫ s2

s1

W (‖xk(s)− x(s)‖ηξ)dhηξ|(s)

exist for every k = 1, 2, . . . .

Because every process X : [t0, T ]→ Ã in L2
loc(Ã) of bounded variation is the uniform

limit of finite simple processes, by (6.3.9) and Theorem 1.9.7, we obtain the inequality∣∣∣∣∫ s2

s1

D[Fk(xk(τ), t)(η, ξ)− Fk(x(τ), t)(η, ξ)]

∣∣∣∣
≤
∫ s2

s1

W (‖xk(s)− x(s)‖ηξ)dhηξ(s) (6.3.10)

for every s1, s2 ∈ [a, b] and k = 1, 2, . . .

Moreover, (6.3.3) implies

lim
k→∞

W (‖xk(s)− x(s)‖ηξ) = 0, s ∈ [a, b]

and we also have 0 ≤ W (‖xk(s) − x(s)‖ηξ) ≤ Cηξ,s a constant for every s ∈ [a, b].

Hence by Theorem 1.9.2 of convergence theorem we obtain

lim
k→∞

∫ s2

s1

W (‖xk(s)− x(s)‖ηξ)dhηξ(s) = 0.

and by (6.3.10) also

lim
k→∞

∫ s2

s1

D[Fk(xk(τ), t)(η, ξ)− Fk(x(τ), t)(η, ξ)] = 0.
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This relation together with (6.3.8) yields (6.3.7) and this concludes the proof.

Remark. Theorem 6.3.1 is in a certain sense a weak form of continuous dependence

results for the Kurzweil equation associated with the quantum stochastic differential

equation introduced in chapter one. The most important assumption is the relation

(6.3.1) which ensures that if a sequence of simple processes xk : [a, b]→ Ã of solutions

of (6.3.2), k = 1, 2, . . . . Converges absolutely to a certain function x : [a, b]→ Ã then

the limit is a solution of the equation (6.3.4). There are different additional condi-

tions on the right hand sides Fk of (6.3.2) and F0 of (6.3.4) in Theorem 6.3.1. Now

we present a result with an additional uniqueness condition for the “limit” equation

(6.3.4).

6.3.2 Theorem. Assume that the following hold:

(i) Fk : G→ Sesq(ID⊗IE) is of class F(G, hηξ,W ) for k = 0, 1, ....

(ii) lim
k→∞

Fk(x, t)(η, ξ) = F0(x, t)(η, ξ), (x, t) ∈ G (6.3.1)

(iii) x : [a, b]→ Ã, [a, b] ⊂ [t0, T ] is a solution of the Kurzweil equation

d

dτ
〈η,X(τ)ξ〉 = DF0(x, t)(η, ξ), on [a, b] ⊂ [t0, T ] (6.3.4)

which has the following uniqueness property:

(a) If x : [a, c] → Ã, [a, c] ⊂ [a, b] is a solution of (6.3.4) such that y(a) = x(a) then

y(t) = x(t) for every t ∈ [a, c].

(b) e > 0 such that if s ∈ [a, b] and |‖y − x(s)‖ηξ < e then

(y, s) ∈ G = Ã × [a, b]

(c) yk ∈ Ã, k = 1, 2, . . . satisfy

lim
k→∞

yk = x(a).

Then for sufficiently large k ∈ N there exists a solution xk of the Kurzweil equation

d

dτ
〈η,X(τ)ξ〉 = DFk(x, t)(η, ξ) (6.3.2)

120



on [a, b] with xk(a) = yk and

lim
k→∞

xk(s) = x(s), s ∈ [a, b].

Proof. By assumption we have (y, a) ∈ G provided

‖y − x(a)‖ηξ <
e

2∗

or

‖y − x(a)‖ηξ = |〈η, yξ〉 − 〈η, x(a)ξ〉 − F0(x(a), a1)(η, ξ) + F0(x(a), a)(η, ξ)| < e

2∗

where a1 > a.

