Data in Brief 19 (2018) 2291-2296

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Dataset on aerosol loading and deposition over Nouakchott-Mauritania

M.E. Emetere *,a,c, G.A. Adeyemi^b

^a Department of Physics, Covenant University Canaan Land, P.M.B 1023, Ota, Nigeria

^b Department of Civil Engineering, Covenant University Canaan Land, P.M.B 1023, Ota, Nigeria

^c Department of Mechanical Engineering and Science, University of Johannesburg, APK, South Africa

ARTICLE INFO

Article history: Received 9 June 2018 Received in revised form 1 July 2018 Accepted 5 July 2018 Available online 9 July 2018

Keywords: Air pollution Aerosol Nouakchott Mauritania Model

ABSTRACT

Aerosol optical depth (AOD) is a vital parameter that determines air quality over a geographic enclave. In this paper, the pollution state of Nouakchott-Mauritania was considered. Fifteen years primary (aerosol optical depth) dataset was obtained from the Multi-angle Imaging Spectro-Radiometer (MISR). The secondary datasets were generated from the primary dataset to understand the short and long term effect of aerosol loading over nouakchott. The dataset is important to resolve the ground effect of satellite measurements.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area More specific subject area Type of data How data was acquired Data format Experimental factors Experimental features Data source location Data accessibility Air Pollution Aerosol loading and Retention Tableand figure Multi-angle Imaging Spectro-Radiometer (MISR). Raw and analyzed Aerosol Optical Depth Measurement at 550 nm Nouakchott-Mauritania Multi-angle Imaging Spectro-Radiometer

* Corresponding author.

E-mail address: emetere@yahoo.com (M.E. Emetere).

https://doi.org/10.1016/j.dib.2018.07.018

^{2352-3409/© 2018} The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Value of the data

- The data gives a good background for further study on aerosol loading.
- The data provides technician necessary insight towards configurating sun-photometer over Nouakchott-Mauritania.
- The data helps to quantify the extent of air pollution.
- The data provides modeller necessary insight on aerosol loading and retention challenges over Nouakchott-Mauritania.

1. Data

One of the known methods for examining the level of pollution over an area is the aerosol optical depth (AOD). Optical properties of aerosol particles have severe influence over the local radiative forcing and radiation balance of the earth [1,2]. The interaction between aerosol and solar radiation can be described by its optical properties. The optical parameters used to describe the aerosol-solar radiation are the extinction and scattering coefficients, the aerosol depth and the single-scattering phase [3–5]. From the AOD dataset, aerosol hygroscopic growth factor, total atmospheric optical thickness and aerosols loading [6,7].

The primary data was obtained from Multi-angle Imaging Spectro-Radiometer (MISR) i.e. found in Table 1A–1C. The tunning and atmospheric constants for fifteen was obtained using the West African regional scale dispersion model (WASDM) from the AOD dataset (Figs. 2 and 3). The tunning and

Table 1A

Summarized aerosol op	otical depth d	lataset over	Nouakchott
-----------------------	----------------	--------------	------------

Month	2000	2001	2002	2003	2004	2005
Jan Feb Mar Apr Jun Jul Jul Sep Oct Nov Dec	0.8695 0.9052 0.896 0.70325 0.9278 0.9865 0.781166667 0.4696 0.2405 0.3702	0.276 0.36775 0.4088 0.7436 0.31325 0.7084 0.7262 0.8254 0.9795 0.5575 0.4895 0.21075	0.3025 0.48725 0.5454 0.337 0.5286666667 0.8676 0.90075 0.7206 0.753333333 0.6165 0.4306 0.2322	0.233833333 0.4885 0.4325 0.5725 0.831666667 0.8752 0.7845 0.905 0.7454 0.5506 0.2888 0.3652	0.1994 0.384 0.592166667 0.552 0.43375 0.7165 0.971333333 0.655 0.6658 0.445666667 0.37525 0.301833333	0.3684 0.392666667 0.2902 0.6452 0.746333333 0.610833333 0.9316 0.91825 0.725666667 0.4772 0.3386 0.4032

Table 1B

Summarized aerosol optical depth dataset over Nouakchott.

