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ABSTRACT 

This study involved the isolation, purification and characterisation of the bioactive 

phytochemicals from the ethanolic extract of young twigs and leaves of C. bonduc, the 

determination of the antimalarial activity of each isolated phytochemical, and the investigation of 

their in vivo toxicological effects. Further extractions were carried out using petroleum ether, 

ethyl acetate, butanol and water. Bioassay-guided fractionations of petroleum ether and ethyl 

acetate fractions were carried out with a series of chromatographic separation techniques. 

Structural elucidation of the compounds was done by spectroscopic methods. The in vitro 

antimalarial activity and selective indices determinations of the extracts and compounds were 

carried out on chloroquine sensitive strain of Plasmodium falciparum FCR-3 and mouse 

mammary tumor cells FM3A respectively. The anticancer activity of the extracts and compounds 

was carried out on BGC-823 and HeLa cell lines. In vivo toxicity studies of the ethanolic extract 

of the plant were also undertaken. Recovery was assessed 14 days after dosing. Biochemical, 

haematological and histopathological examinations were carried out.  The percentage yield of 

The ethanolic, petroleum ether, ethyl acetate, butanol and water fractions were 12.7%, 13.4%, 

10.7%, 15.1% and 56.3% respectively. Phytochemical screening revealed the presence of all 

major classes of phytochemicals except phlobatannins. A total of fourteen characterised 

compounds (1 - 14) and thirteen uncharacterised pure samples (TCB 28 - 45) were isolated from 

C. bonduc. Two new compounds, 12-ethoxyl-1,14β-dihydroxyl-cass-13(15)-en-16,12-olide 

and 1,7-diacetoxy-5,6β-dihydroxyl-cass-14(15)-epoxy-16,12-olide, are reported for the first 

time. Eleven others are reported from C. bonduc for the first time. The antimalarial activity of 

the ethyl acetate and petroleum ether fractions showed moderate activities. Three compounds 

also showed antimalarial activities. Moderate anticancer activity against HeLa cell lines was 



xxx 

 

observed with the petroleum ether, water and ethyl acetate fractions. Six compounds showed 

various anticancer activities against HeLa cells. However, only two compounds showed high 

anticancer activity against BGC-823 cell lines. The 28 days toxicological assessment of the plant 

indicated that evaluated biomarkers remained unchanged in rats dosed with extract at 200 mg/kg 

body weight, while significant changes were observed in rats at extract doses of 400 mg/kg body 

weight and above. There were no noticeable histopathological alterations in the cellular 

architecture of the tested organs of the control rats. Similarly, there were no alterations at an 

extract dose of 200 mg/kg body. However, at extract doses of 400 mg/kg body weight and above, 

there were induced histopathological alterations in the cellular architecture of the liver and 

kidney. No significant change was observed in the tested groups and the recovery groups in the 

sub-acute toxicity study. In the acute toxicological investigation, there was no mortality in the 

experimental animals at all treatment doses. However, there were significant alterations in the 

biomarkers of toxicity and induced cellular damage to the liver. In conclusion, the ethanolic 

extract of C. bonduc could be toxic to selected organs in the rat body on continuous high dosage. 

Moreover, C. bonduc contains a wide range of bioactive flavonoids, most of which possess good 

anticancer activities; some have moderate inhibitory activities against P. falciparum, but have 

poor selectivity indices for the mouse mammary tumor cell line. 

 



1 
 

CHAPTER ONE 

INTRODUCTION 

1.1 Background 

Areas of high biodiversity, including tropical rainforests, are domains of chemical warfare. 

In the battle for survival, plants have evolved with many chemical defences as means of survival 

to ward off attackers such as bacteria, insects, fungi, severe weather and, in some cases, mammals 

that may threaten their existence. Secondary metabolites, while not essential for growth and 

development, do promote the spread and dominance of plant species in an ecological setting 

(Fellows and Scofield, 1995). As a result of this and the reported therapeutic activities associated 

with different phytochemicals, they are therefore worth the effort in research into the discovery of 

new drugs or as a viable alternative to the existing drugs.   

A disease can be defined as an abnormal condition affecting the body of an organism. It is 

any condition that causes pain, dysfunction, distress and/or death to an organism. Malaria, a 

vector-borne disease caused by protozoan parasites, is widespread in tropical and sub-tropical 

regions, including parts of America, Asia, and Africa. About 124 million people in Africa live in 

areas at high risk of seasonal epidemic malaria. There are many more in areas outside Africa 

where transmission is less intense (Hay and Snow, 2006). Malaria remains a major parasitic 

disease in many tropical and sub-tropical regions of the world (Frederich et al., 1999; WHO, 

2011a). It appears to be the most prevalent of human diseases; as such it constitutes a major 

health hazard. About 500 million malaria cases are reported annually, resulting in 1 - 2 million 

deaths (Bradley, 1995), the most vulnerable groups being pregnant women and children under the 

age of five living in sub-Saharan Africa (Tracy and Webster, 2001). In fact, malaria accounts for 

more than 90 % of deaths of children in Africa below 5 years of age (Sachs and Malaney, 2002). 
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As a result of its associated high morbidity and mortality, concerted research efforts are currently 

being channeled into the eradication of the disease across the globe (Good, 2001).  

The challenge of malaria, especially to sub-Saharan African nations, continues to widen 

without easily defined limits as drug resistance to most antimalaria drugs, insecticide resistance in 

mosquitoes and other climatic and socio-cultural factors complicate malaria research (Krettli et al., 

2001). The development of resistance to antimalaria drugs by malaria parasites is the most 

disturbing of these factors. Today, the malaria parasite has been confirmed to show notable 

resistance to inexpensive drugs like chloroquine, quinine, sulphadoxine/pyrimethamine and a 

number of other drugs in this category. Newer drugs, however, cost 7-60 times as much as these 

(Olliaro et al., 1996). 

The challenge of drug resistance is leading malaria researchers in the direction of 

antimalarial medicinal plant research. According to the World Health Organization (WHO), 80 % 

of the world's population uses medicinal plants in the treatment of diseases. In African countries 

this rate is much higher (Ajose, 2007). In recent years, medicinal plants have represented a 

primary health source for the pharmaceutical industry (Phillipson, 1991). No less than 400 

compounds derived from plants are currently used in the preparation of drugs, such as vincristine 

and vinblastine used in the treatment of cancer (Ajose, 2007) and quinine and artemisinin used as 

antimalarials (Phillipson, 1991). Investigation of the chemical constituents of medicinal plants has 

become a celebrated research issue (Phillipson, 1991).  

 

1.2 The Study Plant: Caesalpinia bonduc (Linn) Roxb 

Caesalpinia bonduc (family: Caesalpiniaceae, genus Fabaceae), commonly known as 

Gray Nicker nut or Fever nut in English, Sèyó or Ayóo in Yoruba (Sonibare et al., 2009) and Bois 
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canic in French, is a prickly shrub with grey, hard, globular shaped seeds with a smooth shining 

surface (Nadkarni, 1954) (Figure 1.1). It is a medicinal plant predominantly distributed in the 

tropical and sub-tropical regions of Africa, Asia and the Caribbean (Gupta et al., 2003). It has a 

lot of applications in folk medicine. The pharmacological screening of the plant extract has 

revealed its anti-helminthic, anti-cancer, anti-malarial, anti-hyperglycemic, anti-inflammatory, 

anti-rheumatic, anti-measles and anti-pyretic activities (Chakrabarti et al., 2003; Gupta et al., 

2004; Sonibare et al., 2009). Its anti-diuretic and anti-bacterial (Neogi and Nayak, 1958), anti-

convulsant (Adesina, 1982), anti-anaphylactic, anti-diarrheal and anti-viral (Dhar et al., 1968) 

activities have also been reported. Additionally, its anti-asthmatic (Gayaraja et al., 1978), anti-

amoebic and anti-estrogenic activities (Gupta et al., 2003) as well as it nematocidal (Kjuchi et al., 

1989) and abortifacient (Datte et al., 1998) activities have been documented. Hepatoprotective 

and antioxidant properties of C. bonduc have also been reported (Gupta et al., 2003). The 

phytochemical analysis of the plant shows that it contains saponins, alkaloids, flavonoids, 

triterpenoids, diterpenoids, tannins and steroids (Kumar et al., 2005).  

The isolation of Caesalpin-A to -F (Pascoe et al., 1986; Peter et al., 1997a), Caesalpin -Y, 

-J, Caesalpinin -1 (Peter et al., 1997b), Caesalpinins -C to -G and Norcaesalpinins -A to -E 

(Banskota et al., 2003; Linn et al., 2005) has been reported in the literature. The characterisation 

of Neocaesalpins -A to -D, -W (Kinoshita et al., 1996; Kinoshita, 2000; Wu et al., 2007), 

Caesalpinolide -A to -C and -E (Yadav et al., 2007; Yadav et al., 2009), Caesaldekarin -A, -C, -H 

to -L (Lyder et al., 1998), 17-hydroxy-campesta-4,6-dien-3-one, 13,14-seco-stigmasta-5,14-dien-

3a-ol, 13,14-seco-stigmasta-9, (Udenigwe et al., 2007) has also been reported. The reports on the 

isolation of Bonducellpins -A to -G, Caesalpin -R, (Peter et al., 1997a; Pudhom et al., 2007), ε-

caesalpin, caesalpinins -K, -P and -C (Pudhom et al., 2007), Caesalmins -C to -G (Jiang et al., 
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2001), Caesalpinianone (Ata et al., 2009) and 7- hydroxyl-4-methoxyhomoisoflavones 

(bounducelline) have also been reported (Kumar et al., 2005).  

The antibacterial and antifungal activities of bondenlide, a diterpene from the seeds of C. 

bonduc, have also been reported (Simin et al., 2001). The bioactive constituents of C. bonduc, 

caesalpinianone, 6-O-methylcaesalpinianone and hematoxylol with moderate glutathione-S-

transferase activity and 6'-O-acetylloganic acid, 4'-O-acetylloganic acid and 2-O-β-D-

glucosyloxy-4-methy benzenepropanoic acid with anti-candida albicans activity have been 

reported (Ata et al., 2009). Caesalpinolide -A and -B (Yadav et al., 2007), isolated from the seeds 

of C. bonduc, have been shown to have inhibitory activity against cancer cell lines. New cassane 

furanoditerpenoids from the seed kernel of C. bonduc with good antimalarial activity against 

multidrug-resistant K1 strain of Plasmodium falciparum has been isolated and reported (Pudhom 

et al., 2007). Isolated diterpenoids from the seeds of C. crista showed significant dose-dependent 

in vitro inhibitory effects on the growth of Plasmodium falciparum FCR-3/A2 clone (Linn et al., 

2005). Diterpenoids with cytotoxic activities against HL-60 (Human promyelocytic leukemia) and 

HeLa (Human cervical carcinoma) have been reported (Das et al., 2010). 
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Figure 1.1: Photograph of Caesalpinia bonduc 
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One of the basic criteria set by WHO for the use of herbs as medicines is that they should 

be shown to be non-toxic. Although the use of ethno-medicine is widespread in Africa, most of 

the plants have not been thoroughly investigated for their toxicities (Sowemimo et al., 2007). 

Scientific studies show that some medicinal natural products are potent organ toxins and also 

possess anti-fertility properties. These properties have been documented for quinine and 

chloroquine (Sairam, 1978; Meisel et al., 1993; Adeeko and Dada 1998). The anti-fertility 

activities of extracts of Carica papaya, Quassia amara and Azaridiracta indica have also been 

documented (Loyiha et al., 1994; Raji and Bolarinwa 1997; Raji et al., 2003). Since there is no 

scientific information on the substantial toxicity profile of C. bonduc, toxicity data are required to 

predict the safety and effects of long term exposure to the plant (Aniagu et al., 2005). It has been 

discovered that the young twigs and leaves of C. bonduc are readily used in the Southwestern part 

of Nigeria as antimalarials. Thus, the need for safety and therapeutic evaluation pre-informed this 

study. Most of the studies previously carried out on this plant have been done on its seed extract. 

This study however reported detailed studies on the extracts from the young twigs and leaves of C. 

bonduc. 

 

1.3  Justification/Rationale for the study 

Malaria remains a major parasitic disease in many tropical and subtropical regions of the 

world (Frederich et al., 1999). It appears to be the most prevalent human disease, especially in 

those areas, and constitutes a major health hazard. Its occurrences in 2006 were estimated in 

Africa (86%), followed by South-East Asia (9 %) and Eastern Mediterranean regions (3%) 

(Oliveira et al., 2009). According to the World Health Organization (WHO), 80% of the world's 

population uses medicinal plants as the main primary health care source in the treatment of 
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diseases. In African countries the rate is much higher (Ajose, 2007). Limited scientific evidence 

regarding safety and efficacy to support the continued therapeutic application of some of these 

herbal remedies exists compared to such evidence for synthetically formulated drugs (Sowemimo 

et al., 2007). The utilization of the medicinal plants is often based on ancestral experience. With 

the upsurge in the use of herbal remedies, there is a need for a thorough scientific evaluation to 

validate or disprove the supposedly therapeutic effects of some of these medicinal plants. 

Moreover, a number of compounds extracted from traditional plants have not been thoroughly 

studied for toxicity and efficacy. The leaves and young twigs of C. bonduc are used in Nigeria by 

herbal practitioners in the treatment of malaria infection together with other medicinal plants. 

There is therefore the need to study the toxicity of C. bonduc, and to determine its biological 

activities as well as its efficacy.  

 

1.3  General Objectives 

The current study aims at investigating in vitro the folkloric claims for the antimalarial 

activity of C. bonduc against P. falciparium. The research also aims at determining the 

phytoconstituents of the plant, as well as assessing the toxicity profile of its extracts. 

  

1.4  Specific Objectives 

The specific objectives of the study are to: 

a) determine the phytochemical constituents and carry out partial characterisations of the  

        extracts of the young twigs and leaves of C. bonduc; 

b) determine the chemical structures of the isolated bioactive components; 

c) investigate the in vitro antimalarial activity of the extracts; and 
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d) determine the toxic effects of the extracts of C. bonduc in albino rats using  

       biochemical, haematological, and histological indices of toxicity. 
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CHAPTER TWO 

LITERATURE REVIEW  

2.1  Medicinal Plants 

Plants provide a variety of resources that contribute to the fundamental needs of food, 

clothing and shelter. Among plants of economic importance are medicinal plants. Medicinal 

plants are groups of plants with vital roles in alleviating human suffering (Baquar, 2001). Plants 

have been utilized as therapeutic agents since time immemorial in both organized and 

unorganized forms (Girach et al., 2003). The healing properties of many herbal medicines have 

been recognized in many ancient cultures. 

 

2.1.1  History of Medicinal Plants in Phytotherapy 

To trace the history of medicinal plants in phytotherapy is to trace the history of humanity 

itself. The discovery of the curative properties of certain plants must have sprung from instinct. 

Plants must have first been explored as sources of food. As a result of food ingestion, a link with 

some plant properties must have been established (Mendonça-Filho, 2006). Medicinal plants have 

been used for the treatment of various diseases for thousands of years. The use of terrestrial plants 

as medicines has been documented in Egypt, China, India and Greece from ancient times, and an 

impressive number of modern drugs have been developed from them. The first written records on 

the uses of medicinal plants are from Sumerians and Akkaidians, who described the well 

established medicinal uses of laurel, caraway and thyme; this record was dated about 2600 BC 

(Samuelsson, 1999).  

The “Ebers Papyrus”, the best known Egyptian pharmaceutical record, which documented 

over 700 drugs, represents the history of Egyptian medicine dated from 1500 BC; garlic, opium, 
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castor oil, coriander, mint and other herbs have been listed as medicines. The Chinese manual, 

Materia Medica, “the Shenlong Bencao Jing”, a documented record dating from about 1100 BC, 

also listed over 365 medicines, 252 of which were medicinal plants (Cragg et al., 1997). The 

Ayurvedic system recorded the use of turmeric as medicine in Susruta and Charaka dating from 

about 1000 BC (Kappor, 1990). The Greeks also contributed substantially to the development of 

herbal drugs. Pedanius Dioscorides, the Greek physician (100 A.D.), described in his work “De 

Materia Medica” more than 500 medicinal plants (Samuelsson, 1999). The Pedanius 

documentation is considered to be the precursor to all modern pharmacopeias and it is considered 

one of the most influential herbal books in history.  

Medicinal plants were the major sources of products used to sustain health until the 

nineteenth century. In 1828 the German chemist Friedrich Wohler, in an attempt to prepare 

ammonium cyanide from silver cyanide and ammonium chloride, accidentally synthesized urea. 

This was the first organic synthesis in history and it heralded the era of synthetic compounds 

(Mendonça-Filho, 2006). 

 

2.1.2  Importance of Medicinal Plants in Drug Discovery 

Numerous methods have been utilized in drug discovery, including isolation of 

compounds from plants and other natural sources, synthetic chemistry, combinatorial chemistry 

and molecular modeling (Ley and Baxendale, 2002; Geysen et al., 2003; Lombardino and Lowe, 

2004). Despite the recent interest of pharmaceutical companies and funding organizations in 

molecular modeling, combinatorial chemistry and other synthetic chemistry techniques, natural 

products (in particular, medicinal plants), remain an important source of new drugs, new drug 

leads and new chemical entities (NCEs) (Newman et al., 2000; Butler, 2004). Between 2001 and 
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2002, approximately one quarter of the best-selling drugs worldwide were natural products or 

were derived from natural products (Butler, 2004). Approximately 28 % of NCEs that appeared 

between 1981 and 2002 were natural products or natural product-derived (Newman et al., 2003). 

Another 20 % of NCEs that appeared during this time period were considered natural product 

mimics, implying that the synthetic compounds were derived from the study of natural products 

(Newman et al., 2003). Combining these categories, research on natural products accounts for 

approximately 48 % of the NCEs reported from 1981-2002. In Table 2.1 is the summary of some 

of the most economically important pharmaceuticals and their precursors derived from plants. 

Natural products provide a starting point for new synthetic compounds with diverse 

structures, and often with multiple stereo-centres that can be challenging synthetically (Clardy 

and Walsh, 2004; Nicolaou and Snyder, 2004; Peterson and Overman, 2004; Koehn and Carter, 

2005). Many structural features common to natural products (e.g. chiral centres, aromatic rings, 

complex ring systems and degree of molecule saturation) have been shown to be highly relevant 

to drug discovery efforts (Lee and Schneider, 2001; Feher and Schmidt, 2003; Clardy and Walsh, 

2004; Piggott and Karuso, 2004; Koehn and Carter, 2005).  Furthermore, since the escalation of 

interest in combinatorial chemistry, with the subsequent realization that these compound libraries 

may not always be very diverse, many synthetic and medicinal chemists are exploring the creation 

of natural product and natural-product-like libraries that combine the structural features of natural 

products with the compound-generating potential of combinatorial chemistry (Hall et al., 2001; 

Eldridge et al., 2002; Burke et al., 2004; Ganesan, 2004; Tan, 2004). Drugs derived from 

medicinal plants can serve not only as new drugs themselves but also as drug leads suitable for 

optimization by medicinal and synthetic chemists (Balunas and Kinghorn, 2005).  
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Table 2.1:  Some of the most economically important pharmaceuticals and their precursors 

derived from plants  

Plant names   Compounds  Class    Therapeutic use 

Apocyanaceae, Rubiaceae spp.  Yohimbine   Indole alkaloid    Aphrodisiac 

Artemisia annua L.   Artemisinin   Sesquiterpene lactone   Antimalarial 

Camptotheca acuminata Dence  Camptothecin   Indol alkaloid    Antineoplastic 

Capsicum spp.    Capsaicin   Phenylalkyl-amine alkaloid   Topical analgesic 

Cassia angustifolia Vahl.   Sennosides A and B  Hydroxy anthracene glycosides  Laxatine 

Catharanthus roseus L.   Vinblastin, vincristine  Bis-indole alkaloid    Antineoplastic 

Cephaelis ipecacuanha (Brot.) A. Rich.   Ipecac    Mixture of ipecac alkaloids and other     Emetic 

components 

Cephaelis ipecacuanha (Brot.) A. Rich.   Emetine   Isoquinoline alkaloid   Antiamoebic 

Chondodendron tomentosum Ruiz,     Tubocurarine   Bisbenzyl isoquinolone alkaloid  Skeletal muscle  

relaxant 

Strychnos toxifera Bentham 

Cinchona spp.    Quinine    Quinoline alkaloid   Antimalarial 

Cinchona spp.    Quinidine   Quinoline alkaloid   Cardiac depressant 

Colchium autumnale L.   Colchicine  Isoquinoline alkaloid   Antigout 

Digitalis spp.    Digoxin, digitoxin   Steroidal glycosides   Cardiotonic 

Erythroxylum coca Lamarck   Cocaine    Cocaine alkaloid    Local anesthetic 

Leucojum aestivum L   Galanthemine   Isoquinoline alkaloid  Cholinesterase inhibitors 

Nicotiana spp.    Nicotine    Pyrrolidine alkaloid   Smoking cessation therapy 

Papaver somniferum L   Codeine, morphine   Opium alkaloid   Analgesic, antitussive 

Physostigma venenosum Balfor  Physostigmine   Indole alkaloid    Cholinergic 

Pilocarpus jaborandi Holmes  Pilocarpin   Imidazole alkaloid    Cholinergic 

Podophyllum peltatum L.   Podophyllotoxin   Lignan     Antineoplastic 

Taxus brevifolia Nutt.   Taxol and other taxoids  Diterpenes    Antineoplastic 

Camptotheca acuminate Decne Camptothecin  Diterpenes   Antineoplastic 

(Adapted from van Agtmael et al., 1999; Graul, 2001; Pirttila et al., 2004; Butler, 2004; Cragg 

and Newman, 2004 and Ahmad et al., 2006)  
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2.2  Traditional Systems of Medicine  

2.2.1  Historical and Current Perspective  

Herbs and herbal preparations have been used to treat ailments since pre-historic times, 

and the treatment of various diseases with plant-based medicines has remained an integral part of 

many cultures across the globe. Such medicines, derived directly or indirectly from plants, 

constitute over 25 % of the pharmaceutical arsenal (Ahmad et al., 2006). Traditional medicine has 

attracted more attention worldwide since the latter part of the twentieth century. About 80 % of 

Africans have been reported to use traditional medicines to meet their health care needs (WHO, 

2000). This is primarily due to the recognition of the value of traditional and indigenous 

pharmacopeias, the need to make health care affordable for all and the perception that natural 

remedies are somehow safer and more efficacious than remedies that are pharmaceutically 

derived (Murphy, 1999). 

Over the past two decades, two apparently unrelated trends in the biomedical and 

biotechnological development of medicinal products have been described. There has been a rapid 

development of recombinant DNA technology and related procedures to provide biomedical 

proteins and related therapeutic drugs, prophylactic vaccines and diagnostic agents (Chan, 1996). 

At the same time, the growth in popularity of over-the-counter (OTC) health foods (nutraceuticals) 

and herbal products has taken a very large share of the health-care market (Raskin et al., 2002). 

This entire trend has proven the need for continuous development of the knowledge base of the 

utilization of medicinal plants (Ahmad et al., 2006). 
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2.2.2  Asian Traditional Medicine  

The most established herbal therapeutic systems are Ayurveda, Unani and Siddha of 

Indian origin, WU-Hsing (China) and Kampo (Japan). China has possibly the greatest amount of 

documentation concerning herbal plants than any country in the world. The knowledge in Chinese 

medicine was accumulated over thousands of years and has been confirmed through both 

empirical experience and scientific evaluation 

(http://www.sahealthinfo.org/traditionalmeds/traditionalpart2.pdf). Most of the herbal remedies 

are mixtures of plants and, at times, in combinations with animal parts and minerals. Under ideal 

conditions, care is taken by traditionally trained practitioners to identify the ingredients, to harvest 

the plants at very specific times to ensure appropriate levels of bioactivity, to prepare the remedies 

under strict rules and to prescribe them to achieve an appropriate clinical response (Elvin-Lewis, 

2001). 