Since 〈η, ykξ〉 → 〈η, x(a)ξ〉 for k →∞, we have by (6.3.1) also

〈η, ykξ〉+ Fk(yk, a1)(η, ξ)− Fk(yk, a)(η, ξ)→

→ 〈η, x(a)ξ〉+ F0(x(a), a1)(η, ξ)− F0(x(a), a)(η, ξ)

for k →∞ because

|Fk(yk, a1)(η, ξ)− Fk(x(a), a1)(η, ξ)− Fk(yk, a)(η, ξ) + Fk(x(a), a)(η, ξ)|

≤ W (‖yk − x(a)‖ηξ)(hηξ(a1)− hηξ(a))

and

Fk(x(a), a1)(η, ξ)− Fk(x(a), a)(η, ξ)− F0(x(a), a)(η, ξ) + F0(x(a), a)(η, ξ)→ 0

for k → ∞. Hence we can conclude that there is a k1 ∈ N such that for k > k1 we

have (yk, a) ∈ G as well as

(yk + Fk(yk, a1)− Fk(yk, a)) ∈ G.

Similarly

(〈η, ykξ〉 , 〈η, aξ〉) ∈ C
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as well as

(〈η, ykξ〉+ Fk(yk, a1)(η, ξ)− Fk(yk, a)(η, ξ)) ∈ C.

Let d > a, such that t ∈ [a, b], and

|〈η, xξ〉 − (〈η, ykξ〉+ Fk(yk, a1)(η, ξ))− Fk(yk, a)(η, ξ)| ≤ hηξ(t)− hηξ(a1)

then (x, t) ∈ G for k > k1.

Using the result on existence of solution in chapter 4, we obtain that for k > k1 there

exists a solluiton xk : [a, d] → Ã of the Kurzweil equation (6.3.2) on [a, d] such that

xk(a) = yk, k > k1. We claim that

lim
k→∞

xk(t) = x(t) for t ∈ [a, d].

Note that the solution xk of (6.3.2) exist on the interval [a, d] and that this interval

is the same for all k > k1.

By Theorem 6.3.1, if the sequence {xk} of simple processes contain absolutely con-

vergent subsequence on [a, d] then the limit of this subsequence is necessarily x(t) for

t ∈ [a, d] by the uniqueness assumption on the solution x of (6.3.4). By lemma 1.9.10

the sequence {xk}, k > k1 of simple processes on [a, d] belongs to BV (Ã). Therefore,

by Helly’s choice Theorem the sequence contains a convergent subsequence and x(t)

is therefore the only accumulation point of the sequence xk(t) for every t ∈ [a, d], i.e.

lim
k→∞

xk(t) = x(t) for t ∈ [a, d].

In this way we have shown that the theorem holds on [a, d], d > a. Assume that

the convergence result does not hold on the whole interval [a, b]. Then there exists

d∗ ∈ (a, b) such that for every d < d∗ there is a solution xk of equation (6.3.4) with

xk(a) = yk on [a, d] provided k ∈ N is sufficiently large and limk→∞ xk(t) = x(t) for

t ∈ [a, d] but this does not hold on [a, d] for d > d∗.

By Lemma 1.9.10 we have

‖xk(t2)− xk(t1)‖ηξ ≤ |hηξ(t2)− hηξ(t1)|, t2t1 ∈ [a, d∗]
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for k ∈ N sufficiently large. Therefore the limits xk(d
∗) exist and since the solution x

is continuous on [a, b], [a, d] ⊂ [a, b], we obtain limk→∞ xk(d
∗) = x(d∗) and this means

that Theorem 6.3.2 holds on the closed interval [a, d∗] too. Using now d∗ < b as the

starting point we can show in the same way as above that the theorem holds also

on the interval [d∗, d∗ +4] with some 4 > 0 and this contradicts our assumption.

Therefore the theorem holds on the whole interval [a, b].

Remark: Theorem 6.3.2 is derived from the result given in Theorem 6.3.1

Next, we use theorem 6.3.1 above to establish continuous dependence of solution

for the quantum stochastic differential equation (QSDE) introduced in chapter one.

The relationship between equation (6.2.2) and equation (6.2.4) is summarized as

follows. If Fk(x, t)(η, ξ) is a sequence of sesquilinear form and

Fk(x, t)(η, ξ) =

∫ t

t0

Pk(x, s)(η, ξ)ds (6.3.11)

since the integrals
∫ t
t0
Pk(x, s)(η, ξ)ds and the maps (x, t)→ Fk(x, t)(η, ξ) are almost

identical for every x ∈ Ã, s, t ∈ [t0, T ] we have from Theorem 1.10.3 that every

solution of

d

dt
〈η, x(t)ξ〉 = Pk(x, t)(η, ξ)

is at the same time a solution of

d

dτ
〈η, x(τ)ξ〉 = DFk(x, t)(η, ξ)

and conversely.