Month	2006	2007	2008	2009	2010
Jan Feb Mar Apr Jun Jul Aug Sep Oct Nov	0.251 0.351333333 0.4844 0.770666667 0.6445 0.8135 0.915833333 0.8032 0.6875 0.591666667 0.2605	0.49375 0.418 0.3786 0.3885 0.680833333 0.701333333 0.8174 0.901333333 0.76175 0.5162 0.3746	0.463 0.5065 0.5715 0.9355 0.514666667 0.6185 0.96 0.76425 0.66533333 0.603 0.3645	0.2694 0.337 0.5065 0.473833333 0.7228 0.689333333 0.793666667 0.783 1.003 0.374166667 0.25075	0.273333333 0.2435 0.6442 0.6066 0.764 0.673166667 0.947666667 0.80283333 0.6295 0.36275 0.22325
Dec	0.48975	0.328166667	0.34325	0.143333333	0.262333333

Table 1C							
Summarized	aerosol	optical	depth	dataset	over	Nouako	hott.

Month	2011	2012	2013
Jan	0.2624	0.3988	0.5962
Feb	0.243	0.28	0.2964
Mar	0.2772	0.756666667	0.2044
Apr	0.647333333	0.649666667	0.4878
May	0.471	0.742333333	0.484
Jun	0.588666667	0.871666667	0.700666667
Jul	0.7044	0.762666667	0.731
Aug	0.6412	0.600833333	0.597166667
Sep	0.572	0.533833333	0.4185
Oct	0.546333333	0.25	0.3666
Nov	0.284666667	0.25875	0.175
Dec	0.308	0.188	

 Table 2

 Atmospheric constants over Nouakchott.

Location	<i>a</i> ₁	<i>a</i> ₂	<i>n</i> ₁	<i>n</i> ₂	α	В
Nouakchott	0.9442	0.8131	0.4369	0.08213	$\pm \frac{\pi}{8}$	$\pm \frac{\pi}{8}$

Fig. 1. Geographical map of Nouakchott.

atmospheric constants are factors that determines the accuracy of ground instruments e.g. sun photometer [6,7] and they are presented in Table 2. The secondary dataset i.e. aerosol loading was generated using the extended WASDM are presented in Table 3A-C.

Fig. 2. AOD pattern for Nouakchott 2000 – 2013.

Fig. 3. AOD for new model and MISR (Nouakchott, 2000-2013).

Table 3	A		
Aerosol	loading (over	Nouakchott.

Month	2000	2001	2002	2003	2004
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov	0.610251849 0.589772356 0.595085002 0.699664467 0.576626083 0.54192479 0.659127654 0.802167699 0.867471212 0.835252388 0.89151364 0.89151364	0.859940716 0.83597879 0.823232557 0.679005349 0.850983355 0.697069678 0.688005495 0.635000181 0.546100116 0.767374939 0.794727189 0.87201347	0.853678054 0.795581598 0.77245375 0.844718376 0.779328727 0.611331169 0.592344977 0.690872978 0.673912489 0.741367625 0.815974272 0.860082325	0.868774357 0.795107337 0.815325887 0.760956028 0.631523544 0.607007215 0.65733573 0.589888095 0.678066626 0.770282069 0.856983577 0.856983577	0.874939468 0.831078864 0.752338345 0.76969456 0.814897949 0.692963222 0.550959607 0.723341959 0.718144143 0.810763945 0.833741237 0.853247252

Table 3B

Aerosol loading over Nouakchott.

Month	2005	2006	2007	2008	2009
Jan Feb Mar Apr Jun Jun Jul Aug Sep Oct	0.835786501 0.828387115 0.856652431 0.728005794 0.677579322 0.743952326 0.574402948 0.582197336 0.688279207 0.79935715	0.865347273 0.84073205 0.796659063 0.664742877 0.728336983 0.641563385 0.583603489 0.647202074 0.707520791 0.75256023	0.793104241 0.820210232 0.832728512 0.829688 0.710809619 0.700626936 0.639418083 0.592008051 0.66947573 0.784336658	0.804577017 0.788164773 0.761388138 0.572117676 0.784945797 0.740451104 0.557681382 0.668152109 0.718369984 0.74749559	0.861415644 0.844718376 0.788164773 0.800606934 0.689748183 0.706612513 0.652385237 0.658142646 0.532048552 0.834066983 0.053209055
Nov Dec	0.844281011 0.825042825	0.794632049	0.833936788 0.847098337	0.836935581 0.842999029	0.865398856 0.882923782

Table 3C

Aerosol loading over Nouakchott.