 

2.2.3  European Traditional Medicine  

European traditional medicine has its roots mostly in ancient Mediterranean civilizations 

and in plants from the South. By the nineteenth century some of the medicinal plants had become 

part of the pharmacopeias of allopathy, naturopathy, and homeopathy. Usually when compounds 

are isolated and sometimes synthesized, their pharmaceutical uses are more carefully regulated 

(De Smet, 1997). 

 

2.2.4  Neo-Western Traditional Medicine  

In its totality, European traditional medicine has matured, along with American herbal 

medicine, into neo-Western herbalism. In this system, single plant preparations that have been 
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either selected from formulations found in ancient pharmacopeias, or derived from medicinal 

plants valued in other countries (including those of indigenous origin), are sold alone or as 

mixtures in an assortment of combinations (Lewis and Elvin-Lewis, 1977; De Smet, 1995; Elvin-

Lewis, 2001). 

 

2.2.5  African Traditional Medicine  

In some African countries, traditional medicine is an integral part of the formal health 

system, on an equal status with modern medicine; but in others this is not the case. African 

traditional medicine, although important for individuals and communities, remains a form of 

private practice outside the formal health system, one that cannot be easily organized by the 

government. Current estimates suggest that, in many African countries, a large proportion of the 

population rely heavily on traditional practitioners and traditional medicines to meet their primary 

health-care needs (African Union Draft (AUD), 2007). Although modern medicine may be 

available in these countries, traditional medicine has often maintained its popularity for historical, 

holistic approaches and for cultural reasons. Some African countries have developed national 

policies on traditional medicine, which include a legal framework, and a code of ethics and 

conduct for the practice of traditional medicine. Some have put in place mechanisms for the 

regulation of traditional medicines practice: legislation, regulatory frameworks and institutional 

instruments for developing African traditional medicine and for locally producing commercial 

quantities of standardized African traditional medicines. Other countries have further moved 

towards integrating/institutionalising traditional medicine into the public health care system 

(African Union Draft, 2007). 
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2.3 Modern Phytomedicine 

Phytomedicine is the emergence of phytotherapy as a separate therapeutic system of 

medicine based on the traditional usage of plants as drugs and the extraction of active substances 

from plants as adapted by some countries, such as German–speaking countries (Ahmad et al., 

2006). Phytotherapy may be divided into two, namely, rational phytotherapy (herbal medicinal 

products) and traditional phytotherapy. In rational phytotherapy, appropriate pharmacological 

investigations and clinical trials have documented the efficacy of the products employed, while in 

traditional phytotherapy the efficacy of phytopharmaceuticals or herbal teas has not yet been 

established (Ahmad et al., 2006).  

 

2.3.1  Prospects of Herbal Medicine 

Herbal medicine and other plant-derived therapeutics or prophylactic products in various 

forms have been available for many hundreds of years for the treatment of diseases. More than 

25 % of marketed orthodox pharmaceuticals are either derived from plant sources or from 

derivatives of secondary plant metabolites. In Table 2.1 is the list of some of the most 

economically important pharmaceutical and their precursors derived from plants (Bhattaram et al., 

2002; Ahmad et al., 2006). The United States (US) Food and Drug Administration (FDA) has 

published guidelines for the standardization of the multicomponent plant extracts referred to as 

botanical drugs, thus making marketability possible under the New Drug Administration (NDA) 

approved process (Ahmad et al., 2006). The following are common botanical dietary supplements 

sold in the United States of America: Echinacea purpurea, Panax ginseng, Serono repens, 

Ginkgo biloba, Hypericum perforatum (St. Johns wort), Valeriana officinalis, Allium sativum, 

Hydrastis canadensis, Matricaria chamomilla, Silybum marianum, Trigonella foenum-graecum, 
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Tanacetum parthenium, Ephedra sinica, and Cimicifuga racemosa (Raskin et al., 2002). 

Presentyly, the basis for marketing these products in the US is the Dietary Supplements Health 

and Education Act (DSHEA) of 1994, which allows manufacturers to market products as dietary 

supplements without the rigorous testing required for other drug products (Ahmad et al., 2006). 

The approach of the Canadian Health Protection Branch with respect to herbal products is 

very similar to the FDA’s, whereas several European countries have more advanced legislative 

regulations for herbal products (Ahmad et al., 2006). Rapid growth has been seen in the herbal 

medicine market in recent years, as increasing numbers of consumers are persuaded by the 

benefits of plant extracts as alternatives to medicinal products with chemically derived Active 

Pharmaceutical Ingredients (APIs) (Greger, 2001). In 1999 the global market for herbal 

supplements exceeded US$15 billion, with a US$7 billion market in Europe, US$2.4 billion in 

Japan, and US$2.7 billion in the rest of Asia, and US$3 billion in North America (Glasser, 1999). 

It has been estimated that the market for branded non-prescription herbal medicine grew from 

$1.5 billion in 1994 to $4.0 billion in 2000 in the US alone. A similar trend is also being followed 

in European and African countries (De Smet et al., 2000). 

 

2.3.2  Constraints in Herbal Medicine 

2.3.2.1  Reproducibility of Biological Activity of Herbal Extracts 

A major constraint limiting the ready adoption of scientific reports on medicinal plants as 

pharmaceuticals discoveries is the lack of reproducibility of the activity of over 40 % of plant 

extracts (Cordell, 2000). This is a major problem in phytomedicine, as the activities detected in 

screens often are nogt reproduced when the same plants are re-sampled. This problem is largely 

due to differences in the biochemical profiles of plants harvested at different times and locations, 
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differences in variety, and variations in the methods of extraction and evaluations of biological 

activities. Furthermore, the activity and efficacy of plant extracts/medicines often result from 

additive interaction effects of the components (Ahmad et al., 2006). Therefore, a strategy should 

be used to evaluate the qualitative and quantitative variations in the contents of bioactive 

ingredients of plant materials. It is also important to identify the different agro-climatic or stress 

locations, climate, microenvironmental, physical and chemical stimuli, often called elicitors, 

which quantitatively and qualitatively alter the content of bioactive secondary metabolites 

(Ahmad et al., 2006). 

 

2.3.2.2  Toxicity and Adverse Effects of Plants extracts 

It is popularly believed that medicinal plants are safer than pharmaceuticals because they 

are of natural origin. However, recent scientific reports have demonstrated that several medicinal 

plants used in phytomedicine are potentially toxic, and some are even mutagenic and/or 

carcinogenic (De SaFerrira and Ferrago-Vargas, 1999). The toxicity for herbal drugs therefore 

depends on their purity, herbal combinations, absorption, bioavailability and reported adverse 

effects. Toxicity in phytomedicine may be due to the followings:  

Dearth of reports on the side effect of medicinal plants; 

Errors in botanical identification;  

Accidental ingestion of cardiotonic plants, 

Inappropriate combinations in phytotherapy; and 

Interference of medicinal plants and conventional pharmacological therapy, such as plants 

containing coumarinic derivatives, a high content of tyramine, estrogenic compounds, 

plants causing irritation and allergic problems (Goldman, 2001; Wojcikowski et al., 2004).  
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2.3.2.3  Adulteration and Contamination 

Medicinal plant adulteration is the intentional inclusion of impurities or undesirable 

substances in medicinal plant combination while contamination is the mistaken inclusion of 

undesirable substances in medicinal plant combinations. This is common in countries that are 

lenient with regard to enforcement of their regulatory laws regarding purity. Adulteration in 

herbal medicine is particularly disconcerting because it is unpredictable. Often it remains 

undetected unless it can be linked to an outbreak of disease or epidemic. An example is the 

reported case of veno-occlusive disease due to the ingestion of plants containing pyrrolidizine 

alkaloids, which can be life threatening or fatal (Drew and Myres, 1997). 

In many cases, contaminated or adulterated medicinal combinations can cause significant 

medical problems, especially in children (Ernst and Coon, 2001; Saper et al., 2004). In a review 

on heavy metal poisoning in children consuming medicinal plant medicines, 13 cases were 

reported from Singapore, Hong Kong, the United States of America, the United Kingdom and the 

United Arabic Emirates from 1975 to 2002 (Ahmad et al., 2006). The Indian Government has 

initiated a major programme under which pharmacopeia standards are developed for medicinal 

plants used in the Ayurveda, Unani, and Siddha systems of traditional medicine (Ahmad et al., 

2006). The resultant pharmacopeia will enhance a good knowledge of the constituents of herbal 

medicines and help to standardise the preparation of herbal drugs. The adulteration of most herbal 

preparations has been attributed to the improper identification of plants. This has resulted in a 

number of serious cases, primarily due to poisoning by digitalis and skullcap (Elvin-Lewis, 2001). 

In 1998, the California Department of Health, USA, reported that 32% of Asian patented 

medicines sold in the country contained undeclared pharmaceuticals or heavy metals (Ko, 1998; 
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Marcus and Grollman, 2002,). The Food and Drug Administration (FDA), USA and other 

scientific reports have also indicated or revealed the presence of prescription drugs, including 

glyburide, sildenafil, colchicines, adrenal steroids and alprazolam in medicinal products claiming 

to contain only natural ingredients (Ernst, 2002). 

 

2.3.2.4  Herb–Drug Interactions 

The dose of many medicinal herbs and pharmaceutical drugs is the major determinant of 

their therapeutic or toxic activity.  Herbal medicines act through a variety of mechanisms to alter 

the pharmacokinetic profile of concomitantly administered drugs (Fugh-Berman, 2000). For 

example, St John’s wort, has been reported to induce the cytochrome P450 isozyme CYP 3A4 and 

intestinal P-glycoproteins, accelerating the metabolic degradation of many drugs including 

cyclosporin, antiretroviral drugs, digoxin, and warfarin (Moore et al., 2000). The interactions 

between concomitantly administered herbs may potentiate or antagonise a patient’s metabolism, 

drug absorption, or elimination, thus interfering with the pharmacology or toxicology profile of 

the drug and herb. Synergistic therapeutic effects may also complicate the dosing of 

concomitantly administered herbs and drugs used in long-term medication. For example, herbs 

traditionally used to decrease glucose concentrations in diabetes could theoretically precipitate 

hypoglycaemia if taken for a long time in combination with conventional drugs (Bailey and Day, 

1989).  

Herbal medicines are ubiquitous; however, the dearth of reports on their adverse effects 

and interactions could probably be a reflection of a combination of under-reporting and the 

benign nature of most herbal products. Limited experimental data, unprescribed usage, lack of 

proper regulatory controls, especially in the developing world where they are locally used, may be 
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some of the factors responsible for the dearth of reports in this area. As a result, care should be 

taken to understand the effects of foods or herbal medicines in anticoagulant therapy, treatment of 

diabetes, depression, pain, asthma, heart conditions, or blood pressure disorders, and slimming 

(Elvin-Lewis, 2001). Scientific data on the interactions of various medicinal plants with drugs, 

their pharmacokinetics and bioavailability profiles should be evaluated (Bhattaram et al., 2002). 
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Table 2.2: Documented reports on some medicinal plants and their adverse effects 

Plant names    Vernacular name   Part used       Common use   Adverse effect (in large doses) 

Aborus precatorius L.  Indian liquorice     Seed  Diarrhea, dysentery, paralysis and  Abrin causes edema and ecchymosi 

skin diseases, antiseptic, uterine  inflammation antifertility activity, 

stimulant and anticancerouss,  antiestrogenic activity, abortifacient and 

oxytocic activity 

Aconitum casmanthum   Aconite           Rhizome  Neuralgia, rheumatism, cardiac  Narcotic, powerful sedative, arrhythmia 

Stappex Holm     tonic and nerve poisons   and hypertension 

Gloriosa superba L.     Malanbar glory Root  Anthelmintic, purgative, emetic,  Antifertility, vomiting, purging, 

      lily    antipyretic, expectorant and toxic gastrodynia and burning sensation 

Croton tiglium L.      Croton  Seed  Abdominal disorders, constipation,  Depressor responses and 

helminthiasis, inflammation,   neuromuscular blockade 

leukoderma and oedema 

Cannabis sativa L.       Hemp   Leaf  Antidiarrhetic, intoxicating, stomachic  Neurotoxic, respiratory arrest, nausea 

and abdominal disorders,   tremors, insomnia, sexual impotence 

and gastrointestinal disturbance 

Datura metel L.      Thorn apple  Seed  Antihelminthic and anticancerous  Insanity 

and leaf 

Euphorbia neriifolia    Milk hedge  Latex  Insecticidal and cardiovascular  Emetic, irritant, apnea and pathological 

changes in liver, heart and kidney 

Papaver somniferum L.  Poppy  Exudate  Diarrhoea, dysentery, sedative,  Highly narcotic 

narcotic and internal hemorrhages 

Semecarpus anacardium  Marking nut  Fruit  Antiseptic, cardiotoxic, anticarcinomic  Abortive 

liver tonic and uterine stimulants 

Nerium indicum Mill         Oleander  Fruit  Antibacterial, ophthalmic and  Cardiac poison, paralysis and depressed 

and leaf  cardiotonices    respiration, gastrointestinal,  

         neurological and skin rashes    

(Adapted from Ahmad et al., 2006)  
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Table 2.3 Herbal preparations - drugs interactions  

Herb and drug(s)     Results of interaction    Comments 

Betel nut (Areca catechu) 

Flupenthixol and procyclidine  Rigidity, bradykinesia, jaw tremor    Betel contains arecoline, a cholinergic alkaloid. 

Fluphenazine    Tremor, stiffness 

Prednisone and salbutamol  Inadequate control of asthma       Arecoline challenge caused dose-related  

    bronchoconstriction in six asthma patients 

Chilli pepper (Capsicum spp) 

ACE inhibitor    Cough          

Theophylline    Increased absorption and bioavailability 

Danshen (Salvia miltiorrhiza) 

Warfarin     Increased INR, prolonged PT/PTT       In rats, danshen decreases elimination of 

warfarin. Danshen is in at least one brand of             

cigarettes. 

Devil’s claw (Harpagophytum procumbens) 

Warfarin     Purpura 

Dong quai (Angelica sinensis) 

Warfarin     Increased INR and widespread bruising      Dong quai contains coumarins. 

Eleuthero or Siberian ginseng (Eleutherococcus senticocus) 

Digoxin     Raised digoxin concentrations       Herb probably interfered with digoxin assay, 

patient had unchanged ECG despite digoxin         

concentration of 5·2 nmol/L). 

 Garlic (Allium sativum) 

Warfarin     Increased INR         Postoperative bleeding and spontaneous pinal  

epidural haematoma have been reported with      

garlic alone. Whether garlic prolongs PT is 

unclear, but it does cause platelet dysfunction. 

Ginkgo (Ginkgo biloba) 

Aspirin     Spontaneous hyphema          Ginkgolides are potent inhibitors of PAF 

     (Adapted from Ahmad et al., 2006)                 
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Table 2.3 contd Herbal preparations - drugs interactions 

Herb and drug(s)     Results of interaction    Comments 

Ginkgo (Ginkgo biloba)   

Thiazide diuretic   Hypertension         Ginkgo alone has not been associated with  

                      hypertension 

Guar gum (Cyamopsis tetragonolobus) 

Metformin, phenoxymethylpenicillin, Slows absorption of digoxin,         Guar gum prolongs gastric retention. 

glibenclamide    paracetamol, and bumetanide; decreases  

absorption of metformin, phenoxymethylpenicillin,  

and some formulations of glibenclamide 

Karela or bitter melon (Momordica charantia) 

Chlorpropamide   Less glycosuria            Karela decreases blood glucose  

        concentrations 

Liquorice (Glycyrrhiza glabra) 

Prednisolone    Glycyrrhizin decreases plasma clearance,      

orally increases AUC and increases             

plasma concentrations of prednisolone          

Oral contraceptives   Hypertension, oedema, hypokalaemia        Oral contraceptive use may increase  

       sensitivity to glycyrrhizin acid.  

Psyllium (Plantago ovata) 

Lithium     Decreased lithium concentrations       Hydrophilic psyllium may prevent lithium  

     from ionising. 

St John’s wort (Hypericum perforatum) 

Paroxetine    Lethargy/incoherence 

Trazodone    Mild serotonin syndrome       A similar case is described with the use of St  

     John’s wort alone. 

Sertraline    Mild serotonin syndrome 

Nefazodone    Mild serotonin syndrome 

Theophylline    Decreased theophylline concentrations   

(Adapted from Ahmad et al., 2006) 
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Table 2.3 contd Herbal preparations - drugs interactions  

Herb and drug(s)     Results of interaction   Comments 

St John’s wort (Hypericum perforatum) 

Digoxin     Decreased AUC, decreased peak and       Most studies indicate that St  

trough concentrations  John’s wort is a potent inhibitor of       

     cytochrome P450 isoenzymes 

Phenprocoumon    Decreased AUC 

Shankhapushpi (Ayurvedic mixed-herb syrup) 

Phenytoin    Decreased phenytoin concentrations,       In rats, multiple coadministered doses (but not  

loss of seizure control       single doses) decreased plasma phenytoin  

     concentrations; single doses decreased the      

     antiepileptic effect of phenytoin.   

     Shankhapushpi is used to treat seizures. 

Sho-saiko-to or xiao chai hu tang (Asian herb mixture) 

Prednisolone    Decreased AUC for prednisolone        

Papaya (Carica papaya) 

Warfarin     Increased INR 

Tamarind (Tamarindus indica) 

Aspirin     Increased bioavailability of aspirin       Tamarind is used as a food and a medicine. 

Valerian (Valeriana officinalis) 

Alcohol     A mixture of valepotriates reduces adverse 

effect of alcohol  

Yohimbine (Pausinystalia yohimbe) 

Tricyclic antidepressants   Hypertension        Yohimbine alone can cause hypertension, but   

     at lower doses, can cause hypertension when       

              combined with tricyclic antidepressants.       

Ginseng (Panax spp) 

Alcohol    increased alcohol clearance       Increased activity of alcohol dehydrogenase.  

ACE = angiotensin-converting enzyme; INR = international normalised ratio; PT = prothrombin time; PTT = partial 

thromboplastin time; ECG = electrocardiogram; PAF = platelet-activating factor; AUC = area under the concentration/time curve. 

(Adapted fron Ahmad et al., 2006) 
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2.3.2.5  Standardisation of Medicinal Plant Products 

Standardisation describes all measures taken during the manufacturing process and quality 

control, leading to a reproducible quality. Standardization of medicinal plants products is an 

important step in which the active constituents involved in the preparation are known. For many 

herbal products the active constituents are unknown or are undisclosed. Products may be 

standardised on the basis of the content of certain marker compounds. However, due to lack of 

scientific information on the product pharmacological profile, variability in the content and 

concentration of the constitutents of plant material, as well as the inconsistency in the extraction 

and processing procedures used by different manufacturers, herbal medicines rarely meet any laid 

down standard (Schulz et al., 2000). The use of chromatographic techniques and marker 

compounds to standardize herbal preparations promotes batch-to-batch consistency but does not 

ensure consistent pharmacological activity or stability (Ahmad et al., 2006). 

Consistency in composition and biological activity are prerequisites for the safe and 

effective use of therapeutic agents (Goldman, 2001). But the standardisation of correct dosage 

forms is not always easy, especially in multi-herbal preparations or in the case of single plants 

that are not cultivated under controlled conditions. 

 

2.3.3  Improving the Quality, Safety and Efficacy of Herbal Medicines 

2.3.3.1  Encouraging Mediculture 

Mediculture is defined as the cultivation of medicinal plants on a scientific basis. The 

cultivation of medicinal plants by mediculture should be encouraged. However, emphasis on 

genetic stability and uniformity of plant populations is important in order to ensure reproducible 

results. The concept of growing crops for health rather than for food or fiber is slowly changing 
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plant biotechnology and medicine (Ahmad et al., 2006). The rediscovery of the connection 

between plants and health is responsible for launching a new generation of botanical therapeutics 

that include plant-derived pharmaceuticals, multicomponent botanical drugs, dietary supplements, 

functional foods and plant products, and recombinant proteins (Ahmad et al., 2006).  

 

2.3.3.2  Correct Identification of Plant Material 

Classical methods of plant taxonomy for the identification of plant material provide an 

authentic and viable methodology. However, in many situations, when whole plants are not 

available to the taxonomist, a genetic approach will be more reliable (Ahmad et al., 2006). DNA 

molecules are more reliable markers than chemicals based on proteins or caryotyping because the 

genetic composition is unique for each individual and it is not affected by age, physiological and 

environmental conditions. The DNA can be extracted from leaves, stems, and roots of herbal 

material. Thus, DNA fingerprinting can be a very useful tool to assess and confirm the species 

contained within a plant material of interest. However, developing nations lack expertise and 

equipment for this. Thus the correct identification of plant materials is still a very important and 

crucial issue.   

 

2.4  Secondary Metabolites 

Secondary metabolites are a wide range of organic compounds that are not essential for 

cell structure and maintenance of life but are often involved in plant protection against biotic or 

abiotic stresses (Weisshaar and Jenkins, 1998; Hättenschwiler and Vitousek, 2000). Unlike 

primary metabolites, the absence of secondary metabolites does not result in immediate death, but 

in the long-term impairment of the organism's survival/fecundity or aesthetics or, perhaps, in no 
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significant change at all (Fraenkel, 1959).  Secondary metabolites are often restricted to a single 

species or a narrow set of species within a group, whereas primary metabolites are typically found 

throughout the plant kingdom (Kennedy and Wightman, 2011). 

Secondary metabolites are involved in a series of ecological roles which include the 

following 

protection against herbivores and infection by microorganisms; 

aiding pollinators and seed-dispersing animals by serving as attractants in smell, colour, or 

taste; and  

aiding in plant-plant competition (including allelopathy) and in plant-microbe symbioses 

(Kennedy and Wightman, 2011). 

 

2.4.1  Classification and Biosynthesis of Secondary Metabolites 

2.4.1.1  Flavonoids 

Flavonoids constitute a relatively diverse family of aromatic molecules that are derived 

from phenylalanine and malonyl-coenzyme A via the fatty acid pathway. They are one of the 

major classes of phenolics, derived from a combination of the shikimic acid and malonic acid 

pathways (Winkel-Shirley, 2001). The general chemical structure is a combination of two 

aromatic C6 rings connected by a C3 bridge which may be cyclized into a benzopyrone ring (C6-

C3-C6) (Figure 2.1). They often have glycoside substituents. Flavonoids perform major roles in 

plants such as, protection against ultraviolet radition, defence against pathogens and pests, pollen 

fertility, signaling with microorganisms, auxin transport regulation and pigmentation (Winkel-

Shirley, 2001). More than 10,000 varieties of flavonoids have been identified (Dixon and Paiva, 
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1995; Tahara, 2007). Flavonoids are classified into various groups; some of which are discussed 

below. 

 

2.4.1.1.1 Classes of Flavonoids  

Anthocyanins: Anthocyanins are the largest group of water-soluble pigments in the plant 

kingdom (Kong et al., 2003). A well-known physiological function of the anthocyanins is the 

recruitment of pollinators and seed dispersers to the plants (Kong et al., 2003). These are coloured 

flavonoids that confer different colours as pigment in flowers, leaves and fruits. This tends to 

visually attract animals, birds and insects, making them agents of pollination. The pigments also 

protect leaves from photoinhibition arising from excess light and UV radiation. Examples and 

general structure of anthocyanins are illustrated in Figure 2.1. 

Flavones and Flavonols: Flavones and flavonols also provide beautiful pigmentation for 

flowers, fruits, seeds, and leaves. They play key roles in signal transduction between plants and 

microbes (nectar guides) for insect pollination, in defence as anti-microbial agents and in 

ultraviolet radiation protection in the leaves of plants as sunscreens (Stafford, 1991). They have 

the general 2-phenylchromen-4-one backbone. They are secreted by legumes to establish a 

symbiosis relationship with nitrogen-fixing rhizobia e.g. apigenin, luteolin, quercetin, tangeritin 

and myricetin (Figure 2.1). 

Isoflavones (Isoflavonoids): The phenyl group at the centre of this group is shifted to 

bridge the other two benzene groups. They have the general 3-phenylchromen-4-one backbone. 