Assume that [t0, T ]×Q is a compact neighbourhood of [t0, T ]× Ã, where

[t0, T ]×Q ⊆ [t0, T ]× Ã,

and z0 is an accumulation point of Q. Assume further that the map (x, t) −→

P (x, t)(η, ξ) is of class C([t0, T ] × Ã,W ), for (x, t) ∈ [t0, T ] × Ã and η, ξ ∈ ID⊗IE
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is arbitrary.

6.3.1 Definition Assume that the

map P : Ã × [t0, T ] × Q → sesq[ID⊗IE] for arbitrary η, ξ ∈ ID⊗IE satisfies the

following conditions:

(i) P (x, ., z)(η, ξ) is measurable for (x, z) ∈ Ã ×Q,

(ii) There exists a family of measurable functions Mηξ : [t0, T ] → R+ such that∫ t
t0
Mηξ(s)ds <∞ and |P (x, ., z)(η, ξ)| 6Mηξ(s), (x, s, z) ∈ Ã × [t0, T ]×Q

(iii) There exists measurable functions Kηξ : [t0, T ] → R+ such that for each t ∈

[t0, T ],
∫ t
t0
Kηξ(s)ds <∞, and

|P (x, s, z)(η, ξ)− P (y, s, z)(η, ξ)| ≤ Kp
ηξ(s)W (‖x− y‖ηξ)

For (x, s, z), (y, s, z) ∈ Ã × [t0, T ]×Q and where from (i) - (iii) W (t) 6= t and

hηξ(t) =

∫ t

t0

Mηξ(s)ds+

∫ t

t0

Kηξ(s)ds

6.3.2 Definition We define

Fk(x, t, z)(η, ξ) =

∫ t

t0

Pk(x, s, z)(η, ξ)ds (6.3.12)

for (x, t, z) ∈ Ã × [t0, T ]×Q

6.3.3 Theorem. Assume that for some c ∈ [a, b] we have

(i) limz→z0

∫ t

c

P (x, s, z)(η, ξ)ds =

∫ t

c

P (x, s, z0)(η, ξ)ds (6.3.13)

for (x, s, z) ∈ Ã × [a, b]×Q

(ii) Let x(t, z) : [a, b]×Q −→ Ã, z 6= z0 be a solution of

d

dt
〈η, x(t)ξ〉 = P (x, t, z)(η, ξ) (6.3.14)
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on [a, b] ⊂ [t0, T ], such that

(iii) limz→z0x(t, z) = y(t), t ∈ [a, b], y ∈ Ã (6.3.15)

Then y : [a, b] −→ Ã is a solution of

d

dt
〈η, x(t)ξ〉 = P (x, t, z0)(η, ξ) (6.3.16)

on [a, b].

Proof.

By the hypothesis above, Theorem 1.10.1 yields that the map

(x, t)→ F (x, t, z)(η, ξ) given by (6.3.12) is of class F(Ã× [t0, T ], hηξ,W ) for all z ∈ Q

where

hηξ(t) =

∫ t

c

Kp
ηξ(s)ds+

∫ t

c

Mηξ(s)ds

s, t ∈ [a, b].

The relation (6.3.13) can be written in the form

limz→z0F (x, t, z)(η, ξ) = F (x, t, z0)(η, ξ)

when (6.3.12) is taken into account. By Theorem 1.10.3, equation (6.3.14) has the

same set of solutions as the Kurzweil equation

d

dτ
〈η, x(τ)ξ〉 = DF (x, t, z)(η, ξ) (6.3.17)

for all z ∈ Q, t, τ ∈ [a, b] ⊂ [t0, T ].

Consequently, using (6.3.15) and Theorem 6.3.1 we obtain that the stochastic process

y : [a, b] −→ Ã is a solution of the Kurzweil equation

d

dτ
〈η, x(τ)ξ〉 = DF (x, t, z0)(η, ξ).