Month	2010	2011	2012	2013
Jan	0.860540741	0.862942723	0.826449479	0.750543205
Feb	0.866873282	0.866973432	0.859030287	0.855167722
Mar	0.728478842	0.859668896	0.672158962	0.874103366
Apr	0.745871499	0.726994853	0.725886377	0.79537305
May	0.668284589	0.801652868	0.679665079	0.796809857
Jun	0.714564347	0.753888506	0.609019683	0.700961295
Jul	0.56496546	0.699086143	0.668990707	0.685536266
Aug	0.647402069	0.729894787	0.748469507	0.750111577
Sep	0.735370769	0.761172157	0.777224566	0.820044262
Oct	0.837447557	0.772065182	0.865553311	0.836318235
Nov	0.870770385	0.857952393	0.863723734	0.878729234
Dec	0.862957082	0.852310418	0.876770215	0.89151364

2. Experimental design, materials and methods

Mauritania is located on latitude 16°N to 22°N and longitude 7°W to 17°W. It is bounded within an approximate total area of 1,030,700 km². Its geographical structure includes arid plains, cliff, plateau and oases. Its climate is hot with irregular rainfall. Nouakchott is located on longitude and latitude of 18.09° and -15.98° (Fig. 1).

2296	
------	--

Table 4	
Percentage of increase of aerosols loading over Nouakch	ott.

Year	2001	2004	2007	2009
Percentage (%)	29.1	3.6	4.7	8.0

The West African regional scale dispersion model (WASDM) for calculating aerosol loading over a region:

$$\psi(\lambda) = a_1^2 \cos\left(\frac{n_1 \pi \tau(\lambda)}{2} x\right) \cos\left(\frac{n_1 \pi \tau(\lambda)}{2} y\right) + \dots + a_n^2 \cos\left(\frac{n_n \pi \tau(\lambda)}{2} x\right) \cos\left(\frac{n_n \pi \tau(\lambda)}{2} y\right)$$
(1)

a is atmospheric constant gotten from the fifteen years aerosol optical depth (AOD) dataset from MISR, *n* is the tunning constant, $\tau(\lambda)$ is the AOD of the area and $\psi(\lambda)$ is the aerosol loading. The analysis of Eq. (1) was done using the C+ + codes.

The value of the atmospheric and tuning constant for fifteen years was determine using Eq. (1) over fifteen years data (Figs. 1 and 2). The summary of the AOD is shown in Table 1. The value atmospheric and tuning constant i.e. obtained from the comprehensive dataset is shown in Table 2. The secondary dataset i.e. aerosol loading was generated using the extended WASDM are presented in Table 3A–3C. The percentage of the highest aerosol loading is shown in Table 4.

Acknowledgement

The authors appreciate Covenant University for partial sponsorship. The authors acknowledge NASA for primary dataset. Emetere M.E. enjoys partial sponsorship from University of Johannesburg as Senior Research Associates.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/ 10.1016/j.dib.2018.07.018.

References

- [1] K. Vijayakumar, P.C.S. Devara, Study of aerosol optical depth, ozone, and precipitable water vapour content over Sinhagad, a high-altitude station in the Western Ghats, Int. J. Remote Sens. 34 (2) (2013) 613–630.
- [2] O. Boucher, J. Quaas, Water vapour affects both rain and aerosol optical depth, Nat. Geosci. 6 (2013) 4–5.
- [3] J.-J. Cao, C.-S. Zhu, X.-X. Tie, F.-H. Geng, H.-M. Xu, S.S.H. Ho, G.-H. Wang, Y.-M. Han, K.-F. Ho, Characteristics and sources of carbonaceous aerosols from Shanghai, China, Atmos. Chem. Phys. 13 (2013) 803–817.
- [4] Y. Yang, H. Liao, S.-J. Lou, Simulated impacts of sulphate and nitrate aerosol formation on surface-layer ozone concentrations in China, Atmos. Ocean. Sci. Lett. 7 (5) (2014) 441–446.
- [5] D.F. Zhao, A. Buchhol, B. Kortner, P. Schlag, F. Rubach, H. Fuchs, A. Kiendler-Scharr, R. Tillmann, A. Wahner, Å.K. Watne, M. Hallquist, J.M. Flores, Y. Rudich, K. Kristensen, A.M.K. Hansen, M. Glasius, I. Kourtchev, M. Kalberer, T.F. Mentel, Cloud condensation nuclei activity, droplet growth kinetics and hygroscopicity of biogenic and anthropogenic Secondary Organic Aerosol (SOA), Atmos. Chem. Phys. Discuss. 15 (2015) 19903–19945.
- [6] M.E. Emetere, M.L. Akinyemi, O. Akinojo, Parametric retrieval model for estimating aerosol size distribution via the AERONET, LAGOS station, Environ. Pollut. 207 (C) (2015) 381–390.
- [7] E. Emetere Moses, M.L. Akinyemi, T.E. Oladimeji, Statistical examination of the aerosols loading over Kano-Nigeria: the satellite observation analysis, Sci. Rev. Eng. Environ. Sci. 72 (2016) 167–176.