They exhibit strong antioxidant, antimicrobial and anti-cancer activities. Stilbene in red wine has 

been reported to contribute to the reduction of heart disease (Manach et al., 2004). Examples and 

the general structure of anthocyanins are illustrated in Figure 2.1. 
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Tannins: Tannins are located in the cell vacuoles or surface wax of plants; they are found 

in black tea, red wine, unripe and ripe fruits. They are phenolic compounds which serve a 

defensive role by reducing plant edibility. These are astringent polyphenols that bind or 

precipitate proteins nonspecifically either by hydrogen or covalent bonding to amino (-NH2) 

group of proteins. Ingested tannins may decrease the digestibility of proteins and the 

bioavailability of metal ions. Animals, such as rodents, secrete a salivary proline-rich protein that 

improves tannin tolerance (Lamy et al., 2010).  
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Figure 2.1 Structural Classifications of Flavonoids (Winkel-Shirley, 2001) 
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2.4.1.1.2  Chemistry of Flavonoids 

The characteristic structural feature common to all flavonoids is a 15 carbon (15C) 

phenylchromane core, composed of a 6C-3C-6C backbone (Figure 2.1). The chromane 

(benzopyran) moiety is composed of two condensed rings: an aromatic A-ring (6C) and a 

heterocyclic (pyran) C-ring (3C) in association with another aromatic B-ring (6C). In the majority 

of flavonoids (flavonols, flavones, flavanones, isoflavones, anthocyanins and flavanols) the B-

ring is attached at the 2-position of the benzopyran ring; in the relatively uncommon isoflavones, 

the B-ring is attached at the 3-position of the benzopyran ring. Various subclasses of flavonoids 

are distinguished by the degrees of saturation and oxidation of their C rings (Figure 2.1).  

Each flavonoid subclass comprises numerous members, differing in the degree of 

hydroxylation or methoxylation of the A and B rings. Additionally, various glycosylation patterns 

further increase the potential number of flavonoids. In plant cells, flavonoids occur mostly as 

glycosides, reflecting a biological strategy apparently aimed at increasing their water solubility, at 

specifying their sub cellular localization and, most likely, at decreasing their propensity to interact 

with macromolecules (Winkel-Shirley, 2001). 

 

2.4.1.1.3  Biosynthetic Pathways of Flavonoids 

Flavonoids are formed through the phenylpropanoid pathway. The series of reactions 

involves the transformation of phenylalanine to 4-coumaroyl-CoA by the enzymes phenylalanine-

ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H) and 4-coumaroyl-CoA-ligase. It also 

involves the reaction of 4-coumaroyl-CoA and malonyl-CoA to form tetrahydroxychalcone, 

trihydroxychalcone and resveratrol by the enzymes chalcone synthase, chalcone reductase, and 

stilbene synthase (Figure 2.2). These reactions could lead to the formation of nine major 
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subgroups; the colourless flavonoids such as, the chalcones, the aurones, the isoflavonoids, the 

flavones, the flavonols, and the flavandiols and the others such as, the anthocyanins, the 

condensed tannins, and the phlobaphene pigments. The various other types of flavonoids are 

formed through modification reactions such as, isomerisation, reduction, oxidation and/or 

acetylation of terminal groups or by addition of sugar moiety (Winkel-Shirley, 2001).  
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Figure 2.2:   The schematic pathways of flavonoid biosynthesis. Enzyme names are abbreviated as 

follows: Phenylalanine ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumaroyl:CoA-ligase 

(4CL), ACCase, acetyl- CoA carboxylase, chalcone synthase (CHS), chalcone isomerase (CHI), chalcone 
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reductase (CHR), stilbene synthase (STS),  dihydroflavonol 4-reductase (DFR), 7,2'-dihydroxy, 4'-

methoxyisoflavanol dehydratase (DMID), flavanone 3-hydroxylase (F3H), flavone synthase (FSI and FSII), 

flavonoid 3'-hydroxylase (F3'H), flavonoid 3'5'-hydroxylase (F3'5'H), isoflavone O-methyltransferase 

(IOMT), flavonol synthase (FLS), isoflavone reductase (IFR), isoflavone 2'-hydroxylase (I2'H), isoflavone 

synthase (IFS), leucoanthocyanidin dioxygenase (LDOX), leucoanthocyanidin reductase (LCR), O-

methyltransferase (OMT), rhamnosyl transferase (RT), UDPG-flavonoid glucosyl transferase (UFGT), and 

vestitone reductase (VR) (Winkel-Shirley, 2001). 
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2.4.2.1  Terpenoids 

Terpenoids constitute the largest family of secondary metabolites, with over 30,000 

members (Sacchettini and Poulter 1997; Dewick 2002). They are not only numerous but also 

extremely variable in structure, exhibiting hundreds of different carbon skeletons and a large 

assortment of functional groups. In spite of such a diversity, the simple unifying feature of all 

terpenoids is that they are derived from the simple process of assembly of a 5C unit, the isoprene. 

They are, thereby, classified by the homologous series of the number of five carbon isoprene units 

in their structure: hemiterpenes 5C (1 isoprene unit), monoterpenes 10C (2 isoprene units), 

sesquiterpenes 15C (3 isoprene units), diterpenes 20C (4 isoprene units), triterpenes 30C (6 

isoprene units), tetraterpenes 40C (8 isoprene units) and polyterpenes (5C)n where ‘n’ may be 

between 9 and 30,000 (McGarvey and Croteau 1995). Figure 2.3 illustrates the basic structures of 

the Terpenoids. 

Terpenoids play multifunctional roles in plants, human health and commerce. They have 

been reported as commercially viable medicinal products due to their wide number of industrial 

applications. They are the constituents of essential oils, flavouring and fragrance agents in foods, 

beverages, cosmetics, perfumes and soaps. They exhibit specific biological, pharmaceutical and 

therapeutical activities (Singh et al., 1989; Martin et al., 2003). In nature, they play significant 

roles in plants such as plant-to-plant communications and plant-to-insect/animal interactions 

(Pichersky and Gershenzon, 2002).  
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Figure 2.3: Basic Structures of Terpenoids (Pichersky and Gershenzon, 2002) 
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2.4.2.2  Biosynthesis of Terpenoids 

The committed step in the biosynthetic pathway to terpenoids (Figure 2.3) involves the 

formation of isopentenyl pyrophosphate (IPP), the biological isoprene (5C) unit and its allyllic 

isomer, dimethylallyl pyrophosphate (DMAPP) (Carretero-Paulet et al., 2002). These can be 

synthesized by plants via either one of two routes: the well established acetate-mevalonate 

pathway or the newly discovered glyceraldehyde phosphate/pyruvate (non-mevalonate) pathway 

(Figure 2.4). 

In the acetate-mevalonate pathway, the acetyl coenzyme A (acetyl-CoA) units are joined 

successively to form 3-hydroxyl-3-methylglutaryl-Coenzyme A (HMG-CoA). Thereafter, HMG-

CoA is then reduced to mevalonate (MVA), which is subsequently phosphorylated, 

decarboxylated and dehydrated to form IPP. The first step in the non-mevalonate pathway is the 

condensation of glyceraldehyde-3-phosphate and pyruvate to form 1-deoxy-D-xylulose-5-

phosphate, followed by a skeletal rearrangement coupled with a reduction step which yields a 

branched chain, 2-C-methyl-D-erythritol-4-phosphate (MEP). With series of other reactions and 

enzymes via nucleotide diphosphate intermediates, MEP is converted into its cyclic form, 2-C-

methyl-D-erythritol-2,4-cyclo-pyrophosphate (MECP), which is further converted to 1-hydroxy-

2-methyl-2-[E]-butenyl-4-pyrophosphate (HMBPP) and, with further reduction, converted to 

dimethylallyl diphosphate (DMAPP). 

In the second step, the basic units condense by the addition of isopentenyl diphosphate 

(IPP, the active 5C isoprene unit) to its isomer dimethylallyl diphosphate (DMAPP), synthesizing 

geranyl diphosphate (GPP, 10C). Further, condensation of enzyme-bound geranyl diphosphate 

with additional IPP units forms successively larger prenyl diphosphates: farnesyl diphosphate 

(FPP, 15C), geranylgeranyl diphosphate (GGPP, 20C). With further condensation, GGPP might 
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form higher isoprene compounds. These general isoprene units: DMAPP, GPP and FPP can 

further undergo cyclization, coupling and/or rearrangement to produce the parent carbon skeleton 

of hemiterpenes, homoterpenes and sesquiterpenes respectively (Singh et al., 1989; McGarvey 

and Croteau, 1995; Luthra et al., 1999). Furthermore, FPP and GGPP dimerize by head to head 

condensation to form triterpenes and tetraterpenes as a parental precursors to the syntheses of 

other compounds (Figure 2.5). These parental precursors are subjected to structural modifications 

through oxidation, reduction, isomerization, hydration, conjugation and/or other transformations 

to give rise to a variety of terpenoids (McGarvey and Croteau, 1995).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



40 
 

 

Figure 2.4: Two independent pathways for the biosynthesis of IPP and DMAPP in plants 

showing the role of DOXP in biosynthesis of thiamin (vitamin B1) and pyridoxal (vitamin B6) 

and the known inhibitors (mevinolin and fosmidomycin) of each pathway (Dubey, 2003).  
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Figure 2. 5: Syntheses of various classes of terpenoids in plants (Dubey et al., 2003).  
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2.4.3.1.  Saponins 

Saponins are naturally occurring surface-active glycosides mainly produced by plants, 

lower marine animals and some bacteria (Riguera, 1997; Yoshiki et al., 1998). Their names are 

derived from their ability to form stable, soap - like foams in aqueous solution. They consist of an 

aglycone (or sapogenin) and one or more sugar moieties. Depending on the structure of the 

aglycone, saponins can be classified into two types: (a) a triterpenoid and (b) a steroid (Figure 

2.6). The most common sugar moieties are hexoses (glucose and galactose), 6-deoxyhexoses 

(furanose, quinovose, rhamnose), pentoses (arabinose and xylose) and uronic acids (glucuronic 

and galacturonic acids) (Akiyama et al., 1972).  

The aglycone (sapogenin) may contain one or more unsaturated C–C bonds. The 

oligosaccharide chain is normally attached at the 3C position (monodesmosidic), but many 

saponins have an additional sugar moiety at the 26C or 28C position (bidesmosidic). Figure 2.7 

shows the nomenclature of a chemical structure of a sapogenin. The great complexity of saponin 

structure arises from the variability of the aglycone structure, the nature of the side chains and the 

position of attachment of these moieties on the aglycone. The saponins have various biological 

activites such as the expectorant, the diuretic and adaptogenic activities associated with them. 

They are also responsible for the characteristic bitter taste of most plants (Kensil, 1996; Barr et al., 

1998; Sen et al., 1998; Yoshiki et al., 1998).   

 

 

 

 

 



43 
 

 

Figure 2.6: Basic structures of sapogenins: (a) a triterpenoid and (b) a steroid (Francis et al., 

2002) 
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Figure 2.7: Nomenclature of a sapogenin (Francis et al., 2002) 
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2.4.3.2   Biosynthesis of Saponins 

Triterpenoid and steroidal saponins originate from the the 30C precursor (squalene). They 

are synthesised via the isoprenoid pathway (Figure 2.5 and 2.8). Squalene is oxidized to 

oxidosqualene, which is then converted to the cyclic derivatives, tripertenoid and saponin, 

depending on the cyclase enzyme involved in the formation (Figure 2.9) (Vincken et al., 2007).  

The synthesis of sterols in plants involves the cyclization of 2,3-oxidosqualene from squalene , a 

reaction catalysed by oxidosqualene cyclase. This is followed by the formation of cycloartenol 

(the committed step in steroid synthesis), which is mediated by cycloartenol synthase (Crombie 

and Crombie, 1986; Crombie et al., 1986; Papadopoulou et al., 1999) (Figure 2.9). For 

triterpenoid saponin synthesis, 2,3-oxidosqualene is cyclized to one of a number of different 

potential products, the most common being β-amyrin, whose formation is catalysed by β-amyrin 

synthase (Figure 2.9) (Haralampidis et al., 2001). Very little is known about the detailed enzyme 

and biological pathways involved in saponin biosynthesis (De-Geyter et al., 2007). 
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Figure 2.8: The biosynthesis pathway for the basic structures of sapogenins in plants: (a) a 

triterpenoid and (b) a steroid (Osbourn et al., 2003). 
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Figure 2.9: Structural biosynthetic pathways of a sapogenin (Osbourn et al., 2003).  
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2.4.4.1.  Cardiac Glycosides 

Cardiac glycosides comprise a large family of naturally derived compounds which 

represent a group of secondary metabolites that share the capacity to bind to the extracellular 

surface of the main ion transport protein in the cell, the membrane-inserted sodium potassium 

pump (Na+/K+-ATPase) (Xie and Askari, 2002). The biological importance of cardiac glycosides 

primarily is in the treatment of cardiac failure. They result in an increase in cardiac output by 

increasing the force of contraction as a result of their ability to increase intracellular calcium 

concentrations (Xie and Askari, 2002). 

They show considerable structural diversity, with all members sharing a common 

structural motif. The core structure consists of a steroidal framework (Figure 2.10 and 2.11), 

which is considered the pharmacophore responsible for the biological activities of these 

compounds (Prassas and Diamandis, 2008). Chemically, glycosylated cardiac glycosides are 

compounds presenting a steroidal core as the steroid nucleus, with a lactone moiety (unsaturated 

butyrolactone or α-pyrone) at position 17 and a sugar moiety at position 3 (Figure 2.10). Cardiac 

glycosides having a terminal glucose are called primary glycosides whereas those lacking such a 

sugar moiety are termed secondary glycosides.  

In the classification of cardiac glycosides, two main classes have been observed: the 

cardenolides (with an unsaturated butyrolactone ring) and the bufadienolides (with an α-pyrone 

ring) (Figure 2.11). The steroid nucleus has a unique set of fused ring systems that makes the 

aglycone moiety structurally distinct from the more common steroid ring systems. Cardenolides 

have a five-membered unsaturated butyrolactone ring, whereas bufadienolides contain a six-

membered unsaturated pyrone ring (Figure 2.11). A wide variety of sugars are attached to natural 

cardiac glycosides, the most common are glucose, galactose, mannose, rhamnose and digitalose 
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(Mijatovic et al., 2007). Although sugars themselves have no activity, the addition of sugars to the 

steroid affects the pharmacodynamic and pharmacokinetic profile of each glycoside. For example, 

free aglycones are absorbed more rapidly and are metabolized more easily than their glycosylated 

counterparts. In addition, the type of sugar attached influences the potency of the compound. For 

instance, the addition of rhamnose has been shown to increase potency several times (6–35 times), 

whereas the addition of mannose had no significant effect (Melero et al., 2000).  

Based on this phenomenon, Langenhan and colleagues recently developed a powerful new 

tool, called neoglycorandomization, for the study of the relationship between attached sugars and 

biological activity. This high-throughput method allows the rapid conversion of a single aglycone 

molecule into a library of analogues with diverse sugar moieties (Langenhan et al., 2005). 

Techniques such as this could facilitate the discovery of novel cardiac glycoside analogues with 

improved therapeutic properties (Prassas and Diamandis, 2008).  
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Figure 2.10 Nomenclature of the General Structure of Cardiac GlycosidesCardiac Glycosides 
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Figure 2.11: Cardiac glycosides with examples (Mijatovic et al., 2007). 
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2.4.4.2   Biosynthesis of Cardiac Glycosides 

The actual biosynthetic pathways of cardiac glycosides have not been fully established. 

However, as a result of the steroidal core portion of the cardiac glycosides, the initial biosynthetic 

pathway was assumed and confirmed to be through mevalonic acid pathway (Kreis et al., 1998). 

Their biosynthetic pathways from acetic acid to isopentenyl pyrophosphate (IPP); from IPP to 

squalene; from squalene to squalene 2,3- oxide; from squalene-2,3-oxide to lanosterol, cholesterol 

and pregnenolone are well established (Figures 2.4, 2.5, 2.8 and 2.12 ) (Kreis et al.,1998). 

Pregnenolone has been reported as a precursor of the cardenolides (Kreis et al., 1998). For 

example, the conversion of pregnenolone into digitoxigenin (cardenolide) requires the inclusion 

of an acetate group, whereas in the biogenesis of scilliroside (bufadienolide), the α–pyrone is 

formed by the condensation of a pregnane derivative with one molecule of oxaloacetatic acid 

(Steyn and van Heerden, 1998).  

 

 



53 
 

 

Figure 2.12 The putative biosynthetic pathway of cardiac glycosides in plants ((a) - cardenolide: 

ditoxigenin, which involves acetate as a precursor (A) and bufadienolides: hellebrigenin (b) and 

bovogenin (c), which involve oxaloacetate (B) as a precursor) in plants (Steyn and van Heerden, 

1998).  
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2.4.5  Alkaloids 

Alkaloids are a diverse group of low-molecular-weight, nitrogen-containing compounds 

found in about 20% of plant species (Caporale, 1995; Wink, 1999). The potent biological 

activities of some alkaloids have led to their exploitation as pharmaceuticals, stimulants, narcotics 

and poisons. Examples are (i) analgesics (morphine and codeine); (ii) anticancer agents 

(vinblastine and taxol); (iii) gout suppressant (colchicines); (iv) muscle relaxant ((+)-

tubocurarine); (v) antiarrythmic (ajmaline); (vi) antibiotics (sanguinarine); and (vii) sedatives 

(scopolamine) (Facchini, 2001). Other important alkaloids of plant origin include caffeine, 

nicotine, cocaine and heroin. They are classified into several groups based on their highly diverse 

chemical structures; but the major classifications are terpenoid indole, benzylisoquinoline and 

tropane alkaloids (Facchini, 2001). 

 

2.4.5.1  Terpenoid Indole Alkaloids 

Terpenoid indole alkaloids (TIAs) comprise a family of greater than 3000, compounds 

which include the antineoplastic agents, vinblastine and camptothecin, the antimalaria drug 

quinine and the rat poison strychnine. It has been proposed that in plants some TIAs play a 

defensive role against pests and pathogens (Luijendijk et al., 1996). TIAs consist of an indole 

moiety provided by tryptamine (from tryptophan) and a terpenoid component derived from the 

iridoid glucoside secologanin.  

 

2.4.5.1.1  Biosynthesis of Terpenoid Indole Alkaloids 

Tryptophan is converted to tryptamine by tryptophan decarboxylase (TDC). The first 

committed step in the terpenoid indole alkaloids pathways is the biosynthesis of secologanin, 
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which is the hydroxylation of geraniol to 10-hydroxygeraniol by the enzyme geraniol 10-

hydroxylase (G10H), a P450 monooxygenase enzyme (Meehan and Coscia, 1973). The 

condensation of these two metabolites (tryptamine and secologanin) subsequently leads to the 

synthesis of strictosidine, the major precursor in the biosynthesis of all TIAs by the enzyme 

strictosidine synthase (STR) (Figure 2.13). Subsequent reactions lead to the formation of 

vindoline. Vinblastine, an anticancer drug, has been reported to be produced from a reaction 

between vindoline and catharanthine by a nonspecific peroxidase (Sottomayor et al., 1998). 
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Figure 2.13 Biosynthesis of monoterpenoid indole alkaloid. Tryptophan decarboxylase (TDC), 

strictosidine synthase (STR), strictosidine-D-glucosidase (SGD), tabersonine 16-hydroxylase 

(T16H), desacetoxyvindoline 4-hydroxylase (D4H), deacetylvindoline 4-O-acetyltransferase 

(DAT) (Facchini, 2001). 
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2.4.5.2  Benzylisoquinoline Alkaloids 

Benzylisoquinoline alkaloids (BIAs) are a large and diverse alkaloid group with greater 

than 2500 members (Facchini, 2001). The pharmacological activities of BIAs make many of them 

useful as pharmaceuticals and are often a clue to their biological role in the plant (Caporale, 1995). 

For example, the effectiveness of morphine as an analgesic, colchicine as a microtubule disrupter, 

and (+)-tubocurarine as a neuromuscular blocker suggest that these alkaloids function as 

herbivore deterrents (Caporale, 1995). The antimicrobial properties of sanguinarine reveal that it 

exerts protection against pathogens. The BIAs, berberine, sanguinarine, and palmatine were 

specifically shown to confer protection against herbivores and pathogens (Schmeller et al., 1997). 

 

2.4.5.2.1  Biosynthesis of Benzylisoquinoline Alkaloids 

The biosynthesis of BIA begins with a metabolic lattice of decarboxylations, 

orthohydroxylations and deamination reactions that convert tyrosine to both dopamine and 4- 

hydroxyphenylacetaldehyde (Facchini, 2001). Tyrosine is converted to L-3,4-

dihydroxyphenylalanine (DOPA) by tyrosine hydroxylase, with its subsequent decarboxylation to 

dopamine by the aromatic L-amino acid decarboxylase (TYDC); so also is tyrosine converted to 

tyramine by the aromatic L-amino acid decarboxylase (TYDC). Dopamine and 4-

hydroxyphenylacetaldehyde are condensed by norcoclaurine synthase (NCS) to yield the 

trihydroxybenzylisoquinoline alkaloid (S)- norcoclaurine, which is the central precursor to all 

BIAs in plants (Figure 2.14). 
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Figure 2.14: Biosynthesis of benzylisoquinoline alkaloid (BIA). Tyrosine/dopa decarboxylase 

(TYDC), norcoclaurine 6- O-methyltransferase (6OMT), 3'-hydroxy-N-methylcoclaurine 4'-O-

methyltransferase (4'OMT), O-methyltransferase II-1 (OMT II-1), berbamunine synthase 

(CYP80A1), (S)-N-methylcoclaurine 3-hydroxylase (CYP80B1), berberine bridge enzyme (BBE), 

scoulerine N-methyltransferase (SOMT), codeinone reductase (COR) (Facchini, 2001). 
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2.4.5.3  Tropane Alkaloids and Nicotine 

Tropane alkaloids (TPAs) occur mainly in the solanaceae and include the anticholinergic 

drugs atropine, hyoscyamine, and scopolamine and the narcotic tropical anesthetic cocaine 

(Dräger, 2002). Although nicotine is not a member of the tropane class, the N-methyl- ∆1-

pyrrolinium cation involved in TPA biosynthesis is also an intermediate in the nicotine pathway 

(Facchini, 2001).  

 

2.4.5.3.1  Biosynthesis of Tropane Alkaloids and Nicotine  

The biosynthesis of TPAs and nicotine begins with the decarboxylation of ornithine and/or 

arginine by ornithine decarboxylase (ODC) and arginine decarboxylase (ADC), respectively 

(Facchini, 2001). These enzymes are involved in the formation of putrescine, either directly 

through the decarboxylation of ornithine by ODC, or through the decarboxylation of arginine to 

agmatine by ADC, followed by the reaction of agmatinase on agmatine forming putrescine or that 

of agmatine iminohydrolase to give N-carbamoylputrescine and subsequently forming putrescine. 

ODC occurs in all living organisms, but ADC is not found in mammals and many lower 

eukaryotes (Facchini, 2001). Despite the existence of these two routes for the formation of 

putrescine, it has been suggested that arginine supplies most of the putrescine for alkaloid 

biosynthesis (Hashimoto and Yamada, 1992).  

The first committed step in TPA and nicotine biosynthesis is the conversion of putrescine 

to M-methylputrescine which is catalysed by a S- adenosyl-methionine (SAM)-dependent 

putrescine N-methyltransferase (PMT). Subsequently, N-methylputrescine is oxidatively 

deaminated by a diamine oxidase to 4-aminobutanol, which undergoes spontaneous cyclization to 

form the reactive N-methyl-∆1-pyrrolinium cation (Hashimoto and Yamada 1994). The N-methyl-
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∆
1-pyrrolinium cation is thought to condense with acetoacetic acid to yield hygrine as a precursor 

of the tropane ring, or with nicotinic acid to form nicotine, although the enzymology of these 

steps is not known (Facchini, 2001). Tropinone is located at a branch point in the TPA pathway 

and is the first intermediate with a tropane ring. Two related dehydrogenases, tropinone reductase 

I (TR-I) and tropinone reductase II (TR-II), reduce the 3-keto group of tropinone to the 3α- and 

3β- groups of the stereospecific alkamines tropine and Ψ-tropine, respectively (Figure 2.15). 