Therefore by theorem 1.10.3 again y is a solution of (6.3.16) on [a, b] and this proves

the theorem.
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Remark. Theorem 6.3.3 is a corollary of continuous dependence results for the

Kurzweil equation associated with QSDE. It represents, continuous dependence the-

orem for the non classical ordinary differential equation introduced in chapter one

under the relatively weak ”integralcontinuity” assumption represented by equation

(6.3.13).
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Chapter 7

Summary, Conclusion and
Recommendations

7.1 Introduction

In this chapter, a summary on the findings of the rearch work is presented. The

outstanding contributions to knowlegde are also discussed. Recommendations on the

proposed application of the technique of topological dynamics to the study of QSDEs

and further research are suggested.

7.2 Summary and Conclusion

The main objective of this research work is to establish existence and uniqueness

of solution of Kurzweil equation associated with the quantum stochastic differential

equations (QSDEs) that satisfy a more general Lipschitz condition and to establish

a basis for the application of the technique of topological dynamics. Hence, we also

studied several kinds of stability viz; variational stability, relationship between varia-

tional attracting and variational asymptotic stability, converse Lyapunov type results

and continuous dependence of solution on parameters. The motivation for studying

this class of equations is to create a frame work for the technique of topological dy-

namics to be applicable in quantum stochastic differential equations as in the classical

setting [4, 51-53, 87].

127



For existence of solution, we reviewed several results on QSDEs within the frame

work of the Hudson and Parthasarathy formulation of QSDEs [3, 11, 12, 14, 15-18,

30, 44]. This is very important since we are extending the results in [6, 30] to a class

of equation that satisfy a general Lipschitz condition. For variational stability and

continuous dependence of solution on parameters, we reviewed several other results

within the context of classical Kurzweil equations associated with ordinary differential

equations (ODEs). This allows for extension of these methods to the present non-

commutative quantum setting and therefore the background knowledge is necessary

for investigating other qualitative properties of solution of QSDEs.

We have established the existence of a unique solution for a class of equation that

satisfy a general Lipschitz condition. The technique of investigation involves the ap-

plication of the method of successive approximations used in Ayoola and Ekhaguere

[7, 30]. This method guaranteed the study of existence and uniqueness of solution for

the map P that satisfy the conditions of the class C(Ã × [t0, T ],W ), with W (t) 6= t

instead of W (t) = t.

The existence of solution for the Kurzweil equation associated with the QSDE was es-

tablished using the equivalent form of the Hudson and Patharsarathy’s formulation.

This is possible since the equivalence of the Kurzweil equation and the associated

QSDE has been established in [6] independent of the Lipschitz condition W (t) = t.

The result on existences of solution generalizes the result in [6], so that the result in

[6] becomes a special case of this result.

We also established results on all kinds of variational stability of solution of the per-

turbed and unperturbed differential equation. Although, unlike variational stability

of ordinary differential equations which have been investigated by various authors,

not much has been done in quantum stochastic differential equations concerning vari-

ational stability atleast within the consulted literatures. Hence this is quite a new

approach for stability of solution of non commutative QSDE (1.5) introduced in chap-
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ter one. The study of variational stability is very effective when studying dynamical

systems. The Lyapunov method was employed to investigate the stability of the so-

lution without knowing the exact solution of the given differential equation. The

Lyapunov’s method makes use of a real- valued function to establish stability results.

This is guaranteed here, since the complex field C ∼= R2. Every other conditions

such as continuity of the Lyapunov function is also guaranteed because the stochastic

processes are adapted, weakly and absolutely continuous.

Variational stability guaranteed that any solution of the Kurzweil equation that starts

near x = 0 remains close to it in the future, while variational asymptotic stability

implies that the solution converges to zero in the future. The converse variational

stability guaranteed the existence of a Lyapunov function when the solution is varia-

tionally stable. Lastly we established results on continuous dependence of solution on

parameters. These results show the convergence effect of QSDE (1.5) when it depends

on a parameter. With This method, we were able to obtain results on existence of

solution independent of any Lipschitz condition. This we were able to achieve because

the stochastic processes are simple processes and also of bounded variation.

The conclusion is that existence of solution will not only depend on the Lipschitz

condition W (t) = t but on a more general condition W (t) 6= t. Also the results on

variational stability and continuous dependence of solution on parameters have pro-

vided a basis for the application of the technique of topological in quantum stochastic

differential equation and the associated Kurzweil equations.