Hyoscyamine is produced by the condensation of tropine and the phenylalanine derived 

intermediate, tropic acid. This metabolite can be further hydroxylated by hyoscyamine 6β-

hydroxylase (H6H) to form scopolamine (Figure 2.15).  
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Figure 2.15: Biosynthesis of tropane alkaloid. Ornithine decarboxylase (ODC), putrescine N-

methyltransferase (PMT), tropinone reductase-I (TR-I), tropinone reductase-II (TR-II), 

hyoscyamine 6β-hydroxylase (H6H) (Facchini, 2001). 
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2.5  Toxicology 

Toxicology is the study of the interaction between chemicals and biological systems to 

determine the potential of chemicals or xenobiotics to produce adverse effects in a living system. 

It investigates the nature, incidence, mechanisms of production, factors influencing the 

development and reversibility of such adverse effects. Adverse effects are detrimental factors to 

the survival or the normal functioning of the orgainsm. The major evaluation points for 

toxicological assessments are the following: 

the basic structural, functional and biochemical parameters (toxicological parameters) of 

injury; 

the dose-response relationships of the agent of toxicity and toxicological parameters;  

the mechanisms of toxicity (the fundamental biochemical alterations responsible for the 

induction and maintenance of the toxic response) and reversibility of the toxic effect; and 

possible influencing factors with response modification, for example, route of exposure, 

species, and gender. 

 

2.5.1  History of Toxicology 

Toxicology is one of the oldest practical sciences ever known to human beings. From the 

primitive times, it has been documented in the Egyptian and Greek empires that humans ensured 

that various toxic chemicals in plants and animals were avoided (Dekant and Vamvakas, 2005a). 

Ebers Papyrus, an Egyptian papyrus dating from 1500 B.C., and the surviving medical works of 

Hippocrates, Aristotle, and Theophrastus, published at an early period, 400-250 B.C., all included 

some knowledge of poisons. The Greek and Roman civilizations intentionally applied the 

knowledge of poisons for hunting, warfare, suicide and murder (Dekant and Vamvakas, 2005a). 
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However, the principle and concept of modern toxicology gained prominence in the time of 

Paracelsus, when he clearly defined the toxicity of a given substance as having a dose-response 

relationship. His statement “All substances are poisons; there is none that is not a poison. The 

right dose differentiates a poison and a remedy” is properly regarded as a landmark in the 

development of the science of toxicology.  

Since the 1960s, toxicology has entered a phase of rapid development and has changed 

from a science that was almost entirely descriptive to one in which the study of mechanisms has 

become the prime task. Some of the reasons for this included the development of new analytical 

methods since 1945, the emphasis on drug testing following the thalidomide tragedy (Dekant and 

Vamvakas, 2005a), the public concern over environmental pollution and disposal of hazardous 

waste. 

 

2.5.2  Methods Employed in Toxicological Studies 

2.5.2.1  Acute Toxicity Test Methods 

Acute toxicity tests measure the adverse effects that occur within fourteen days after 

administration of a single dose of a test substance. This is performed principally on rodents (mice 

or rats) and is usually done early in the development of a new chemical or product to provide 

information on its potential toxicity. Traditionally, acute oral toxicity testing has focused on the 

immediate determination of the dose that kills half of the animals (i.e., the median lethal dose or 

LD50), the timing of lethality following acute chemical exposure, as well as observing the onset, 

nature, severity and reversibility of toxicity. But in recent times, after the immediate observation 

is done, toxicological parameters (biochemical, haematological and histopathological) to assess 

potential adverse effects are carefully chosen and measured. The fixed single dose, at which signs 
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of toxicity but no deaths are detected is used to classify the test compounds according to their 

toxic potential. 

The information obtained from acute toxicity studies in animals is aimed towards (i) 

understanding the possible health hazard that could result from a single exposure to a high dose of 

a particular chemical; (ii) protecting individuals who are working with new materials and 

developing standard procedures for handling, packaging, transporting and disposing of such 

chemicals; (iii) identifying the mode of toxic action of a substance; and (iv) providing information 

on doses associated with target organ toxicity and lethality. These then can be used to set doses 

for repeated-dose studies, extrapolation for diagnosis and treatment of toxic reactions in humans 

such as in the case of drug overdose or suicide attempts (Dekant and Vamvakas, 2005b). 

 

2.5.2.2        Repeated-Dose Toxicity Studies: Sub-acute, Sub-chronic, and Chronic Toxicity  

Repeated-dose toxicity studies assess the toxic effects resulting from the accumulation of 

a compound or its metabolites in an organism. Unlike acute studies, they are measures of toxic 

effects that appear with repeated doses of the toxicant; hence, continuous dosing is essential to 

assess the long-term toxicity effect of substances. 

Chronic toxicity is usually performed on mice, rats, rabbit and guinea pigs for at least six 

months and on dogs for 12 months (Romero et al., 1997). The dose levels are usually selected on 

the basis of the results from acute and sub-acute toxicity studies. The highest dose applied should 

be toxic, i.e., should suppress the body weight by up to 10 % (maximum tolerated dose, MTD). 

The two other doses are usually 1/4 and 1/8 of the MTD. Xenobiotics showing no adverse effects 

in short-term studies are usually tested at doses which are 100–200 times higher than the expected 

human exposure. These studies are helpful in assessing the human risk resulting from frequent 
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exposure to household or workplace chemicals and from the intake of chemicals used for 

therapeutic purposes (Dekant and Vamvakas, 2005b).   

 

2.6  Hepatotoxicity 

The liver is the largest organ in the body and it consists of rows of hepatic cells 

(hepatocytes or parenchymal cells) perforated by specialized blood capillaries called sinusoids. 

The sinusoid walls contain phagocytic cells, called Kupffer cells, whose role is to engulf and 

destroy materials such as solid particles, bacteria, dead blood cells and others (Hodgson and Levi, 

2004a). The hepatic portal vein is the main blood supply vessel to the liver. It empties its content 

from the intestinal vasculature, vessels from the spleen and stomach, into the sinusoids. The blood 

perfuses the liver and exits through the hepatic vein. The liver is the major organ actively 

involved in metabolism, biosynthesis and storage. It is the storage organ for glycogen, fat, fat-

soluble vitamins and other nutrients. It is the site of metabolism of lipoproteins, functional 

proteins, such as enzymes and blood-coagulating factors, as well as xenobiotic (Hodgson and 

Levi, 2004a). 

As a result of the strategic metabolic functions of the liver, it is often the targeted organ 

for chemically induced organ toxicities. Many factors have been reported to functionally and 

structurally contribute to the susceptibility of the liver to toxicity. These include the high 

perfusion of the liver to xenobiotics absorbed from the gastrointestinal tract and the high 

concentration of xenobiotic metabolizing enzymes (cytochrome P450-dependent monooxygenase 

system) in the liver. Chemical agents such as those used in laboratories and industries, as well as 

medicinal plants, are capable of inducing hepatotoxicity. More than 900 drugs have been 

implicated in liver injury. Drug related hepatotoxicity is an important cause of morbidity and 
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mortality. As such, it is the most common reason for withdrawing new drugs from circulation 

(Hodgson and Levi, 2004a). In Table 2.4 is the summary of the biochemical markers of liver 

injury, types and characteristics (Friedman et al., 1996).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 
 

Table 2.4: Biochemical markers of liver injury  

Type of liver injury  Marker      Characteristics 

Cytotoxic         Serum aspartate aminotransferase   Low specificity for liver injury 

       Serum alanine aminotransferase   Highly specific for acute hepatocellular injury 

       Serum albumin/Serum total protein  Reliable marker of chronic hepatocellular injury 

       Prothrombin time  Reliable marker of acute or chronic hepatocellular injury. 

Cholestatic         Serum alkaline phosphatase   Highest increases occur with cholestatic injuries.  

It has poor specificity.  

           Serum γ-glutamyltransferase   Correlates with alkaline phosphatase.  

         Serum bilirubin    High increase indicates liver injury. 

            Serum bile acids    Highly sensitive and specific for liver injury. 

(Adapted from Friedman et al., 1996) 
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2.6.1  Drug Induced Liver Injury (DILI)  

DILI affect both the parenchymal and non-parenchymal cells of the liver, leading to a 

wide variety of pathological conditions, including acute and chronic hepatocellular hepatitis, 

fibrosis/cirrhosis, cholestasis, steatosis (fatty liver), as well as sinusoidal and hepatic artery/vein 

damage (Larrey, 2000). The predominant forms of DILI include steatosis, hepatitis, cirrhosis and 

cholestasis (Sturgill and Lambert 1997; Gunawan and Kaplowitz, 2004). 

 

2.6.1.1  Steatosis (Fatty Liver) 

Steatosis results from the abnormal accumulation of triacylglycerols within the 

hepatocytes (Hoyumpa et al., 1975; Zimmerman and Maddrey, 1993). Macrovesicular steatosis is 

characterised by the preence of a single large cytoplasmic vacuole of triglyceride within the 

hepatocyte that displaces the nucleus peripherally. The etiology of macrovesicular steatosis is 

multifactorial, including increased mobilization of fatty acids, increased hepatic synthesis of fatty 

acids, increased synthesis of triglyceride from fatty acids and deficient removal of triglyceride 

from the hepatocyte via defective VLDL synthesis (Zimmerman, 1978; Salaspuro, 1991). 

Microvesicular steatosis is less common. It is a more severe variant, resulting primarily from 

deficient of mitochondrial β-oxidation of fatty acids and characterised by the presence of multiple 

small droplets of triglyceride within the hepatocyte, which do not displace the nucleus (Fromenty 

and Pessayre 1995; Pinto et al. 1995).  

The β-oxidation of fatty acids is a critical process, because the resulting acetyl coenzyme 

A moieties are the primary sources of ATP in most cells. The disruption of this process promotes 

the esterification of fatty acids to triglyceride in the cytoplasm, robs the cell of energy, and leads 

to hyperammonemia via the inhibition of ureagenesis (Ide and Ontko, 1981; Corkey et al., 1988). 
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Microvesicular steatosis can exhibit a diffuse or regional pattern and in severe cases is 

accompanied by inflammation and hepatocellular necrosis (Bass and Ockner, 1996; Fromenty and 

Pessayre, 1995). 

Valproic acid has been established as a cause of microvesicular steatosis (Suchy et al., 

1979; Dreifuss et al., 1989). In severe cases, the lesion is accompanied by inflammation, necrosis, 

and bile duct injury. Valproic acid-induced liver injury is thought to result from phase 1 

bioactivation (Eadie et al., 1988; Bass and Ockner, 1996). The cytochrome P450 enzymes 

mediate the production of D4-valproic acid, an oxidative metabolite capable of generating 

coenzyme derivatives. The production and accumulation of these derivatives may inhibit 

mitochondrial β-oxidation via the depletion of free coenzyme A and carnitine concentrations 

(Kesterson et al., 1984; Zimmerman and Maddrey, 1993; Fromenty and Pessayre, 1995).  

 

2.6.1.2  Necrosis 

Hepatic cellular injury is a severe form of drug-induced liver injury characterised by 

thrombosis of the efferent hepatic venules, leading to centrilobular necrosis and liver outflow 

obstruction, which can progress to congestive cirrhosis (Zimmerman, 1986; Bras and Brandt, 

1987; Zimmerman and Maddrey, 1993). These injuries are thought to result from bioactivation of 

xenobiotics to toxic metabolites (Zimmerman and Maddrey, 1993). Necrosis, usually an acute 

injury, may be localized and affect only a few hepatocytes (focal necrosis), or may involve an 

entire lobe (massive necrosis). Cell death occurs, along with the rupture of the plasma membrane. 

It is preceded by a number of morphologic changes such as cytoplasmic edema, dilation of the 

endoplasmic reticulum, disaggregation of polysomes, accumulation of triacylglycerols, swelling 

of mitochondria (with disruption of cristae), and dissolution of organelles and the nucleus. Some 
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of the biochemical events that may lead to these changes include the binding of reactive 

metabolites to proteins and unsaturated lipids (inducing lipid peroxidation and subsequent 

membrane destruction), the disturbance of cellular Ca2+ homeostasis, the interference with 

metabolic pathways, the shifts in Na+ and K+ balance, and the inhibition of protein synthesis 

(Zimmerman and Maddrey, 1993).  

 

2.6.1.3  Apoptosis 

Apoptosis is a process of programmed cell death that serves as a regulation point for 

biological processes. This selective mechanism is particularly active during development and 

senescence. Although apoptosis is a normal physiological process, it can also be induced by 

exogenous factors, such as xenobiotics, oxidative stress, anoxia and radiation. The suppression of 

apoptosis, if not carefully managed, can lead to the accumulation of cells, subsequently leading to 

the clonal expansion of malignant cells and tumor (Hodgson and Levi, 2004a). 

 

2.6.1.4  Cholestasis 

Drug induced cholestasis results from the disruption of bile production or flow and may 

have either intrahepatic or extrahepatic causes (Hodgson and Levi, 2004a). Hepatocanalicular 

(hypersensitivity) cholestasis is characterised by prominent monocytic portal inflammation and 

secondary damage to bile canaliculi, as in the case of chlorpromazine and its 7,8-dihydroxy and 7-

hydroxy metabolites, which interfere with bile acid secretion via the disruption of canalicular 

membrane fluidity and Na+/K+-ATPase activity (Samuels and Carey, 1978; Elias and Boyer, 

1979). The inhibition of phase II sulfation pathways increases the risk of liver injury (Watson et 
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al., 1988). The inflammation or blockage of the bile ducts results in the retention of bile salts as 

well as bilirubin accumulation, an event that leads to jaundice (Hodgson and Levi, 2004a).  

 

2.6.1.5  Cirrhosis 

Cirrhosis is a progressive liver disease characterised by the replacement of liver tissue by 

fibrous and scar tissues, leading to the loss of liver function (Hodgson and Levi, 2004a). In most 

cases, cirrhosis results from chronic chemical injury. The accumulation of fibrous material causes 

severe restriction of blood flow and of the normal metabolic and detoxication processes of the 

liver. This situation can, in turn, cause further damage and eventually lead to liver failure 

(Hodgson and Levi, 2004a).  

 

2.6.1.6  Hepatitis 

Hepatitis is a disease condition arising from the inflammation of the liver. It is 

characterised by the presence of inflammatory cells in the tissue of the organ. This disease 

condition can be self healing or can progress to fibrosis or cirrhosis (Hodgson and Levi, 2004a). 

 

2.7  Nephrotoxicity 

The major function of the kidney is the concentration and excretion of toxic metabolites 

and other foreign compounds. It is a site of drug toxicity. As a result of indiscriminate use of 

drugsand medicinal products, and the possibility of kidney damage from this indiscriminate use. 

The incidence of nephrotoxicity has increased from 8 to 18% between 1983 to 2002 (Hou et al., 

1983; Liano et al., 1998; Nash et al., 2002; Huistickle et al., 2005), and it has contributed 

significantly to all cases of in-hospital acute kidney injury (Zhang et al., 2005). The renal system 
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consists of the kidneys and their vasculature and innervations. It is an essential part of the urinary 

system. Its functions include the elimination of endogenous and xenobiotic metabolic waste 

products, the regulation of extracellular fluid volume, electrolyte balance and blood pressure, the 

re-absorption of water, glucose and amino acids and the syntheses of various hormones 

influencing metabolism for example, 25-hydroxy-vitamin D3 is metabolized to the active form, 

1,25- dihydroxy-vitamin D3; renin, a hormone involved in the formation of angiotensin and 

aldosterone, is formed in the kidney, as are several prostaglandins (Hodgson and Levi, 2004b).  

Kidney drains its content through the ureter into a single median urinary bladder, and the 

latter drains to the exterior via a single duct called the urethra. The kidney has three major 

anatomical areas: the cortex, the medulla, and the papilla. The renal cortex is the outermost region 

of the kidney and contains glomeruli, proximal and distal tubules and peritubular capillaries. 

Cortical blood flow is high with the cortex receiving approximately 90% of the renal blood flow. 

Since blood-borne toxicants will be delivered preferentially to the cortex, they are more likely to 

affect cortical functions rather than those of the medulla or papilla. The renal medulla is the 

middle portion and contains primarily loops of Henle, vasa recta, and collecting ducts. Although 

the medulla receives only about 6% of the renal blood flow, it may be exposed to high 

concentrations of toxicants within tubular structures. The papilla is the smallest anatomical 

portion of the kidney and receives only about 1% of the renal blood flow. Nevertheless, because 

the tubular fluid is maximally concentrated and luminal fluid is maximally reduced, the 

concentrations of potential toxicants in the papilla may be extremely high, leading to cellular 

injury in the papillary tubular and/or interstitial cells (Hodgson and Levi, 2004b). 

As a result of the high renal blood flow of the kidney and the increased concentrations of 

the excretory products after re-absorption of water from the renal tubular fluids, the susceptibility 
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of the kidney to nephrotoxicity from xenobiotics is highly enhanced. The biotransformation of 

chemicals to reactive and thus potentially toxic metabolites is also a key event leading to 

nephrotoxicity or kidney injury (Perazella, 2009). 

 

2.7.1  Mechanism of Drug-induced Kidney Injury 

Drugs may damage the kidney by several mechanisms. Understanding these mechanisms 

is the key to providing better therapeutic regimes and more efficacious preventive measures.  

 

2.7.1.1  Glomerulonephritis 

Also known as glomerular nephritis, this is a renal disease characterised by inflammation 

of the glomeruli or the small blood vessels in the kidneys. It may present with isolated haematuria 

and/or proteinuria.  

 

2.7.1.2  Interstitial Nephritis 

Interstitial nephritis is a form of nephritis affecting the interstitium of the kidney 

surrounding the tubules. This is mediated by inflammation of the interstitium and tubules. It has 

been associated with antibiotics (beta-lactams, quinolones [especially ciprofloxacin], rifampin, 

macrolides, sulfonamides, tetracyclines), most non-steroidal anti-inflammatory drugs (NSAID), 

diuretics (thiazides, loop diuretics, and triamterene), anticonvulsants (phenytoin), cimetidine, 

ranitidine, allopurinol, antivirals (acyclovir, indinavir), and cocaine (Kodner and Kudrimoti, 2003; 

Markowitz and Perazella, 2005). 
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2.7.1.3  Crystal Deposition 

Ureterolithiasis (kidney stone) is a medical condition resulting from stones or renal calculi 

in the ureter. The stones are solid concretions or crystals formed in the kidneys from dissolved 

urinary minerals. The precipitation of crystals in the distal tubular lumen is mostly pH-dependent 

and explains the nephrotoxicity occurring with acyclovir, sulfonamide, methotrexate, indinavir, 

and triamterene (Perazella, 1999).  

 

2.7.1.4  Osmotic Nephrosis  

This is a non-inflammatory kidney damage due to osmotic pressure (Schetz et al., 2005). 

Hypertonic solutions may decrease the glomerular filtration rate (GFR) due to their effect on the 

glomerular filtration pressure or because of osmotically induced tubular damage. The uptake of 

non-metabolisable molecules into proximal tubular cells by pinocytosis generates an oncotic 

gradient with swelling and vacuolisation of tubular cells and tubular obstruction. Osmotic 

nephrosis is the mechanism of nephrotoxicity associated with high doses of mannitol 

(Visweswaran et al., 1997), dextrans (Schwarz et al., 1984), and starches (Cittanova et al., 1996; 

Schortgen et al., 2001). 

 

2.8  Metabolism of Xenobiotics 

Xenobiotics are foreign substances that would normally accumulate in the body as a result 

of poor elimination and thus cause toxicity in the absence of metabolism.  One of the most 

important determinants of xenobiotic persistence in the body, and subsequent toxicity to the 

organism, is the extent to which such xenobiotics are metabolized and excreted. Several families 

of metabolic enzymes, often with wide arrays of substrate specificity, are involved in xenobiotic 
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metabolism. Some of the more important families of enzymes involved in xenobiotic metabolism 

include the cytochrome P450 monooxygenases (CYPs), flavin-containing monooxygenases 

(FMOs), alcohol and aldehyde dehydrogenases, amine oxidases, cyclooxygenases, reductases, 

hydrolases, and a variety of conjugating enzymes such as glucuronidases, sulfotransferases, 

methyltransferases, glutathione transferases, and acetyl transferases. As a general paradigm, 

metabolism is the sum total of all the enzymatic reactions of the body. It is also the conversion of 

hydrophobic substances into derivatives that can easily be eliminated through the urine or the bile 

(Rose and Hodgson, 2004). 

Most xenobiotic metabolism occurs in the liver, an organ devoted to the syntheses of 

many important biologically functional proteins and thus with the capacity to mediate chemical 

transformations of xenobiotics (Rose and Hodgson, 2004). Most xenobiotics that enter the body 

are lipophilic, a property that enables them to bind to lipid membranes and be transported by 

lipoproteins in the blood. After entrance into the liver, as well as in other organs, xenobiotics 

undergo one or two phases of metabolism. Xenobiotic metabolizing enzymes have been grouped 

into two classes: phase 1 and phase 2, depending on which phase of reactions they catalyse. 

Enzymes of phase 1 reactions are involved in oxidation, reduction, or hydrolytic reactions while 

enzymes of phase 2 reactions are involved in the conjugation of the products of phase 1 reactions. 

The phase 1 reactions lead to the introduction of polar functional groups while phase 2 reactions 

result in more polar products as a result of the conjugational modification of the phase 1 products 

(Rose and Hodgson, 2004). 
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2.8.1  Phase one reactions 

Phase 1 reactions are classified as the functionalisation phase of drug metabolism. They 

are involved in the addition of polar constituents to the xenobiotics. The reactions carried out by 

phase 1 enzymes usually lead to the inactivation of an active site of a drug. In certain instances, 

metabolism, usually the hydrolysis of an ester or amide linkage, results in bio-activation of a drug. 

Inactive drugs may undergo metabolism to an active drug which are called pro-drugs. An example 

is the antitumor drug cyclophosphamide, which is bio-activated to a cell-killing electrophilic 

derivative. Phase 1 reactions include microsomal monooxygenations, cytosolic and mitochondrial 

oxidations, reductions, hydrolyses, and epoxide hydration. These reactions (with the exception of 

reduction reactions) involve the introduction of polar groups to the reactants, thus increasing the 

polarity of the products (Rose and Hodgson, 2004). 

 

2.8.1.1  Monooxygenations 

Monooxygenations, previously known as mixed-function oxidations, are those oxidations 

in which one atom of a molecule of oxygen is incorporated into the reaction substrate while the 

other is reduced to water. The reactions are catalysed either by the cytochrome P450 (CYP) - 

dependent monooxygenase system or by flavin-containing monooxygenases (FMO). These 

enzymes are located in the endoplasmic reticulum of the cell and have been studied in many 

tissues and organisms (Rose and Hodgson, 2004).  

 

2.8.1.1.1 The Cytochrome P450 - Dependent Monooxygenase  

Cytochrome P450 (CYP450) is a super-family of enzymes which contain a molecule of 

haem that is non-covalently bound to the polypeptide chain. They are highly expressed in the liver 
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and bound to the endoplasmic reticulum (Rose and Hodgson, 2004). CYP uses haem as the 

oxygen – binding moiety. Haem contains one atom of iron in a hydrocarbon cage that functions to 

bind oxygen in the CYP active site as part of its catalytic cycle. CYP uses O2 as well as H+ 

derived from the cofactor reduced nicotinamide adenine dinucleotide phosphate (NADPH) to 

carry out the oxidation of substrates.  The metabolism of substrate by CYP consumes one 

molecular oxygen and produces an oxidized substrate and a molecule of water as a by-product 

(see equation of the reaction below).  

H+ + NADPH + RH + O2  →→→→ NADP+ + H2O + ROH   

(where R is substrate) 

The reactions of CYPs are listed in Table 2.5 (Rose and Hodgson, 2004). 

 

2.8.1.1.2 Flavin - Containing Monooxygenases  

The flavin monooxygenases (FMOs) are another super-family of phase 1 enzymes 

involved in drug metabolism (Cashman, 2003). Similar to CYPs, the FMOs are expressed at high 

concentrations in the liver and are bound to the endoplasmic reticulum, a site that favours 

interaction with and metabolism of hydrophobic drug substrates. There are six families of FMOs, 

with FMO3 being the most abundant in liver (Motika et al., 2007). The reactions catalysed by 

FMOs are listed in Table 2.5. 
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Table 2.5:  Some of the Oxidative and Reductive Reactions of Xenobiotics Metabolism  

Enzymes and Reactions     Xenobiotics 

Cytochrome P450 

Epoxidation/hydroxylation    Aldrin, benzo(a)pyrene, aflatoxin, bromobenzene 

N-, O-, S-Dealkylation    Ethylmorphine, atrazine, p-nitroanisole, methylmercaptan 

N-, S-, P-Oxidation    Thiobenzamide, chlorpromazine, 2-acetylaminofluorene 

Desulfuration     Parathion, carbon disulfide 

Dehalogenation     Carbon tetrachloride, chloroform 

Nitro reduction     Nitrobenzene 

Azo reduction     O-Aminoazotoluene 

Flavin-containing monooxygenase 

N-, S-, P-Oxidation    Nicotine, imiprimine, thiourea, methimazole 

Desulfuration     Fonofos 

Alcohol dehydrogenase 

Oxidation     Methanol, ethanol, glycols, glycol ethers 

Reduction      Aldehydes and ketones 

Aldehyde dehydrogenase 

Oxidation     Aldehydes resulting from alcohol and glycol oxidations 

Amine oxidases 

Oxidative deamination   P-chlorobenzylamine, cadaverine, putrescine 

Esterases and amidases 

Hydrolysis     Parathion, paraoxon, dimethoate  

Epoxide hydrolase 

Hydrolysis     Benzo(a)pyrene epoxide, styrene oxide 

Adapted from (Rose and Hodgson, 2004). 
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2.8.1.2  Carboxylesterases and Amidases 

Carboxylesterases and amidases catalyse the hydrolytic reactions of carboxylesters, 

carboxyamides and carboxythioesters. They are widely distributed in the body, occurring in many 

tissues both in the microsomal and soluble fractions.  

RC(O)OR´ + H2O  −−−→  RCOOH + HOR´    Carboxylester hydrolysis 

RC(O)NR´R´´ + H2O  −−−→  RCOOH + HNR´R´´    Carboxyamide hydrolysis 

RC(O)SR´ + H2O  −−−→  RCOOH + HSR´    Carboxythioester hydrolysis 

All the purified carboxylesterases have been observed to exhibit amidase as well as 

esterase activities. Thus, these two activities are now regarded as different manifestations of the 

same enzymes, The specificity of the enzymes depends on the nature of the R, R´, and R´´ groups 

and, to a lesser extent, on the constituents of atom (O, S, or N) adjacent to the carboxyl group 

(Rose and Hodgson, 2004). 

 

2.8.1.3  Hydrolytic Enzymes (Epoxide Hydrolases) 

Epoxide hydrolases are enzymes involved in the hydrolysis of epoxides produced by 

CYPs. There are two types of epoxide hydrolases: the soluble epoxide hydrolase (sEH), which is 

highly expressed in the cytosol, and the microsomal epoxide hydrolase (mEH), which is localized 

in the membrane of the endoplasmic reticulum (Morisseau and Hammock, 2005). Epoxides are 

highly reactive electrophiles that can bind to the cellular nucleophiles of proteins, RNAs, and 

DNAs, resulting in cell toxicity and transformation. Thus, epoxide hydrolases participate in the 

deactivation of potentially toxic derivatives generated by CYPs. The reactions and examples of 

drugs metabolized by epoxide hydrolases are listed in Table 2.5. 
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2.8.1.4  Non Microsomal Oxidation 

In addition to the microsomal monooxygenases, other enzymes are involved in the 

oxidation of xenobiotics. These enzymes are located either in the mitochondria or in the soluble 

cytoplasm of the cell (Rose and Hodgson, 2004). 

 

2.8.1.4.1 Alcohol Dehydrogenase 

Alcohol dehydrogenases catalyze the conversion of alcohols to aldehydes or ketones: 

RCH2OH + NAD+ RCHO + NADH + H+ 

This reaction is different from the monooxygenation of ethanol by CYP that occurs in the 

microsomes. The alcohol dehydrogenase reaction is reversible, with the carbonyl compounds 

being reduced to alcohols. This enzyme is found in the soluble fraction of the liver, kidney, and 

lung and is probably the most important enzyme involved in the metabolism of foreign alcohols 

(Table 2.5) (Rose and Hodgson, 2004). In mammals, six classes of the enzymes have been 

identified and characterised. They can use either NAD+ or NADP+ as a coenzyme, but the 

reaction proceeds at a much slower rate with NADP+ (Rose and Hodgson, 2004).  

 

2.8.1.4.2 Aldehyde Dehydrogenase 

Aldehydes are generated from a variety of endogenous and exogenous substrates. 

Endogenous aldehydes may be formed during the metabolism of amino acids, carbohydrates, 

lipids, biogenic amines, vitamins, and steroids. The metabolism of many drugs and environmental 

agents produces aldehydes. Aldehydes are highly reactive electrophilic compounds; they may 

react with thiol and amino groups to produce a variety of effects. Some aldehydes produce 

therapeutic effects, but more often the effects are cytotoxic, genotoxic, mutagenic, and 
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carcinogenic (Rose and Hodgson, 2004). Aldehyde dehydrogenases catalyze the formation of 

acids from aliphatic and aromatic aldehydes, thereby making the acids available as substrates for 

conjugating enzymes. 

RCHO + NAD+ RCOOH + NADH + H+ 

Other enzymes in the soluble fraction of the liver that oxidize aldehydes are aldehyde 

oxidase and xanthine oxidase. These are flavoproteins that contain molybdenum. Their primary 

role seems to be the oxidation of endogenous aldehydes formed as a result of deamination 

reactions. 

 

2.8.1.4.3 Amine Oxidases 

Amine oxidases are concerned with the oxidative deamination of both endogenous and 

exogenous amines. Monoamine oxidases are a family of flavoproteins found in the mitochondria 

of a wide variety of tissues (liver, kidney, brain, intestine, and blood platelets) (Rose and Hodgson, 

2004). They are enzymes involved in the oxidative deamination of secondary, tertiary as well as, 

long chain amines. Whereas diamine oxidases are invoved in the oxidative deamination of 

primary diamines in which the chain length is four (putrescine) or five (cadaverine) carbon atoms 

(Table 2.5), diamines with carbon chains longer than nine will not serve as substrates but can be 

oxidized by monoamine oxidases (Rose and Hodgson, 2004). 

 

2.8.2  Phase Two Reactions  

The phase 2 reactions facilitate the elimination of drugs and the inactivation of 

electrophilic and potentially toxic metabolites produced by oxidation. While many phase 1 

reactions result in the biological inactivation or activation of drugs, phase 2 reactions produce a 
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metabolite with improved water solubility and increased molecular weight and these serve to 

facilitate the elimination of the drug from tissues (Rose and Hodgson, 2004). Glucuronidation, 

sulfation, acetylation, methylation and conjugation with glutathione or amino acids are the major 

phase 2 reactions (Table 2.6) (Rose and Hodgson, 2004).  

 

2.8.2.1  UDP – Glucuronosyltransferases (UGTs) 

One of the major routes of inactivation and elimination of certain lipophilic substances, as 

well as some endogenous compounds, is the conjugation of xenobiotics with glucuronic acids 

(GA). Glucuronidation represents a major pathway which enhances the transformation of many 

lipophilic xenobiotics to compounds that are more water soluble (King et al., 2000). UDP-

glucuronosyltransferases (UGTs) catalyse the glucuronidation of the glycosyl group of uridine-5'-

diphosphoglucuronic acid (UDPGA) to an acceptor compound. The metabolised substrate from 

phase 1 reaction with one of many possible functional groups (R-OH, R-NH2, R-COOH), 

conjugate with the sugar moiety, resulting in a compound that is generally less biologically active 

and more polar. This characteristic facilitates their excretion in bile and urine (Siest et al., 1987).   

The mechanism involves the nucleophilic acceptor group on the substrate attacking the 

electrophilic group of the glucuronic acid. UDP - glucuronosyl transferase (UGT) is found in the 

microsomal fraction of liver, kidney, intestine, and other tissues. Glucuronide conjugation 

generally results in the formation of products that are less biologically and chemically reactive. 

This, combined with their greater polarity and greater susceptibility to excretion, contributes 

greatly to the detoxification of most xenobiotics (King et al., 2000). 
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Table 2.6:  Some of the Phase two reactions of Xenobiotics Metabolism  

Enzymes and Reactions     Xenobiotics 

Sulfotransferases 

Conjugation of sulfate group 

UDP – glucuronosyltransferases (UGT)  

Conjugation of glucuronic acid                  Coumarin, thiophenol, oxazapam, imipramine, 1-naphthol, 2-naphthylamine 

Glutathione – S- transferases (GST)   

Conjugation of gluthathione      1-Naphthalene methyl sulfate, 1, 2 – epoxy-3-(p-nitrophenoxy)propane 

N-acetyltransferases  

Acetylation    Isoniazid, sulfamethazine, hydralazine, procainamide, aminofluorene. 

Methyltransferases  

Methylation        Epinephrine, norepinephrine, dopamine, and histamine          

Adapted from (Rose and Hodgson, 2004) 
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2.8.2.2  Sulfotransferases 

Sulfotransferases are the enzymes responsible for the conjugation of the sulphate group to 

xenobiotics. They are a family of soluble enzymes with different substrate specificities (Mulder 

and Jakoby, 1990). Sulphation is a major conjugation pathway for phenols. It also contributes to 

the biotransformation of xenobiotics with alcohol, amine, and thiol groups. It is important in the 

metabolism of endogenous compounds such as neurotransmitters and steroid hormones. The 

resulting compounds are generally less active, more polar, and more readily excreted in the urine. 

Sulphate conjugation is a multistep process. Inorganic sulfate is inert and must first be converted 

to adenosine-5' phosphosulfate (APS) and then to an activated 3'-phosphoadenosine 5' 

phosphosulfate (PAPS). The sulfuryl group from PAPS is then transferred to the acceptor 

molecule (xenobiotic), a reaction catalysed by sulfotransferase. 

ATP + SO4
2-  ATP-sulfurylase APS + PPi 

APS + ATP  APS-phosphokinase PAPS + ADP 

R-OH + PAPS  Sulfotransferase R-OSO3H + 3´- phosphoadenosine 5' phosphate 

The enzymes ATP-sulfurylase and APS-phosphokinase are present in the cytosol. PAPS is 

synthesised in all mammalian cells, with its concentration highest in the liver (Hazelton et al., 

1985), but the kidney also has significant amounts (Hjelle et al., 1986). Sulfate conjugation is 

regulated by the sulfate concentration, the availability of inorganic sulfate and the synthesis of 

PAPS. 

 

2.8.2.3  Methyltransferases  

Methyltransferases are primarily involved in the metabolism of small endogenous 

compounds and macromolecules and in the biotransformation of certain drugs. Methylation 
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reactions lead to the formation of less polar compounds that may be less readily excreted from the 

body, unlike most conjugation reactions. N-, O-, and S-methyltransferases are present in the 

kidney. The cofactor S-adenosylmethionine (SAM) is required as a methyl donor in reactions 

catalysed by these enzymes. SAM is primarily formed by the condensation of ATP and L-

methionine, and it is present at varying levels in different tissues (Eloranta, 1977).  

 

2.8.2.4  Acetyltransferases 

Acetyltransferases are the enzymes involved in the transfer of the acetyl group in phase 2 

reactions. They are cytosolic enzymes and are known to exist in many metabolic organs, with the 

highest concentration in the liver (Weber and Glowinski, 1980). Acetyl-CoA is the acetyl donor 

for the acetylation reaction. Acetylation is the major metabolic route of arylamines such as 

isoniazid, sulfamethazine, p-aminobenzoic acid, hydralazine, procainamide, aminofluorene, and 

benzidine (Table 2.5) (Weber and Glowinski, 1980).  

 

2.8.2.5  Glutathione-S-transferases (GSTs) 

Glutathione-S-transferases (GSTs) catalyse the conjugation of metabolic substrates with 

electrophilic substituents from phase 1 reactions to reduced glutathione. Reduced glutathione 

(GSH) is synthesized from the amino acids glycine, L-cysteine, and glutamic acid and it is present 

at the highest concentrations in the liver, but is also found in the kidney at concentrations of 1 to 2 

mmol/g tissue (Mohandas et al., 1984). The concentration is higher in the cortex than in the 

medulla (Mohandas et al., 1984). A sufficient supply of L-cysteine is essential for GSH synthesis. 

GSH is present in the blood at a concentration of approximately 20 mM (Anderson and Meister, 

1980), and correlates with the liver concentration. GSH is degraded at the proximal tubule of the 
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kidney at both the luminal (Hahn et al., 1978) and basolateral membranes (Abbott et al., 1984). 

Nearly all GSH filtered is reabsorbed from the lumen of the proximal tubule. GSH conjugation 

involves the formation of a thioether link between GSH and electrophilic compounds. This 

process usually facilitates detoxification, excretion and biosynthesis of certain compounds (Table 

2.6). 

 

2.9  Reactive Metabolites 

From the time of ingestion into the systemic body to the time they are excreted from the 

body, many exogenous compounds (xenobiotics) undergo metabolism to highly reactive 

intermediates. These metabolites may interact with cellular constituents in numerous ways, such 

as binding covalently to macromolecules and/or stimulating lipid peroxidation. This 

biotransformation of relatively inert chemicals, drugs or secondary metabolites to highly reactive 

intermediary metabolites is commonly referred to as metabolic activation or bioactivation. Some 

toxicants are direct acting and require no activation, whereas other chemicals may be activated 

non-enzymatically (Rose and Levi, 2004).  

Figure 2.16 depicts the overall scheme of metabolism of a potentially toxic xenobiotics. 

As illustrated, xenobiotic metabolism can produce not only non-toxic metabolites, which are more 

polar and readily excreted (detoxification), but also highly reactive metabolites, which can 

interact with vital intracellular macromolecules, resulting in toxicity. In addition, reactive 

metabolites can be detoxified, for example, by interaction with glutathione. In general, reactive 

metabolites are electrophiles, which can react with cellular nucleophiles such as glutathione, 

proteins, and nucleic acids. Other reactive metabolites may be free radicals or act as radical 
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generators that interact with oxygen to produce reactive oxygen species (ROS) that are capable of 

causing damage to membranes, DNA, and other macromolecules (Rose and Levi, 2004). 
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Figure 2.16 The relationship between metabolism, activation, detoxification, and toxicity 

of xenobiotics (Rose and Levi, 2004) 
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2.9.1  Nature and Stability of Reactive Metabolites 

Reactive metabolites include such diverse groups as epoxides, quinones, free radicals, 

ROS and unstable conjugates. They are usually generated by the reaction of the enzymes involved 

in xenobiotic metabolism. The enzyme systems most frequently involved in the activation of 

xenobiotics are those which catalyze oxidation reactions, most eapecially cytochrome P450 

monooxygenases (CYP), because of their ubiquitous nature. They are most abundant in the liver, 

as well as, in the kidney, skin, intestine, placenta, lung and nasal mucosa. As a result of their high 

reactivity, reactive metabolites are often considered to be short-lived. This is not always true, 

however, because reactive intermediates can be transported from one tissue to another, where they 

may exert their deleterious effects. Thus, reactive intermediates are usually divided into several 

categories, depending on their half-life under physiological conditions (Rose and Levi, 2004). 

 

2.9.1.1  Ultra-short-lived Metabolites 

These are metabolites that bind primarily to the parent enzyme. This category includes 

substrates that form enzyme-bound intermediates that react with the active site of the enzyme. 

Others also bind primarily to the activating enzymes or adjacent proteins, altering the function of 

the protein (Rose and Levi, 2004). 

 

2.9.1.2  Short-lived Metabolites 

These metabolites remain in the cell or travel only to nearby cells. In this case, covalent 

binding is restricted to the cell of origin and to adjacent cells. Many xenobiotics implicated in 

localized tissue damage occurring at the site of activation belong to this group (Rose and Levi, 

2004).  
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2.9.1.3  Longer-lived Metabolites 

These metabolites may be transported to other cells and tissues other than where they are 

produced. Reactive intermediates may also be transported to other tissues, not in their original 

form but as conjugates that can be released in their reactive form under the specific conditions in 

the target tissue. For example, carcinogenic aromatic amines are metabolized to their N-

hydroxylated derivatives in the liver. Thereafter, following glucuronide conjugation, They are 

transported to the bladder, where the N-hydroxy derivative is released under the acidic conditions 

of urine (Rose and Levi, 2004). 

 

2.9.2  Fate of Reactive Metabolites 

Within the tissue a variety of reactions may occur, depending on the nature of the reactive 

species and the physiology of the organism. The following are the fates of the reactive metabolite 

in-situ. 

 

2.9.2.1  Binding to Cellular Macromolecules 

Most reactive metabolites are electrophiles that can bind covalently to nucleophilic sites 

on cellular macromolecules such as proteins, polypeptides, RNA, and DNA. This covalent 

binding is considered to be the initiating event for many toxic processes such as mutagenesis, 

carcinogenesis and cellular necrosis (Rose and Levi, 2004). For example, in the metabolism of 

acetaminophen at normal therapeutic doses, acetaminophen is safe, but at higher doses it has been 

reported to be hepatotoxic (Rose and Levi, 2004). In excessive consumption of acetaminophen, 

sulfate and glucuronide cofactors (PAPS and UDPGA) become depleted, thereby resulting in the 
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production of reactive metabolites (Figure 2.17) (Rose and Levi, 2004). These reactive 

metabolites can be detoxified, with the availability of glutathione. However, in cases of drug 

overdose or suicide attempts, the concentration of glutathione might be depleted, resulting in 

covalent binding to the sulfhydryl (thiol) groups of various cellular proteins which might 

eventually result in hepatic necrosis (Rose and Levi, 2004). 

 

2.9.2.2  Lipid Peroxidation 

Free radicals such as CCl3
+, produced during the oxidation of carbon tetrachloride, may 

induce lipid peroxidation and subsequent destruction of lipid membranes. As a result of the 

critical nature of various cellular membranes, lipid peroxidation can be a pivotal event in cellular 

necrosis (Rose and Levi, 2004). 
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Figure 2.17 Metabolism of acetaminophen and formation of reactive metabolites (Rose and 

Levi, 2004).  
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2.10  Potential Toxicity of Dietary Flavonoid and Phenolics  

Dietary flavonoids and phenolics have been shown to act as pro-oxidants in systems 

containing redox-active metals (Galati and O’Brien, 2004). In the presence of molecular oxygen 

(O2), transition metals such as copper (Cu) and iron (Fe) can catalyse the redox cycling of 

phenolics, leading to the formation of reactive oxygen species (ROS) and phenoxyl radicals that 

can damage DNA, lipids, and other biological molecules (Li and Trush, 1994; Decker, 1997; 

Yamanaka et al., 1997). It has been reported that exposure of DNA to dihydrocaffeic acid in the 

presence of Cu resulted in more DNA single- and double-strand breaks than exposure to caffeic 

acid, whereas chlorogenic acid caused only minimal damage even though these phenolics had 

similar structures and redox potentials (Galati and O’Brien, 2004). The inv investigators proposed 

that the initial oxidation of the catechols by Cu2+ generates a semiquinone that reacts with O2 to 

form O2
.-, which then oxidises the catechol to regenerate the semiquinone and H2O2. H2O2 is then 

rapidly converted by Cu1+ to the .OH radical in a Fenton-type reaction (Sakihama et al., 2002) 

Flavonols with pyrogallol or catechol B rings have also been shown to autoxidize in the 

presence of transition metals to produce ROS which accelerate low-density lipoprotein oxidation 

during the propagation phase (Ahmad et al., 1992). However, in vivo, most transition metal ions 

are sequestered in forms unable to catalyse free radical reactions (Halliwell and Gutterridge, 

1990). Very low levels of free copper ions may be released by tissue injury (e.g., atherosclerotic 

lesions) (Smith et al., 1992) and possibly by hepatic Cu (II) overload diseases such as Wilson 

disease. The green tea catechin, epigallocatechin gallate (EGCG), has recently been shown to 

induce H2O2 generation and to cause subsequent oxidative damage to isolated and cellular DNA 

in the presence of transition metal ions (Furukawa et al., 2003). 
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From the reports of Galati and O’Brien (2004), with particular focus on the peroxidase 

catalysed oxidation of phenol ring-containing flavonoids and other dietary phenolics to phenoxyl 

radicals, it has been shown that catalytic concentrations of flavonoids with a phenol B ring, upon 

oxidation by peroxidase/H2O2, formed phenoxyl radicals (Galati et al., 1999; Chan et al., 1999). 

Peroxidases are haem-containing enzymes that usually catalyse a one-electron oxidation of a 

variety of xenobiotics by hydrogen peroxide (Saunders, 1973). They have been reported to induce 

the oxidation of flavonoids, or their metabolites accumulating in the plasma or bone marrow, to 

their reactive metabolites (Galati and O’Brien, 2004). Myeloperoxidase, eosinophil peroxidase, 

and lactoperoxidase primarily found in granules (lysosomes) of neutrophils, eosinophils and 

secretory cells of the exocrine gland respectively, have been responsible for the development of 

secondary acute myelogenous leukemias occurring after cancer therapy with etoposide (a 

phenolic topoisomerase inhibitor). These have been attributed to DNA damage by pro-oxidant 

phenoxyl radicals formed by the peroxidase/H2O2 (Subrahmanyam et al., 1991; Kagan et al., 

1999; Goldman et al., 1999).  

The peroxidase-mediated oxidation of catechol B ring-containing flavonoids has also been 

reported. This resulted in the formation of semiquinone- and quinone-type metabolites. These 

semiquinone- and quinone-type metabolites may act as electrophiles binding to cellular 

macromolecules such as DNA, lipids and proteins, and may also give rise to the production of 

ROS (Awad et al., 2001). Quercetin, the most ubiquitous of the dietary flavonoids, contains a 

catechol B ring and has been shown to be oxidized by tyrosinase, peroxidases and hydrogen 

peroxide, to quinone/quinone methide intermediates, subsequent reactions with GSH resulting in 

quercetin glutathionyl adducts (Awad et al., 2000; Galati et al. 2001). 
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The chemopreventive properties of flavonoids are generally believed to reflect their ability to 

scavenge endogenous ROS. However, the pro-oxidant action of plant-derived phenolics rather 

than their antioxidant action may be an important mechanism for their anticancer and apoptosis-

inducing properties, as ROS can mediate apoptotic DNA fragmentation (Kaufmann, 1989; 

Rahman et al., 1990; Hadi et al., 2000;). Phenolic antioxidants can be both pro-oxidative and 

antioxidative (Figure 2.18).  