7.3 Outstanding contribution to knowledge

(1) Existence of solution of Kurzweil equation associated with quantum stochastic

differential equations has been extended to a class of equation that is not restricted

to the Lipschitz condition. This will subsequently widen the solution space of quan-
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tum stochastic differential equation especially for the class of equations that will fail

to satisfy the Lipschitz condition.

(2) The results on variational stability, asymptotic variational stability and continu-

ous dependence of solution on parameters of equation (1.5) have not been considered

before now. This is the first time such results will be establihed.

(3) The theory of Kurzweil equations associated with quantum stochastic differen-

tial equation provides a basis for future application of the technique of topological

dynamics to the study of quantum stochastic differential equation as in classical cases.

7.4 Practical applications of QSDEs

The nature of occurrence of events in the world is chaotic, unpredictable hence the

need to use stochastic differential equations to model real life problems becomes

imperative [60, 64, 89]. Stochastic differential equations have found many real life

applications viz: medicine, engineering, psychology, economics, stock markets, con-

flict management, etc. See the references [11,34] for more on practical applications.

7.5 Recommendations

The following are possible areas for further investigation of quantum stochastic dif-

ferential equations and the associated Kurzweil equation.

1 The possibility of investigating the existence of solution of the Kurzweil equa-

tion independent of the associated QSDE as in the case of classical differential

equations.

2 The possibility of investigating other analytical properties of solution of the

Kurzweil equation associated with QSDE, such as averaging for generalized
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QSDEs, Maximal solutions, etc.

3 Investigating the convergence effect that occurs when the right hand side of the

equations converge to other functions that are not necessarily QSDEs like in

the case of classical ODE where it converges to a Dirac function.

4 Extending the concept of measure differential equations to the present non

commutative quantum setting for systems that exhibit discontinuous solutions

caused by the impulsive behaviour of the differential system.

5 Establishing convergence schemes for QSDEs that will depend on the general

Lipschitz condition established here.
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7.6 Appendix A

Statement of Helly’s selection theorem

Let X be a separable Hilbert space and let Reg([0, T ];X) denote the space of regulated

functions f : [0, T ] → X, equipped with the supremum norm. Let (fn)n∈N be a

sequence in Reg([0, T ];X) satisfying the following condition: for every ε > 0, there

exists some Lε > 0 so that each fn may be approximated by a un ∈ BV([0, T ];X)

satisfying

‖fn − un‖∞ < ε

and

|un(0)|+ V ar(un) ≤ Lε,

where |.| is defined to be the norm in X and Var(u) denotes the variation of u, which

is defined to be the supremum

sup
Π

Σm
j=1|u(tj)− u(tj−1)|

over all partitions

Π = 0 = t0 < t1 < ... < tm = T,m ∈ N

of [0, T ]. Then there exists a subsequence

(fn(k)) ⊆ (fn) ⊂ Reg([0, T ];X)

and a limit function f ∈ Reg([0, T ];X) such that fn(k)(t) converges weakly in X to

f(t) for every t ∈ [0, T ]. That is, for every continuous linear functional λ ∈ X∗,

λ(fn(k))→ λ(f(t))

in R as k →∞.
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7.7 Appendix B

Statement of Gronwall’s inequality

Let I denote an interval of the real line of any of the form [a,∞), [a, b], [a, b) with

a < b. Let α and u be measurable functions defined on I and let µ be a local finite

measure on the Borel σ-algebra of I( we need µ([a, t]) < ∞, for all t in I). Assume

that u is integrable with respect to µ in the sense that∫ t

a

|u(s)µ(ds) <∞, t ∈ I,

and that u satisfies the integral inequality

u(t) ≤ α(t) +

∫
[a,t)

u(s)µ(ds), t ∈ I.

If, in addition,

(i) the function α is non-negative or

(ii) the function t→ α([a, t]) is continuous for t in I and the function α is integrable

with respect to µ in the sense that∫ t

a

|u(s)µ(ds) <∞, t ∈ I,

then u satisfies the Gronwall’s inequality

u(t) ≤ α(t) +

∫
[a,t)

α(s)exp(µ(Is,t))µ(ds)

for all t in I, where Is,t denotes the open interval (s, t).
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