This suggests that dietary flavonoids/phenolics could be potentially more of an oxidative 

risk than a benefit (Decker, 1997). The consumption of large amounts of flavonoids in the form of 

a concentrated supplement may not be safe until their in vivo potential for oxidative stress is 

evaluated (Galati and O’Brien, 2004).  
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Figure 2.18:  The representation of the balance between antioxidant and prooxidant 

characteristics of flavonoids and other dietary phenolics. The reduced forms of flavonoids or 

other dietary phenolics act as antioxidants; however, the oxidized forms (phenoxyl radicals or 

quinone/quinone methide intermediates) can have prooxidant activities (Galati and O’Brien, 

2004). 
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2.11  Malaria 

Malaria is caused by protozoan parasites of the genus Plasmodium. Four species (P. falciparum, 

P. vivax, P. malariae, and P. ovale) infect humans. Although malaria caused by P. vivax is the 

most common, malaria caused by P. falciparum is the most lethal (WHO, 2011b, 

http://www.searo.who.int/en/Section10/Section21/Section334.htm). Other species, such as 

P. knowlesi, P. yoelii, P. berghei, P. chabaudi, and P. gallinaceum infect a number of wild and 

domestic animals and are frequently used as models for the human parasites. Malaria parasites are 

transmitted by female anopheles mosquitoes. Figure 2.19 illustrates the malaria-endemic 

countries of the world. Once transmitted, the parasites begin to multiply in the red blood cells, 

eliciting symptoms of discomfort. Light headedness and breath shortage, both stemming from 

anaemia (caused by haemolysis), fever, chills, nausea, arthralgia (joint pains), vomiting, 

haemoglobinuria, convulsions, coma and death, are common symptoms noticed after the 

transmission of malaria parasites (Boivin, 2002).  

The symptoms of malaria occurs in cyclic pattern such as sudden fever, rigour and 

sweating lasting between four to six hours every two days  in P. vivax and P. ovale infections, 

three days in P. malariae infection, and 36 - 48 hours in P. falciparum infection (Boivin, 2002). 

Widespread anaemia and direct brain damage resulting from cerebral malaria, to which children 

are more vulnerable, have been reported (Boivin, 2002). Severe P. falciparum infection is 

associated with symptoms including an enlarged spleen (splenomegaly), cerebral ischemia, 

hepatomegaly, hypoglycemia, and haemoglobinuria, usually arising between 6 and14 days of 

infection (Kain et al., 1998; Kain et al., 1998). The life cycle of the malaria parasite is depicted in 

Figure 2.20.  
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Figure 2.19: Malaria-endemic countries of the world (WHO, 2011c, 

http://www.rbm.who.int/endemiccountries.html) 
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Figure 2.20: The life cycle of the malaria parasite. During a blood meal, a malaria infected 

female anopheles mosquito inoculates sporozoites into the blood stream of the human host. 

Within an hour after inoculation, sporozoites infect the hepatocytes and mature into schizonts, 
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which rupture and release merozoites. In P. vivax and P. ovale, hypnozoites, a dormant form 

typically remain quiescent in the hepatocytes and can relapse after a while into the bloodstream 

but P. falciparum does not produce hypnozoites. Subsequently, after the initial exo-erythrocytic 

schizogony phase, the parasites undergo asexual multiplication in the erythrocytes (erythrocytic 

schizogony phase), leading to the infection of the red blood cells by the merozoites and the 

development of the ring stage, trophozoites, into mature schizonts. These thereafter, rupture 

releasing merozoites , the erythrocytic cycle continues with new daughter merozoites re-

invading the reb blood cells. Some parasites differentiate into sexual erythrocytic stages 

(gametocytes) .  The erythrocytic stage is responsible for the clinical manifetastion of malaria. 

The male (microgametocytes) and female (macrogametocytes) gametocytes are ingested by a 

female Anopheles mosquito during a blood meal.  The parasites’ multiplication in the mosquito 

is known as the sporogonic cycle.  While in the mosquito's stomach, the microgametes 

penetrate the macrogametes generating zygotes.  The zygotes become motile and elongated 

(ookinetes)  and which invade the midgut wall of the mosquito where they develop into 

oocysts .  The oocysts grow, rupture, and release sporozoites , which make their way to the 

mosquito's salivary glands.  Inoculation of the sporozoites into a new human host perpetuates the 

malaria life cycle  (Garcia, 2001; Centers for Disease Control and Prevention (CDC), 2011). 
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2.12  New Lead Antimalarial Compounds from Plants 

The following are the criteria for the discovery of new lead antimalaria compounds from 

medicinal plants (Wright, 2010). Viable antimalaria compounds from medicinal plants must 

exhibit the following attributes: 

potent antiplasmodial activity against both chloroquine-sensitive and chloroquine-resistant 

strains of P. falciparum; 

high selectivity index (SI), selective toxicity to malaria parasites compared to mammalian 

cell lines;  

complete eradication of malaria parasites in mice (i.e., suppress parasitaemia by close to 

100%) without showing toxicity; and 

oral administered with appreciable activity. 

 

2.12.1  Compounds from Medicinal Plants with Potential Antimalarial Activities 

Studies on isolated compounds from medicinal plants with moderate to appreciable 

activitites from different classes of phytochemicals have been documented (Wright, 2010). From 

various classes of alkaloids, dihydrousambarensine and isostrychnopentamine (Frederich, 2008; 

Frederich, et al., 2004), constituents from Strychnos usambarensis, isosungucine (Frederich et al., 

2008; Phillippe et al., 2007), from S. icaja, voacamine (Ramanitrahasimbola et al., 2001), from 

Tabernaemontana fuchsiafolia, strychnobrasiline and malagashanine (Frederich, 2008; 

Rasoanaivo et al., 1994; Ramanitrahasimbola et al., 2006) from S. myrtoides, cryptolepine 

(Wright, 2007), from Cryptolepis sanguinolenta, dionchophylline C and dionchophylline A 

(Francois et al., 1997), from Triphophylum peltatum, tazopsine and sinococuline (Bero et al., 

2009; Carraz et al., 2008), from Strychnopsis thouarsii, have been reported to have moderate to 
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good antiplasmodial activities. But strychnobrasiline and malagashanine have also been reported 

to have weak antiplasmodial activities; however, in combination with chloroquine, they have been 

able to reverse chloroquine resistance in P. falciparum by stimulating the influx and reducing the 

efflux of chloroquine (Rasoanaivo et al., 1994; Ramanitrahasimbola et al., 2006; Frederich et al., 

2008), while, in vivo toxicity has been reported for cryptolepine (Wright, 2007). 

Among the phenolic classes of phytochemicals, Lichochalcone A, a constituent of 

Glycyrrhiza uralensis (Chen et al., 1994), (-)-Methyllinderatin, a prenyl-substituted 

dihydrochalcone from Piper hostmannianum (Portet et al., 2007), 4-phenylcoumarins, 5-O-β-D-

glucopyranosyl-7-methoxy-3',4'-dihydroxy-4-phenylcoumarin, from Hintonia latiflora (Argotte-

Ramos et al., 2006), stilbene glycoside, piceid-(1/6)-b-D-glucopyranoside, from Parthenocissus 

tricuspidata (Park et al., 2008), have between reported to have moderate to good antiplasmadial 

activities both in vivo and in vitro. Lichochalcone A enhances the antiplasmodial action of 

artemisinin against both chloroquine-sensitive and chloroquine-resistant strains of P. falciparum 

(Mishra et al., 2009). It has been suggested that chalcones have potential for the development of 

inexpensive antimalarials (Awasthi et al, 2009).  

Among the terpenoids, a sesquiterpene lactone, ineupatorolide A, from Carpesium 

rosulatum (Chung et al., 2008), with good antiplasmodial activity and Quassinoids an oxygenated, 

degraded diterpene constituent of Simaroubaceae family has antiplasmodial activity but exhibit 

toxicity in mice as a result of their effects on mammalian protein synthesis (Muhammad and 

Samoylenko, 2007). In addition, 3,15-dimethylcarbonate bruceolide and 3,15-diethylcarbonate 

bruceolide, from Brucea javanica also have good antiplasmodial activities with low toxicity in 

mice. More research into the antiplasmodial activities of quassinoids may be necessary so as to 

take advantage of their ability to inhibit protein synthesis. Since malaria parasites make their own 
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ribosomes, these are more susceptible to inhibition by quassinoids than the ribosomes of host cells 

(Muhammad and Samoylenko, 2007). 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1  Materials 

3.1.1                  Collection and Identification of Plant 

 Young twigs and leaves of C. bonduc (CB) were collected from the Forest Research 

Institute of Nigeria (FRIN), Ibadan, Oyo State, Nigeria. Plant identification was done by Dr. 

Conrad Omonhinmi (Botanist), Department of Biological Sciences, College of Science and 

Technology, Covenant University, Ota, Ogun state. The authentication and voucher referencing 

were carried out at FRIN with voucher specimen no SHI108408 deposited in the FRIN Herbarium.  

 

3.1.2         Purchase of Experimental albino Wistar Rats 

 Healthy adult female albino Wistar rats (n = 112) used in the in vivo and toxicological 

assessments were purchased from the National Institute of Medical Research (NIMR), Yaba, 

Lagos, Nigeria.  

 

3.1.3                  Chromatography 

The following chromatography materials and equipment were used during the study: pre-

coated silica gel GF254 glass plates (Qingdao Marine Chemical, Ltd, Qingdao, China); Silica gels, 

100-200 mesh, 200-300 mesh and 10-40 µl (Qingdao Marine Chemical, Inc, China); Lichroprep 

Reverse Phase gel RP-18, 40-63 µm (Merck, Darmstadt, Germany); MCI gel, 75-150 µm 

(Mitsubishi Chemical Corporation, Japan); Sephadex LH-20, 25-100 µm (Pharmacia Fine 

Chemicals Co., Ltd., Sweden); High Performance Liquid Chromatography, HPLC, HP Agilent 
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1100 (Agilent Technologies, USA); Medium Pressure Liquid Chromatography, MPLC (Agilent 

Technologies, USA).  

 

3.1.4                 Plasmodium falciparum and Cancer Cell Lines 

BGC-823 (Human gastric carcinoma) and HeLa (Human cervical adenocarcinoma) cells 

were obtained from the Shanghai Institute of Materia Medica, Chinese Academy of Sciences 

(Shanghai, China) and the Cell Culture Centre of the Institute of Basic Medical Sciences, Chinese 

Academy of Medical Sciences (Peking, China). Plasmodium falciparum strain FCR-3 (ATCC 

30932) and mouse mammary tumor FM3A cell line (wild-type, subclone F28-7) were obtained 

from the Japanese Cancer Research Resources Bank (JCRB), Japan. 

 

3.1.5                 Culture Media 

A Rosewell Park Memorial Institute (RPMI) - 1640 medium (Gibco, NY, USA) and a 

mouse embryonic stem (ES) cell culture medium (Nissui Pharmaceuticals, Tokyo, Japan) were 

used for the experiments. 

 

3.1.6  Standard Drugs 

Taxol (Paclitaxel) (Sigma Chemical, St Louis, MO, USA), quinine hydrochloride, 

pyrimethamine and artemisinin (Sigma, St Louis, MO, USA) and Mefloquine (Roche LTD, Basel, 

Switzerland) were used for the study. 
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3.2  Methods 

3.2.1  Preparation of Extraction of C. bonduc  

The leaves and young twigs of C. bonduc were air-dried at room temperature (25oC) and 

powdered. 8800 g of CB was extracted with 50 litres of 75% (v/v) ethanol by maceration using 

three successive cold (25oC) extractions for 72 hours. The total filtrate was concentrated to 

dryness on a rotary evaporator at 50ºC. The percentage (%) yield of the dry residue was 

calculated (Pudhom et al., 2007). The extract for in vivo study was re-suspended in 0.25 % w/v 

sodium carboxymethylcellulose and stored at -20ºC for further studies. 

 

3.2.2 Differential Fractionation of the Ethanolic Extract  of CB in Different Solvents  

The dried ethanolic extract of CB (1120 g) was suspended in 10 litres of distilled water 

and partitioned in sequence with petroleum ether (10 litres), ethyl acetate (10 litres), and n-

butanol (10 litres). The different solvent fractions were concentrated on a rotary evaporator to 

give a petroleum ether - soluble fraction (150 g), an ethyl acetate - soluble fraction (120 g), a n-

butanol - soluble fraction (170 g), and a distill water - soluble fraction (630 g). Thin layer 

chromatography (TLC) assessments were made to qualitatively examine different 

phytoconstituents in each fraction. 

 

3.2.3  Phytochemical Screening of the Plant 

Phytochemical screening of the extracts was carried out by a procedure that was based on 

those earlier reports by Harborne (1973), Trease and Evans (1989) and Sofowora (1993).  
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3.2.3.1  Test for Tannins 

Powdered leaves and twigs of the plant (0.5 g) was boiled in 20 ml of water in a test tube 

and then filtered. A few drops (5-6) of 0.1 % ferric chloride solution were added. The reaction 

mixture was observed for a brownish green or blue-black colouration for the confirmation of the 

presence of tannins. 

 

3.2.3.2  Test for Phlobatannins 

Powdered leaves and twigs of the plant (0.5 g) was boiled in 20 ml of water in a test tube 

and then filtered. An extract of the plant sample was boiled with 1 % aqueous HCl and then 

observed for the deposition of red precipitate for the confirmation of the presence of 

phlobatannins. 

 

3.2.3.3  Test for Saponin 

Powdered leaves and twigs of the plant (2 g) was boiled in 20 ml of distilled water in a test 

tube and then filtered. 10 ml of the filtrate was mixed with 5 ml of distilled water and shaken 

vigorously for a stable persistent froth. The frothing was mixed with 3 drops of olive oil and 

shaken vigorously and then observed for the formation of an emulsion, indicative of the presence 

of saponin. 

 

3.2.3.4 Test for Steroids 

Acetic anhydride (2 ml) and 2 ml of H2SO4 were added to 0.5 g ethanolic extract of the 

plant. The colour change from violet to blue or green in some samples is an indication of the 

presence of steroids. 
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3.2.3.5  Test for Terpenoids  

The ethanolic extract (0.5 g) was mixed with 2 ml of chloroform, and concentrated H2SO4 

(3 ml) was carefully added to form a layer. A reddish brown colouration formed at the interface 

indicated the presence of terpenoids. 

 

3.2.3.6  Test for Cardiac Glycosides  

The ethanolic extract (0.5 g) was treated with 2 ml of glacial acetic acid containing one 

drop of ferric chloride solution. This was overlaid with 1 ml of concentrated H2SO4. A brown ring 

at the interface indicates the presence of a deoxysugar characteristic of cardenolides.  

 

3.2.3.7  Test for Flavonoids 

Powdered leaves and twigs of the plant (0.5 g) was boiled in 20 ml of water in a test tube 

and then filtered. 5 ml of dilute ammonia solution was added to a portion of the filtrate, followed 

by the addition of concentrated H2SO4. A yellow coloration was indicative of the presence of 

flavonoids. 

 
3.2.4  Fractionation of Caesalpinia bonduc (CB) 

From the phytochemical assessment of the different solvent fractions of CB, the 

ethylacetate and petroleum ether fractions (wt. 270 g) were pooled together and mixed with 400 g 

silica gel (100 - 200 mesh). A separating column was prepared with 3 kg silica gel (100 - 200 

mesh). The eluent was a mixture of chloroform and methanol in different ratio; the starting eluent 

was in 100:1 mixture. Fractions with similar spots using thin layer chromatography examination 

were pooled together and these gave 20 different fractions labelled from C1 to C20. 
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Fraction labelled C2 (25g) was mixed with 35 g silica gel (200 - 300 mesh) and layered on 

a silica gel column (200 - 300 mesh, 300 g). This was eluted with mixture of petroleum ether and 

ethyl acetate in different ratio, the starting eluent was in a 50:1 mixture. Fractions with similar 

spots using TLC examination were pooled together to give 4 fractions labelled C2a1 to C2a4. 

Fraction labelled C3 (20 g) was mixed with 30 g of silica gel (200 - 300 mesh). This was layered 

on a silica gel column (200 - 300 mesh, 250 g) and eluted with mixture of petroleum ether and 

ethyl acetate in different ratio, the starting eluent was in a 30:1 mixture. Fractions with similar 

spots using TLC examination were pooled together to give 8 fractions labeled from C3a1 to C3a8. 

Fractions labelled C3a4 and C3a5 (2.5 g) were combined based on the result of the TLC 

examination and mixed with silica gel (200 - 300 mesh, 3.5 g). This was layered on a silica gel 

column (200 - 300 mesh, 4 g) and eluted with a mixture of petroleum ether and ethyl acetate in 

different ratio; the starting eluent was in a 20:1 mixture. Three fractions were produced and 

labelled from C3a4b1 to C3a4b3.  

Fraction C7 (10g) was mixed with 15 g silica gel (200 - 300 mesh) and layered on silica 

gel column (200 - 300 mesh, 120 g) and eluted with mixture of chloroform and acetone in 

different ratio; the starting eluent was in a 40:1 mixture. Five fractions were produced and 

labelled from C7a1 - C7a5. Fraction C7a4 (4g) was mixed with 6 g of silica gel (200 - 300 mesh) 

and was layered on a silica gel column (200 - 300, 50 g) and eluted with mixture of chloroform to 

acetone in different ratio; the starting eluent was in a 15:1 mixture. Four fractions were produced 

and labelled from C7a4b1 to C7a4b4. Fraction C7a4b3 (3g) was mixed with 5 g of silica gel (200 - 

300 mesh) and was layered on a silica gel column and eluted with mixture of chloroform and 

acetone in different ratio; the starting eluent was in a 10:1 mixture. Seven fractions were produced 

and labelled from C7a4b3c1 to C7a4b3c7. Fractions labelled C7a4b3c4 to C7a4b3c6 (2 g) were pooled 
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together and mixed with 3 g silica gel (200 - 300 mesh). This was layered on silica gel (10 - 40 

µm, 25 g) and eluted with mixture of chloroform and acetone in different ratio; the starting eluent 

was in a 30:1 mixture. Seven fractions were produced and labelled from C7a4b3c4d1 to C7a4b3c4d7. 

Fraction labelled C7a4b3c4d5, was layered on sephadex column (LH - 20) and eluted with mixture 

of chloroform and methanol in ratio 1:1. This produced seven fractions labelled C7a4b3c4d5S1 to 

C7a4b3c4d5S7. Fractions labelled C7a4b3c4d5S5 to C7a4b3c4d5S7 (0.5 g) were pooled together and 

mixed with 1 g of silica gel (200 - 300 mesh). This was layered on silica gel column (10 - 40, 10 g) 

and eluted with chloroform and acetone in different ratios; the starting eluent was in a 20:1 

mixture. Three fractions were produced and labelled from C7a4b3c4d5S5e1 to C7a4b3c4d5S5e3. 

Fraction labelled C7a4b3c4d5S5e1 (100 mg) was mixed with silica gel (200 - 300 mesh, 1 g) and 

layered on silica gel column (10 - 40, 10 g). The column was eluted with mixture of chloroform 

and acetone in different ratio; the starting eluent was in 15:1 mixture. Four fractions were 

produced and labelled from C7a4b3c4d5S5e1f1 to C7a4b3c4d5S5e1f4. 

Fraction labelled C6 (22 g) was mixed with 35 g of silica gel (200 - 300 mesh). This was 

layered on silica gel column (200 - 300 mesh, 250 g) and eluted with a mixture of petroleum ether 

and acetone in different ratio; the starting eluent was in 15:1 mixture. Sixteen fractions were 

produced and labelled C6a1 to C6a16. Fraction labelled C6a13 (1 g) was mixed with 1.5 g of silica 

gel. This was layered on silica gel column (10 - 40, 10 g) and eluted with mixture of chloroform 

and ethyl acetate; the starting eluent was in 30:1 mixture. Six fractions were produced and 

labelled from C6a13b1 to C6a13b6. Fraction labelled C6a14 (9 g) was mixed with 14 g of silica gel. 

This was layered on silica gel column (200 - 300, 100 g) and eluted with a mixture of chloroform 

and ethyl acetate in different ratio; the starting eluent was in 30:1 mixture. Five fractions were 

produced and labelled from C6a14b1 to C6a14b5. Fraction labelled C6a16 (1.5 g) was mixed with 2.5 
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g silica gel (200 - 300 mesh). This was layered on silica gel column (10 - 40, 20 g) and eluted 

with the mixture of chloroform and methanol; the starting eluent was in a 150:1 mixture. Five 

fractions was produced and labelled from C6a16b1 to C6a16b5. Fraction labelled C6a16b2 (50 mg) 

was layered on sephadex (LH-20) column and eluted with methanol and water to produce 5 

fractions, labelled from C6a16b2S1 to C6a16b2S5. Fraction labelled C6a16b3 (60 mg) was layered on 

sephadex (LH-20) column to produce 5 fractions labelled C6a16b3S1 to C6a16b3S5.  

Fraction labelled C6a13b6 (50 mg) was layered on sephadex (LH-20) column to give 3 

fractions (C6a13b6S1 to C6a13b6S3). Fraction labelled C6a14b4 (3 g) was mixed with silica gel (200 - 

300, 4.5 g). This was layered on silica gel (200 - 300, 35 g) column and eluted with a mixture of 

chloroform and ethyl acetate in different ratio; the starting eluent was in 30:1 mixture. Four 

fractions were produced and labelled from C6a14b4d1 to C6a14b4d4. Fraction labelled C6a14b4d4 

(200 mg) was mixed with silica gel (200 - 300 mesh, 250 mg). This was layered on a silica gel 

column (10 - 40, 2 g) and eluted with mixture of chloroform and ethyl acetate; the starting eluent 

was in 30:1 mixture. Five fractions were produced and labeled from C6a14b4d4e1 to C6a14b4d4e5.  

Fraction labelled C6a14b4d4e5 (100 mg) was mixed with silica gel (200 - 300 mesh, 150 

mg). This was layered on a silica gel column (10 - 40, 1 g) and eluted with a mixture of 

chloroform and ethyl acetate; the starting eluent was in 25:1 mixture. Four fractions were 

produced and labelled from C6a14b4d4e5f1 to C6a14b4d4e5f4. Fraction labelled C6a14b4d4e5f3 (80 mg) 

was mixed with silica gel (200 - 300 mesh, 100 mg). This was layered on silica gel column (10 - 

40, 1 g) and eluted with a mixture of chloroform and methanol; the starting eluent was in 150:1 

mixture. Six fractions were produced and labelled from (C6a14b4d4e5f3g1 to C6a14b4d4e5f3g6). 

Fraction labelled C6a14b4d4e5f3g5 (70 mg) was layered on Sephadex column (LH-20) and eluted 

with mixture of chloroform and methanol in ratio 1:1 to produce 5 fractions labelled from 
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C6a14b4d4e5f3g6S1 to C6a14b4d4e5f3g6S5. Fraction labelled C6a14b4d4e5f3g6S2 (50 mg) was layered on 

Sephadex (LH-20) column and eluted with mixture of chloroform methanol in ratio 1:1 to yield 3 

fractions labelled from C6a14b4d4e5f3g6S2h1 to C6a14b4d4e5f3g6S2h3. 

Fractions labelled C10 and C11 (32 g) were pooled together and mixed with silica gel (200 - 

300, 48 g). This was layered on silica gel column (200 - 300, 550 g) and eluted with a mixture of 

chloroform and acetone in different ratio; the starting eluent was in 30:1 mixture. Twelve 

fractions were produced and labelled from C10a1 to C10a12. Fraction labelled C10a5 (2.5 g) was 

mixed with silica gel (200 - 300, 3.5 g). This was layered on silica gel column (200 - 300) and 

eluted with mixture of chloroform and methanol; the starting eluent was in 120:1 mixture. Six 

fractions were produced and labelled from C10a5b1 to C10a5b6. Fraction labelled C10a5b4 (1 g) was 

mixed with silica gel column (200 - 300, 1.5 g). This was layered on silica gel column (10 - 40, 

12 g) and eluted with mixture of chloroform and methanol; the starting eluent was in 100:1 

mixture. Six fractions were produced and labelled from C10a5b4d1 to C10a5b4d6. Fraction labelled 

C10a5b5 (1g) was mixed with silica gel (200 - 300, 1.5 g). This was layered on a silica gel column 

(10 - 40, 15 g) and eluted with a mixture of chloroform and methanol; the starting eluent was in 

60:1 mixture. Six fractions were produced and labelled from C10a5b5d1 to C10a5b5d6. Fractions 

labelled C10a5b4d5, C10a5b4d2 and C10a5b5d4 were separately subjected to High Pressure Liquid 

Chromatography (HPLC, YMC-Pack ODS-A, 10 mm × 15 cm) column at a flow rate of 2 ml/min. 

The fractions, C10a5b4d5, C10a5b4d2 and C10a5b5d4 were eluted with Methanol (HPLC grade) and 

water at gradient of 60 to 40, 58 to 42 and 56 to 44 respectively for 20 mins, to produce different 

pure compounds. 

Fractions C12 (12 g) was mixed with silica gel (200 - 300, 18 g). This was layered on silica 

gel (200 - 300, 135 g) and eluted with a mixture of chloroform and methanol in different ratio; the 
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starting eluent was in 200:1 mixture. Five fractions were produced and labelled from C12a1 - C12a5. 

Fraction labelled C12a3 (2 g) was mixed with silica gel (200 - 300, 3 g). This was layered on silica 

gel (10 - 40, 25 g) and eluted with a mixture of chloroform and methanol in different ratio; the 

starting eluent was in 200:1 mixture. Four fractions were produced and labelled C12a3b1 to C12a3b4. 

Fraction labeled C12a3b4 (1 g) was mixed with silica gel (200 - 300, 1.5 g). This was layered on 

silica gel (10 - 40, 10 g) and eluted with chloroform amd methanol in different ratio; the starting 

eluent was in 40:1 mixture. Three fractions were produced and labelled from C12a3b4c1 to 

C12a3b4c3. Fraction labelled C12a3b4c1 (500 mg) was layered on Sephadex column and eluted with 

mixture of chloroform and methanol in ratio 1:1 to give three fractions labelled from C12a3b4c1S1 

to C12a3b4c1S3. Fraction labelled C12a4 (1.5 g) was mixed with silica gel (200 - 300, 3 g). This was 

layered on silica gel column (10 - 40, 17 g) and eluted with a mixture of chloroform and methanol 

in different ratio; the starting eluent was in 40:1 mixture. Six fractions were produced and labelled 

from C12a4b1 to C12a4b6. Fraction labelled C12a4b5 (800 mg) was mixed with silica gel (200 - 300, 

1.2 g). This was layered on silica gel column (10 - 40, 10 g) and eluted with mixture if chloroform 

and methanol in different ratio; the starting eluent was in 30:1 mixture. Three fractions were 

produced and labelled from C12a4b5c1 to C12a4b5c3.  

Fractions labelled C12a3b4c1S1 and C12a4b5c1 were separately subjected to HPLC (YMC-

Pack ODS-A, 10 mm × 15 cm) column at a flow rate of 2 ml/min. Fractions C12a3b4c1S1 and 

C12a4b5c1, were eluted with Methanol (HPLC grade) and water at gradients of 60 to 40, 50 to 50 

respectively for 20 mins to produce different pure compounds. 

Fraction labelled C14 (6 g) was mixed with silica gel (200 - 300, 9 g). This was layered on 

silica gel column (200 - 300, 70 g) and eluted with a mixture of chloroform and methanol in 

different ratio; the starting eluent was in 200:1 mixture. Seven fractions were produced and 
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labelled from C14b1 to C14b7. Fraction labelled C14b3 (3.5 g) was layered on Sephadex (LH-20) 

column and eluted with a mixture of chloroform and methanol in ratio 1:1 to produce four 

fractions labelled from C14b3S1 to C14b3S4. Fraction labelled C14a3S3 (2 g) was mixed with silica 

gel (200 - 300, 3 g). This was subjected to silica gel (10 - 40, 25 g) column and eluted with a 

mixture of chloroform and methanol in different ratio; the starting eluent was in 40:1 mixture. 

Three fractions was produced and labelled from C14a3S3b1 to C14a3S3b3. Fraction labelled 

C14a3S3b2 was subjected to Medium Pressure Liquid Chromatography (MPLC, lichroprep reverse 

phase gel RP-18, 40 - 63 µm) column, at flow rate of 15 ml/min and pressure of 15 MPa. This 

was eluted with methanol and water in different ratio starting from 10: 90 to give a compound. 

Fractions labelled C16 and C17 were pooled together (4 g) and layered on Sephadex (LH-

20) column. This was eluted with a mixture of chloroform and methanol in ratio 1:1 to produce 

five fractions labelled from C16S1 to C16S5. Fraction labelled C16S5 (42.9 mg) was mixed with 

silica gel (200 - 300, 75 mg). This was layered on silica gel (10 - 40, 1 g) column and eluted with 

a mixture of chloroform and methanol in different ratio; the starting eluent was in 30:1 mixture. 

Three fractions were produced and labelled from C16S5b1 to C16S5b3. Fractions labelled C16S5b1 

and C16S5b2 were pooled together (0.103 g) and subjected to HPLC (YMC-Pack ODS-A 10 mm × 

15 cm) column, at a flow rate of 2 ml/min, and eluted with mixture of methanol and water, at 

gradient of 35 to 65 for 10 min and 20 to 80 for additional 10 min. This produced a pure 

compound. Fraction labelled C16S4 (115.7 mg) was mixed with silica gel (200 - 300, 0.2 g). This 

was layered on silica gel (10 - 40, 2 g) and eluted with a mixture of chloroform and methanol in 

different ratio; the starting eluent was in 30:1 mixture. Three fractions were produced and labelled 

from C16S4a1 to C16S4a3. F0raction labelled C16S4a2 (65.9 mg) was mixed with silica gel (200 - 

300, 0.15 g). This was layered on silica gel (10 - 40, 1 g) column and eluted with a mixture of 
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chloroform and methanol in different ratio; the starting eluent was in 20:1 mixture. Three 

fractions were produced and labelled from C16S4a2c1 to C16S4a2c3. Fraction labelled C16S4a2c1 

(15.5 mg) was separated by HPLC (YMC-Pack ODS-A, 10 mm × 15 cm) column at a flow rate of 

2 ml/min and eluted with mixture of methanol and water at gradient of 47 to 53 % for 20 min to 

produce a pure compound. Fraction labelled C16S1 was subjected to MPLC, MCI gel (75-150 µm) 

column and eluted with methanol and water in gradient starting from 20:80 % to produce two 

fractions labelled from C16S1a1 to C16S1a2. Fraction labelled C16S1a2 was subjected to MPLC (RP-

18) column and eluted with methanol and water in gradient starting from 10:90 % to give three 

fractions labelled from C16S1a2b1 to C16S1a2b3. Fraction labelled C16S1a2b3 was mixed with silica 

gel (200 - 300). This was subjected to silica gel (10 - 40) column and eluted with a mixture of 

chloroform and methanol in different ratio; the starting eluent was in 15:1 mixture. Four fractions 

were produced; one resulted in a pure compound.  

Fraction labelled C15 (3.5 g) was layered on Sephadex (LH-20) column and eluted with a 

mixture of chloroform and methanol in ratio 1:1 to produce eleven fractions labelled C15S1 to 

C15S11. Fraction labelled C15S6 (2.8 g) was mixed with silica gel (200 - 300). This was layered on 

a silica gel (10 - 40) column and eluted with a mixture of chloroform and methanol in different 

ratio; the starting eluent was in 20:1 mixture. Three fractions were produced and labelled C15S6a1 

to C15S6a3. Fraction labelled C15S6a1 (18.8 mg) was separated using HPLC (YMC-Pack ODS-A, 

10 mm × 15 cm) column at a flow rate of 2 ml/min, and eluted with methanol and water in 

gradient of 33 to 67 for 20 min to produce pure compounds.  

Fractions labelled C8 and C9 were pooled together (13 g), and mixed with silica gel (200 – 

300). This was layered on silica gel (200 - 300) column and eluted with a mixture of chloroform 

and acetone in different ratio; the starting eluent was in 20:1 mixture. Six fractions were produced 
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and labelled from C8a1 to C8a6. Fraction labelled C8a4 (6.5 g) was mixed with silica gel (200 - 300). 

This was layered on silica gel column (200 - 300) and eluted with a mixture of chloroform and 

methanol in different ratio; the starting eluent was in 100:1 mixture. Six fractions were produced 

and labelled from C8a4b1 to C8a4b6. Fraction labelled C8a4b4 (6.0 g) was mixed with silica gel (200 

- 300). This was layered on silica gel column (10 - 40) and eluted with a mixture of chloroform 

and acetone in different ratio; the starting eluent was in 20:1 mixture. Six fractions were produced 

and labelled C8a4b4c1 to C8a4b4c6. Fraction labelled C8a4b4c5 was mixed with silica gel (200 - 300). 

This was layered on silica gel column (10 - 40) and eluted with a mixture of petroleum ether and 

acetone in different ratio; the starting eluent was in 6:1 mixture. Three fractions were produced 

and labelled from C8a4b4c5d1 to C8a4b4c5d3. Fraction labelled C8a4b4c5d1 was layered on Sephadex 

column (L-H 20) and eluted with chloroform and methanol in ratio 1:1 to produce two fractions 

labelled from C8a4b4c5d1S1 to C8a4b4c5d1S2. Fraction labelled C8a4b4c5d1S1 was subjected to 

MPLC (RP-18) and eluted with methanol and water in gradient of 20 to 80 % to produce pure 

compound. 

Fraction labelled C19 (8 g) was layered on Sephadex column (LH-20) and eluted with 

mixture of methanol and water in ratio 1:1 to produce three fractions, labelled from C19S1 to C19S3. 

Fraction labelled C19S2 was mixed with silica gel (200 - 300). This was layered on silica gel (10 - 

40) and eluted with a mixture of chloroform and methanol in different ratio; the starting eluent 

was in 15:1 mixture. Three fractions was produced and labelled from C19S2a1 to C19S2a3.  Fraction 

labelled C19S2a1 (52.9 mg) was separated by HPLC (YMC-Pack ODS-A, 10 mm × 15 cm) column, 

at a flow rate of 2 ml/min, and eluted with methanol and water in gradient of 47 to 53 % for 20 

min. This produced 3 pure compounds. Fraction labelled C19S2a3 (172.6 mg) was separated by 
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HPLC (YMC-Pack ODS-A, 10 mm × 15 cm) column, at a flow rate of 2 ml/min, and eluted with 

methanol and water in gradient of 50 to 50 % for 20 min. This produced 4 pure compounds.  

Fraction labelled C5 (10 g) was layered on Sephadex (LH-20) column and eluted with 

mixture of chloroform and methanol to produce two fractions.  Fraction C5S1 was subjected to 

MPLC (MCI) column and eluted with methanol and water in gradient of 10:90 % to produce three 

fractions. Fraction labelled C5S1a1 was mixed with silica gel (200 - 300). This was layered on 

silica gel column (10 - 40) and eluted with a mixture of petroleum ether and ethyl acetate in 

different ratio; the starting eluent was in 20:1 mixture. Seven fractions were produced and 

labelled from C5S1a1b1 to C5S1a1b7. Fraction labelled C5S1a2 was mixed with silica gel (200 - 300). 

This was subjected to silica gel column (10 - 40) and eluted with a mixture of petroleum ether and 

ethyl acetate in different ratio; the starting eluent was in 20:1 mixture. Four fractions were 

produced and labelled from C5S1a2b1 to C5S1a2b4. Fraction labelled C5S1a2b1 was subjected to 

MPLC (RP-18) column and eluted with methanol and water in gradient of 10-90 % to give four 

fractions.  

Fraction labelled C5S1a2b1c4 was mixed on silica gel (200 - 300). This was layered on 

silica gel (10 - 40) column and eluted with a mixture of chloroform and acetone in different ratio; 

the starting eluent was in 70:1 mixture. Four fractions were produced and labelled from 

C5S1a2b1c4d1 to C5S1a2b1c4d4. Fraction labelled C5S1a2b2c1 was mixed with silica gel (200 - 300). 

This was layered on silica gel (10 - 400) column and eluted with a mixture of chloroform and 

methanol in different ration; the starting eluent was in 400:1 mixture. Three factions were 

produced and labelled from C5S1a2b2c1d1 to C5S1a2b2c1d3. Fraction labelled C5S1a3 was mixed with 

silica gel (200 - 300). This was layered on silica gel column (10 - 40) and eluted with a mixture of 

petroleum ether and ethyl acetate in different ratio; the starting eluent was in 20:2 mixture. Four 
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fractions were produced and labelled from C5S1a3b1 to C5S1a3b4. Fraction labelled C5S1a3b2 was 

mixed with silica gel (200 - 300). This was layered on silica gel column (10 - 40) and eluted with 

a mixture of chloroform and methanol in different ratio; the starting eluent was in 400:1 mixture. 

Three fractions were produced and labelled from C5S1a3b2c1 to C5S1a3b2c3. Fraction labelled 

C5S1a3b2c2 was mixed with silica gel (200 - 300). This was layered on silica gel (10 - 40) column 

and eluted with a mixture of chloroform and acetone in different ration; the starting eluent was in 

70:1 mixture. Three fractions were produced and labelled from C5S1a3b2c3d1 to C5S1a3b2c3d3.  

Fraction labelled C20 (8g) was layered on Sephadex (LH-20) column and eluted with a 

mixture of chloroform and methanol in ration 1:1 to produce three fractions. Fraction labelled 

C20S2 was subjected to MPLC (RP - 18) column and eluted with methanol and water in gradient 

of 10-90 % to produce 3 fractions. Fraction labelled C20S2a3 was subjected to HPLC (YMC-Pack 

ODS-A, 10 mm × 15 cm) column, at a flow rate of 2 ml/min, and eluted with methanol and water 

in gradient of 60:40 % for 20 min to produce a pure compound. 

Thin layer chromatographic (TLC) assessment in different solvent systems was used to 

determine the purity of each fractions and samples. Pre-coated glass plates with silica gel GF254 

were used. Spots were visualized and detected under UV light or by spraying with 10 % H2SO4 in 

95 % ethanol, followed by heating at 70oC. 

 

3.2.5  Spectral Studies 

3.2.5.1  Nuclear Magnetic Resonance (NMR) Analysis 

Structural elucidations of all isolated and purified phytochemicals were carried out by 1-

Dimensional Nuclear Magnetic Resonance spectroscopy methods (1-D NMR) which include: 13C-, 

DEPT and 1H- NMR analyses. 2-D NMR spectroscopy (COSY, HMBC, HMQC and HSQC) was 
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also carried out for the newly isolated compounds. 1-D and 2-D NMR spectra were recorded on 

Bruker AM-400 MHz, Bruker DRX-500 MHz and Avance III-600 MHz NMR spectrometers. 

Tetramethylsilane (TMS, SiCH3) was used as the internal standard. 

 

3.2.5.2  Mass Spectroscopy (MS) Analysis  

Positive Electrospray Ionization Mass Spectroscopy (ESI-MS) analyses were conducted 

for each isolated compound to determine its appropriate chemical formula and molecular weight. 

High Resolution Electrospray Ionization Mass Spectroscopy (HR-ESI-MS) analyses were carried 

out only on new compounds. ESI-MS and HR-ESI-MS were conducted using an API Qstar-time-

of-flight pulsar instrument (Applied Biosystems, USA). 

 

3.2.5.3  Other Spectroscopic Methods 

Infra red (IR) spectra of new compounds were obtained on a Bruker Tensor 27 

spectrophotometer with samples in KBr pellet. Ultraviolet (UV) spectra were measured on a 

Shimadzu UV-240 1PC spectrophotometer (Shimadzu Coorporation, Tokyo, Japan). Optical 

rotation was measured with a Horbia SEAP-300 automatic polarimeter (Horiba, Tokyo, Japan). 

Melting points were performed on melting point apparatus, XRC-1 (Sichuan University, Sichuan, 

China).  

 

3.2.6  In vivo Antioxidant Assessment of Caesalpinia bouduc  

3.2.6.1  Experimental Design for in vivo Antioxidant Assay 

Healthy adult female albino Wistar rats (n = 42) were used in the in vivo antioxidant study. 

The rats were housed in standard cages in the Animal House, Covenant University, Ota, Ogun 
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State. They were allowed to acclimatise for two weeks and were given food and water ad libitum. 

The cages were cleaned daily and the animals were treated according to standard ethical 

guidelines. The weights of the rats were recorded before treatment started. The rats weighed 

between 60 and 100 g. The rats were divided into seven groups, and each group contained 6 rats. 

The dosage with the CB extract was based on the body weight of each rat. Groups I to IV had the 

following dosages of CB extract: 50 mg/kg bwt, 100 mg/kg bwt, 150 mg/kg bwt, 200 mg/kg bwt. , 

10 mg amodiaquine/kg bwt was used as the negative control; 10 mg vitamin C/kg bwt was used 

as the positive control; and 2 ml distilled water/kg bwt was employed as the normal control. 

(Farombi, 2000; Tafazoli and O’Brien, 2009). 

On the 15thh day, the rats were placed under light ether anasthesia after an over night fast 

and blood samples were collected by cardiac puncture into heparinised tubes. Whole blood 

collected were kept in the bio-freezer (-20oC) until analysed. 

 

3.2.6.2  Antioxidant Assays 

3.2.6.2.1 Assay of Catalase Activity 

Catalase activity was assayed according to the modified method that was based on those 

of Claiborne (1985) and Aebi (1974) in which the disappearance of hydrogen peroxide was 

monitored spectrophotometrically at 240 nm. One unit of catalase activity was defined as the 

amount of protein that causes one micromole of hydrogen peroxide to decompose per minute 

under specified conditions at 25oC in a regulated water bath. 

Into two cuvettes labelled test and control, 1 ml of diluted whole blood (0.02 ml blood in 

10 ml 0.05 M phosphate buffer (pH 7.0)) was added to test while 1ml of 0.05 M phosphate buffer 

(pH 7.0) was added to the control tube. To each cuvette, 0.5 ml of substrate (30% H2O2 in 
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phosphate buffer) was added. The contents of each tube were mixed thoroughly and the blank 

tube was used to set the spectrophotometer to zero. The decrease in the absorbance of the mixture 

in the test cuvette was monitored at 240 nm for 70 seconds at 10 seconds interval. An extinction 

coefficient of 43.6 M-1cm-1 was assumed for H2O2 at 240 nm.  

sampleA
Catalase activity = 

43.6

∆
 

 (where ∆Asample is the change in absorbance of sample after 10 sec)  

2 H2O2  Catalase  2 H2O + O2 

 

3.2.6.2.2 Assay of Peroxidase Activity 

The activity of peroxidase was assayed as reported by Wever et al. (1980).  The reaction 

mixture consisted of 3.0 ml of pyrogallol in 0.1 M phosphate buffer, pH 7.0 and 0.5 ml of 1 % 

(v/v) H2O2.  To this was added 0.1 ml of the sample, and the change in absorbance was measured 

at 430 nm at 30 sec intervals for 2 min.  The peroxidase activity was calculated using molar 

extinction coefficient of 4.5 M-1cm-1 for oxidised pyrogallol. 

sampleA
Peroxidase activity = 

4.5

∆
 

 (where ∆Asample is the change in absorbance of sample after 30 sec)  

H2O2 + Pyrogallol   peroxidase  2 H20 + Purpurogallin 

 

3.2.6.2.3          Determination of Thiobarbituric Acid Reactive Substances (TBARS)  

Concentration 

The blood concentration of thiobarbituric acid reactive substances (TBARS) is an index of 

lipid peroxidation and oxidative stress. 
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The concentration Thiobarbituric acid reactive substances (TBARS) were determined by the 

modified method of Buege and Aust (1978). 0.1 ml of blood in 0.04 M Tris-HCl buffer, pH 8.3 

was treated with 2.0 ml of a 1:1:1 TBA-TCA-HCL, 1:1:1 (thiobarbituric acid (TBA) 0.37 %; 

15 % (w/v) TCA and 0.25M HCl). The mixture was incubated at 95o C for 15 mins.  The tube was 

then cooled on ice and centrifuged. The absorbance of the clear supernatant was measured 535 nm 

against a blank.  The TBARS content was determined using an extinction coefficient of 155 nM-

1cm-1. 

sampleA
TBARS concentration =

155
 

 (where Asample is the absorbance of sample)  

 

3.2.7  Toxicological Evaluation of Ethanolic Extract of C. bonduc  

The toxicological assessment of C. bonduc was divided into two phases: acute and sub 

acute (28 days) toxicicological investigations. Acute toxicity study is a measure of the interaction 

of xenobiotic with biomolecules after a single administration within fourteen days while sub-

acute toxicity study is a measure of the interaction of xenobiotic with biomolecules after repeated 

administration within 28 days. 

 

3.2.7.1  Grouping and Treatment of Experimental Rats for Sub-acute study 

This study was carried out according to the Organisation for Economic Cooperation and 

Development (OECD) guidelines (OECD, 1995). Fifty female albino Wistar rats were selected by 

stratified randomization for the sub-chronic toxicity study. They were divided into six groups. 

Four groups (Grps 3 to 6), each containing ten rats, were treated with the CB extract. In each 
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group five rats were used for the actual test and five for the recovery test. The five animals in Grp 

1 were used for normal control; the five in Grp 2 were used for the vehicle control.  

The rats were weighed before the commencement of treatment. Thereafter, they were 

weighed weekly throughout the duration of the study. The rats were grouped as follows: Groups 1 

to VI - normal control (distilled water), vehicle control (Sodium carboxymethyl cellulose), 200 

CB mg/kg bwt, 400 CB mg/kg bwt, 800 CB mg/kg bwt, and 1600 CB mg/kg bwt respectively. 

The animals were dosed daily by gastric intubation. The physical appearances and the daily 

activities of the rats, such as eating patterns, were observed and recorded. Signs of abnormalities 

were observed and recorded. On the 29th day, after treatment with CB, the animals were put under 

light ether anaesthesia (Muto et al., 2003). The recovery groups were kept alive and left untreated 

for additional 14 days and were later sacrificed. Blood was collected by cardiac puncture into 

heparinised and EDTA bottles, followed by centrifugation at 3000 rpm for plasma preparation. 

The plasma samples were collected and kept in a bio-freezer (-20°C) until they were analysed for 

the biochemical indices of toxicity. The blood samples collected into EDTA bottles were analysed 

immediately for haematological indices. The kidney, liver, heart and spleen were also collected 

from the animals and washed in normal saline, weighed and stored in 10 % formalin in plastic 

bottles. The biochemical, haematological and histopathological parameters of organ toxicity were 

evaluated in the treated animals and compared with controls. The relative organ weights was also 

calculated and recorded. 

 

3.2.7.2  Grouping and Treatment of Experimental Rats for Acute study 

The female albino Wistar rats (n = 20) were used for the acute toxicity study. The plant 

extract at fixed doses of 0, 2000, 4000 and 6000 mg/kg body weight were administered to four 
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groups, each containing rats. The animals in Grp 1 served as the control and received 1 ml of 

distill water while groups II to IV were given ethanolic extract of CB at doses of 2000, 4000 and 

6000 CB mg/kg bwt by gastric intubation. The animals were observed for signs of morbidity and 

mortality at 1, 2, 4 and 6 hr after treatment and subsequently on the 7th and 14th days after 

treatment. This weight of experimental rats were measured and recorded on Days 1, 7 and 14 

respectively. The study was carried out in accordance with the Organisation for Economic Co-

operation and Development (OECD) guidelines No. 423 (2001). The biochemicals, 

haematological and histological parameters of the experimental animals were evaluated after 14 

days.  

 

3.2.7.3  Biochemical Analyses 

3.2.7.3.1 Determination of Concentration of Plasma Total Protein  

A total protein test kit (Randox Laboratories Ltd, Crumlin, UK), was used for the 

estimation of plasma total protein. Cupric ions in alkaline medium interact with protein peptide 

bonds, hence, resulting in the formation of a coloured biuret complex (Weichselbaum, 1946).  

The content of the test kit is R1a (10 ml of bottled R1 (biuret reagent) in 40 ml distilled water 

(dH2O)), R21 (10 ml of bottled R2 in 40 ml dH2O), and protein standard. The reaction mixturte 

contained 1.0 ml of R1a and 0.02 ml of plasma for sample’s test tubes, while blank and standard 

test tubes contain 1.0 ml of R1a and 0.02 ml of dH2O or 0.02 ml of standard respectively. Each 

test tube was mixed and incubated at 25oC for 30 min. The absorbance of the standard Astandard and 

samples Asample were measured against reagent blank at 546 nm and protein concentration is 

calculated as follows: 

sample

standard

A
Total protein concentration = x Standard concentration

A
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 (where standard protein concentration = 5.85 g/dl) 

 

3.2.7.3.2  Determination of Plasma Urea Concentration  

A urea test kit (Randox Laboratories Ltd., Crumlin, UK) was used for this assessment. 

Urea in serum/plasma is hydrolysed to ammonia in the presence of urease. The ammonia is 

measurable photometrically by Berthelot’s reaction (Weatherburn, 1967). 

 

 The content of the kit is R1a (Sodium nitroprusside and urease solution), R2a (40 ml of R2 

(phenol) in 280 mls of dH2O), R3a (10 ml of R3 (Sodium hypochlorite) in 340.9 mls of dH2O) 

and standard. 10 µl of each sample was mixed with 100 µl of R1a, while 10 µl of standard and 10 

µl of dH2O with 100 µl were mixed for standard and blank respectively, these were incubated for 

10 min at 37oC. Thereafter, 2.50 ml of R2a and 2.50 ml of R3a were added and incubated for 

additional 15 mins. Absorbance of sample Asample and standard Astandard were read against the 

blank. Urea concentration was calculated as follows: 

sample

standard

A
Urea concentration = x Urea standard concentration

A
 

 (where Urea standard concentration = 80.5 mg/dl)   

 

3.2.7.3.3 Determination of Plasma Creatinine Concentration 

A creatinine test kit (Randox Laboratories Ltd., Crumlin, UK) was used for this 

assessment. Creatinine, in alkaline solution, reacts with picric acid to form a coloured complex. 

The amount of the complex formed is directly proportional to the creatinine concentration 

(Bartels et al., 1972). 
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 The content of kit is R1a (picric acid), R1b (sodium hydroxide) and creatinine standard. 

The working reagent contained equal volumes of R1a and R1b. 100 µl of plasma, 100 µl of 

creatinine standard and 100 µl of dH2O were separately placed in different test tubes and 1000 µl 

of working reagent was added to each tube. The content of each tube were mixed gently and 

absorbance A1sample and A1standard were read at 492 nm against blank after 30 sec. Thereafter, 2 

min of initial reading, Absorbance A2sample and A2standard were also read. The concentration of 

creatinine was calculated as follows: 

sample

standard

A
Creatinine concentration = x Creatinine standard concentration

A

∆
∆

 

where ∆Asample = A2sample - A1sample;  

∆Astandard = A2standard - A1standard; and 

(creatinine standard concentration = 1.97 mg/dl) 

 

3.2.7.3.4  Determination of Plasma UricAacid Concentration 

A uric acid test kit (Linear Chemicals, Barcelona, Spain) was used for this assessment. 

Uric acid is oxidized by uricase to allantoin with the formation of hydrogen peroxide. In the 

presence of peroxide, a mixture of dichlorophenolsulphonate (DPCS) and 4- aminoantipyrine (4-

AA) is oxidized by hydrogen peroxide to form a quinoneimine dye proportional to the 

concentration of uric acid in the sample (Barham and Trinder, 1972). 

 

The content of kit: R1 (Monoreagent solution) and uric acid standard. Into each test tube, 

1.00 ml of R1 was pipeted and 25 µl of plasma, 25 µl of standard and nothing were added for 

sample, standard and blank tubes respectively. The mixtures were incubated for 10 min at room 
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temperature. The absorbance (Asample and Astandard) were read at 520 nm against reagent blank. The 

concentration of Uric acid in plasma samples was calculated as follows: 

sample

standard

A
Concentration of uric acid = x Concentration of standard uric acid

A
 

 (where concentration of standard uric acid = 6 mg/dl)  
 

 

3.2.7.3.5  Determination of Plasma Triglyceride Concentrations 

 A triglyceride test kit (Linear Chemicals, Barcelona, Spain) was used for this assessment. 

This is based on the enzymatic hydrolysis of plasma triglyceride to glycerol and free fatty acids 

(FFA) by lipoprotein lipase (LPL). The glycerol is phosphorylated by adenosin triphosphate (ATP) 

in the presence of glycerolkinase (GK) to form glycerol-3-phosphate (G-3-P) and adenosine 

diphosphate (ADP). G-3-P is oxidized by glycerophosphate oxidase (GPO) to form 

dihydroxyacetone phosphate (DHAP) and hydrogen peroxide (H2O2). A red chromogen is 

produced by the peroxidase (POD) catalysed coupling of 4-aminoantipyrine (4-AA) and phenol 

with hydrogen peroxide (H
2
O

2
), proportional to the concentration of triglyceride in the sample 

(Fossati and Prencipe, 1982). 

                   

 The content of kit is R1 (Monoreagent) and triglycerides standard. Each tube contained 

1.00 ml of R1 and 10 µL of plasma or 10 µL of standard or nothing for sample or standard or 

blank tube respectively.  These tubes were mixed gently and incubated at room temperature for 15 
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min and the absorbance (Asample and Astandard) were read at 500 nm against reagent blank. The 

colour was protected from light. Triglyceride concentration was calculated as follows: 

sample

standard

A
Concentration of triglyceride = x 200 mg/dl

A
 

200 mg/dl = Concentratio of triglyceride standard concentration 

 

3.2.7.3.6  Determination of Plasma Glucose Concentration 

A glucose test kit (Cypress Diagnostics, Vlaams-Brabant, Belgium) was used for this 

assessment. Glucose is oxidized by glucose - oxidase (GOX) to gluconic acid and hydroxide 

peroxide. The formed hydrogen peroxide (H2O2), is detected by a chromogenic oxygen acceptor, 

phenolaminophenazone in the presence of peroxidase (POD). The intensity of the colour formed s 

proportional to the glucose concentration in the sample (Trinder, 1969). 

 

Where 4-AP is 4-aminophenazone 

 The content of kitc is R1 (Tris buffer PH 7.4 and Phenol), R2 (GOD, POD and 4-AP) and 

glucose standard. Working reagent was prepared by mixing 100 ml of R1 with 10 ml of R2. Each 

tube contained 1.00 ml of working reagent and 10 µL of plasma or 10 µL of standard or nothing 

for sample or standard or blank tubes respectively.  These tubes were mixed gently and incubated 

at room temperature for 20 mins. Absorbance (Asample and Astandard) were read at 505 nm against 

blank. The colour was protected from light. Glucose concentration was calculated as follows:  

sample

standard

A
Glucose concentration  = x Glucose standard concentration

A
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 (where glucose standard concentration is 100 mg/dl or 5.55 mmol/L) 

 

3.2.7.3.7  Assay of Plasma Aspartate Aminotransferase Activity 

Aspartate aminotransferase UV kinetic test kit (Cypress Diagnostics) was used for this 

assessment. The principle of this assessment was based on the following equations: 

 

  Malate dehydrogenase (MDH) catalyzes the conversion of oxaloacetate to malate in the 

presence of NADH. The rate of NADH consumption is determined photometrically and is directly 

proportionally to the aspartate aminotransferase (AST) activity in the sample (Bergmeyer et al., 

1986a).  

 The content of kit is R1 (Tris buffer pH 7.8 and aspartate), R2 (NADH, MDH and α - 

ketoglutarate). The working reagent was prepared by dissolving substrate R2 into 15 ml of R1. 

1.00 ml of working reagent was pipetted into each test tube with the addition of 0.10 ml of 

plasma. The mixture was mixed gently, initial absorbance (A1) taken at 1 min and absorbance was 

taken every minute for additional 3 mins at 340 nm at 25oC. The difference between absorbances 

(∆A) and the average absorbance differences per minute (∆A/ min) were calculated. 

-1Concentration of AST (U /I) = ∆A (min ) x 1750 

  One International Unit (IU) is the amount of enzyme that transforms 1 µmol of substrate 

per minute, in standard conditions. The concentration is expressed in units per litre of sample 

(U/I). 

 

 



130 
 

3.2.7.3.8            Assay of Plasma Alanine Aminotransferase Activity 

Alanine aminotransferase UV kinetic test kit (Cypress Diagnostic) was used for this 

assessment. The principle of this assessment was based on the following equations: 

 

Lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate in the 

presence of NADH. The rate of NADH consumption is determined photometrically and is direct 

proportional to the alanine aminotransferase (ALT) activity in the sample (Bergmeyer et al., 

1986b). 

  The content of kit is R1 (Tris buffer PH 7.8 and L-alanine), R2 (NADH, LDH and 

α - ketoglutarate). The working reagent was prepared by dissolving substrate R2 into 15 ml of R1. 

1 ml of working reagent was pipetted into each test tube with the addition of 0.10 ml of plasma. 

The mixture was mixed gently, initial absorbance (A1) taken at 1 min and absorbance was taken 

every minute for additional 3 min at 340 nm at 25oC. The difference between absorbances (∆A) 

and the average absorbance differences per minute (∆A / min) were calculated. 

-1Concentration of ALT (U /I) = ∆A (min ) x 1750 

One International Unit (IU) is the amount of enzyme that transforms 1 µmol of substrate per 

minute, in standard conditions. The concentration is expressed in units per litre of sample (U/I). 

 

3.2.7.3.9            Determination of Plasma Cholesterol Concentration 

A cholesterol test kit (Cypress Diagnostics, Vlaams-Brabant, Belgium) was used for this 

assessment. Cholesterol and its esters are released from lipoproteins by detergents. Cholesterol 

esterase (CHE) hydrolyses the esters and H2O2 is formed in the subsequently enzymatic oxidation 
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of cholesterol by cholesterol – oxidase (CHOD).  The formed hydrogen peroxide (H2O2), is 

detected by a chromogenic oxygen acceptor, phenolaminophenazone in the presence of 

peroxidase (POD). The intensity of the colour formed is proportional to the cholesterol 

concentration in the sample (Zoppi and Fellini, 1976). 

 

where 4-AP is 4-Aminophenazone 

  The content of kit is R1 (Pipes PH .9 and phenol), R2 (CHE, CHOD, POD and 4-

AP) and cholesterol standard solution. Working reagent was prepared by mixing 100 ml of R1 

with 10 ml of R2. Each tube contained 1.00 ml of working reagent and 10 µL of plasma or 10 µL 

of standard or 10 µL of distilled H2O for sample or standard or blank tubes respectively.  These 

tubes were mixed gently and incubated at 25oC for 10 mins. Absorbance (Asample and Astandard) 

were read at 505 nm against blank. The concentration of cholesterol in sample was calculated as 

follows: 

sample

standard

A
Cholesterol concentration = x Cholesterol standard concentration

A
 

 (where cholesterol standard concentration is 200 mg/dl)  

 

3.2.7.3.10          Determination of Plasma Bilirubin Concentration 

  A bilirubin test kit (Randox Laboratories Ltd., UK) was used for this assessment. 

Direct bilirubin reacts with diazotized sulphanilic acid in alkaline medium to form a blue coloured 

complex. Total bilirubin is determined in the presence of caffeine, which releases albumin bound 

bilirubin, by the reaction with diazotized sulphanilic acid (Jendrassik and Grof, 1938). 
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  The content of the kit is R1 (Sulphanilic acid and HCl), R2 (Sodium nitrite), R3 

(Caffeine) and R4 (Tartrate and NaOH). 200 µl of R1, 1000 µl of R3 and 200 µl of sample were 

pipetted into each test tube. 50 µl of R2 was added to each sample tube while 50 µl of distilled 

 H2O was added for the corresponding blank tube. This was done for each sample. The test 

tubes were mixed and incubated for 10 mins at 25oC and 1000 µl of R4 was added, mixed and 

incubated for further 30 min at 25oC. Absorbance of the sample (Asample) was read at 578 nm 

against sample blank. Total bilirubin was calculated as follows: 

Total bilirubin concentration (mg/dl) = 10.8 × Asample 

 

                   Calculation of Plasma Direct Bilirubin Concentration 

  200 µl of R1, 2000 µl of normal saline (0.9% NaCl) and 200 µl of sample were 

pipetted into each test tube. 50 µl of R2 was added to each sample tube while nothing was added 

for the corresponding blank sample tube. This was done for each sample. The test tubes were 

mixed and incubated for 10 min at 25oC. Absorbance of the sample (Asample) was read at 546 nm 

against sample blank. Direct bilirubin concentration was calculated as follows: 

Direct bilirubin concentration (mg/dl) = 14.4 × Asample 

 

3.2.7.4           Evaluation of the Haematological Parameters 

Blood samples were collected by cardiac puncture into ethylenediaminetetraacetic acid 

(EDTA) bottles. The following haematological parameters; packed cell volume (PCV), white 

blood cells (WBC), neutrophil (N), eosinophil (E), lymphocyte (L) and monocyte (M) were 

evaluate according to the methods of Dacie and Lewis (1984).   
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3.2.7.5  Histopathological Studies of the Organs of Experimental Animals 

The histopathological analysis of the kidney, the liver, the spleen and the heart excised 

from the experimental animals were carried out in the histopathology laboratory of the Lagos 

University Teaching Hospital (LUTH), Idi Araba, Lagos, Nigeria. The various organs were cut 

and placed in embedded cassettes. Thereafter, they were fixed with 10% formalin for 1 hour and 

afterwards dehydrated with methanol (70, 90 and 100%) at different concentration in ascending 

concentration and different time in order to remove water from the tissues. Thereafter, clearing 

with xylene was done for 2 to remove alcohol and prepare the tissue for waxing. Embedding was 

done using paraplast wax by impregnating cassettes with molten wax at 60 oC for 3 h.  Slicing 

was done at 5 microns using a microtome. The slide was dyed for 20 min on hot plate. Afterwards, 

dewaxing and hydration were done using xylene and various percentage of alcohol respectively. 

Thereafter, staining was done with cole’s hematoxylin for 10 min to stain the nucleus while eosin 

was used to stain the cytoplasm for 3 min.  

Dehydration was once again carried out in alcohol and alcohol cleared with xylene. A 

mounting medium, dibutylphthalate xylene (DPX) was dropped on the tissue section and they 

were viewed through the microscope. 

 

3.2.8 Evaluation of in vitro Antimalarial Activities and Selectivity Determination of 

Extract of CB 

3.2.8.1  Culture of Malaria Parasites  

P. falciparum (ATCC 30932, FCR-3 strain) was used in this study. It was cultivated by a 

modification of the method of Trager and Jensen (Trager and Jensen, 1976; Jensen and Trager 

1977, Ogunlana et al., 2009). A 5 % hematocrit of type A human red blood cells suspended in 
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RPMI 1640 medium, and supplemented with heat-inactivated 10 % type A human serum was 

used. The plates were placed in a CO2 - O2 - N2 incubator (5% CO2, 5% O2, 90% N2 atmosphere) 

at 37 °C, and the medium was changed daily until 5% parasitemia was attained (which means the 

existence of 5 parasite-infected erythrocytes in every 100 erythrocytes). 

 

3.2.8.2  Culture of Mammalian Cells  

Mouse mammary tumor FM3A cells (wild-type, subclone F28-7) were maintained in a 

suspension culture at 37 °C in a 5% CO2 atmosphere in culture bottles containing mouse 

embryonic stem (ES) cell culture medium supplemented with 2% heat-inactivated fetal bovine 

serum (Gibco, NY, USA) (Yoshioka et al., 1987).  

 

3.2.8.3  Evaluation of in vitro Antimalarial Activity of Various Fractions of CB 

Various concentrations of extracts and isolated compounds including positive control 

samples (quinine hydrochloride, pyrimethamine, artemisinin and mefloquine) were prepared in 

dimethyl sulfoxide (DMSO, Sigma, St Louis, MO, USA)) and water (H2O). 10 µL of each 

solution was added to individual wells of a 24-well multi-dish. Erythrocytes (10 µL) with 0.3 % 

parasitaemia were added to each well containing 990 µL of culture medium to give a final 

hematocrit level of 3 %. The plates were incubated at 37 °C for 72 h in a multigas incubator (5 % 

CO2, 5 % O2, 90 % N2 atmosphere). To evaluate the antimalarial activity of samples, thin blood 

films from each culture were prepared and stained with Giemsa solution. A total of 10000 

erythrocytes per one thin blood film were examined under a microscope. All the tested samples 

were assayed in duplicate at each concentration. Drug-free control cultures were run 

simultaneously. The level of parasitemia in control was between 4 - 5 % at 72 h (Kim et al., 1999). 
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Values were presented as IC50, which is the concentration of sample necessary to inhibit the 

increase in parasite density at 72 h by 50 % of the control. 

 

3.2.8.4 Evaluation of Toxicity of Various Fractions Against Mouse Mammalian Cell 

Line  

Mouse mammalian cell line, FM3A cells grew with a doubling time of about 12 h. Prior to 

exposure to drugs, the cell density was adjusted to 5×104 cells/ml. A cell suspension of 990 µL 

was dispensed to the test plate and 10 µL of the samples at various concentrations suspended in 

DMSO or H2O were added to individual wells in a 24-well multi-dish. The plates were incubated 

at 37 °C in a 5% CO2 atmosphere for 48 h. Triplicate assays were made for each concentration of 

the drugs/C. bonduc extract. Cells were counted using a cell counter CC-130 (Kim et al., 1999). 

The values were presented in IC50, which refers to the concentration of the sample necessary to 

inhibit by 50% the increase in cell density of the control at 48 hrs. Selectivity values for the tested 

drug/compounds and extracts were calculated as follows: 

Selectivity = IC50 value of FM3A cell / IC50 value of P. falciparum 

The antimalarial and cytotoxicity assays were carried out at the Department of 

Pharmaceutical Information Science, Faculty of Pharmaceutical Sciences, Okayama University, 

Tsushima, Okayama, Japan. 

 

3.2.9  In vitro Cytotoxic and Anti-microbial Activities of Various Fractions of CB 

3.2.9.1  Culture of Cancer Cell Lines   

Cancer cell lines, BGC-823 (gastric carcinoma) and HeLa (cervical carcinoma) (BGC - 

823, HeLa) were maintained in a suspension culture at 37 °C in a 5% CO2 atmosphere in plastic 
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bottles containing RPMI - 1640 medium (Nissui Pharmaceuticals, Tokyo, Japan) supplemented 

with 10% heat - inactivated fetal bovine serum albumin (Gibco, NY, U.S.A.). Prior to exposure to 

drugs, the cancer cell lines were cultured in a CO2 incubator for 48 hours and the cell density was 

adjusted to 5×104 cells/well.  

 

3.2.9.2  Preparation of Samples 

Compounds (2.5 mg/ml) were prepared according to their different solubilities either in 

DMSO or H2O. 2 and 8 µl of the sample (2.5 mg/ml) was dispensed into Eppendorf tubes 

containing 48 µl of complete medium (RPMI 1640 containing 10% Fetal Bovine Serum) to make 

a final concentration of 100 and 400 µg/ml for compounds and extracts respectively.  

 

3.2.9.3  Cell growth Inhibition Assay (Pre-test and Evaluation Assessment) 

The sulphorhodamine B (SRB) assay was adopted for a quantitative measurement of cell 

growth and viability (Tang et al., 2010). Cultured cancer cells in RPMI 1640 medium (Sigma, St 

Louis, MO, USA), were seeded in aliquots of 90 µl in 96-well flat-bottomed microtiter plates 

(Greiner). The plates were incubated at 37 °C in a 5% CO2 atmosphere for 48 h. Twenty four 

hours later, 10 µl of samples (pure compounds and solvent fractions) were added to make final 

concentrations of 10 and 40 µg/mL respectively. All of the tested samples were assayed in 

duplicate. After incubation at 37oC and in an atmosphere of 5% CO2 for 48 h, cells were fixed by 

the addition of 25 µl of 80 % ice-cold trichloroacetic acid (CCl3COOH, TCA) per well, incubated 

for 5 mins and refrigerated at 4oC for 1 h. Thereafter, the plates were rinsed in excess cold water 

and dried on absorbent paper. After washing, air-drying and staining for 15 min with 100 µl of 

Sulforhodamine B (SRB) (0.4% SRB in 1% glacial acetic acid), which ensures the full staining of 
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cellular proteins (Skehan et al., 1990), excessive dye was removed by washing with 1% glacial 

acetic acid and dried on absorbent papers. 100 µl of 10 mM Tris was added to each well and 

placed in a plate shaker for 10 mins to solubilize the SRB stain bound to the cellular protein.  

The absorbance of the plates was measured at 560 nm using a microplate reader 

(Molecular Devices, SPECTRAMAX 340, USA). Further assessment was carried out with four 

diluted concentrations (dilution ratio 1:2), if the inhibition was up to 50 % at its pre-test 

assessment. Cell growth inhibition values were expressed as IC50 (50% inhibitory concentration) 

for evaluation assessments and I % (Percentage inhibition) for pre - test assessment. Taxol, 

clinically used as an anticancer drug, was used as a positive control (Tang et al., 2010).  I % was 

calculated in relation to the mean of negative control. 

Percentage inhibition (I %) was calculated by the following equation: 

I % = Cc – Cs × 100 
 Cc 

Cc = viable cell counts of negative control  

 Cs = viable cell counts of sample 

IC50 was calculated by the following equation: 

Log10(IC50) = Log10 (CL) (IH - 50) + log10 (CH) (50 - IL) 
IH - IL 

IC50 = 10(Log
10

(IC
50

); 

IH:  I % above 50%; 

IL:  I % below 50%; 

CH: high drug concentration; and 

CL: low drug concentration 
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3.2.9.4  Anti-microbial Assay  

The anti-microbial experiment was conducted according to the turbidimetric method on 

the bacterium Candida albicans (Tang et al., 2010). C. albicans was inoculated in Mueller Hinton 

Broth (Oxiod, CM0405, Hampshire, England) to McFarland 0.5 and diluted with medium to 

1×106 CFU/ml. Aliquots of 90 µL were filled in 96-well U-bottomed microplate. Samples, 

dissolved in DMSO as decribed previously and diluted with the medium to a total volume of 10 µl, 

were dispensed in the wells to final concentrations of 10 and 40 µg/ml. After culturing at 37oC for 

24 h, absorbance was recorded at 620 nm with the aforementioned microplate reader. The level of 

inhibition was calculated as the percentage of maximum absorbance (negative control) to the 

absorbances of the samples. Miconazole Nitrate (Keygen, China) was used as positive control. 

 

3.2.10  Statistical Analyses 

Inhibition data were expressed as percentage inhibition (I %) and 50% inhibitory 

concentration (IC50) values. Other data were expressed as mean ± standard error of mean (SEM). 

The statistical analysis of the results was carried out by one way analysis of variance (ANOVA) 

using the Statistical Package for the Social Sciences (SPSS), version 15.0 (SPSS Inc., Chicago, IL, 

USA). The least significant difference (LSD) was used to compare the difference between the 

means of the groups of the C. bonduc-treated animals and the recovery group, as well as between 

the C. bonduc-treated animals and the control groups. The test for statistical significance was 

carried out at the 95 % confidence limit.  
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CHAPTER FOUR 

RESULTS 

4.1  Quantitation of Yields of C. bonduc 

The yield of CB (8800 g) from 75% v/v ethanolic solution was 1120 g and the % yield 

was 12.7 %. The yields (% yields) of the petroleum ether - soluble fraction, the ethyl acetate - 

soluble fraction, the nbutanol - soluble fraction and the water - soluble fraction were 13.4 %, 

10.7 %, 15.2 % and 56.3 % respectively. 

 

4.2  Qualitative Phytochemical Assessment of C. bonduc 

In table 4.1 is the summary of the phytoconstituents of twigs and leaves of CB. The 

ethanolic exztract gave positive (+ve) reaction tests for the presence of key metabolites except 

phlobatannins.  
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Table 4.1: Phytochemical Constituents of C. bonduc 

Phytochemicals     Results 

Tannins      + 

Flavonoids      + 

Saponin      + 

Steroids      + 

Phlobatannins      - 

Terpenoids      + 

Cardiac glycosides     + 

Glycosides      + 

+ represents a positive result and - represents a negative result 
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4.3 Quantitation of Isolated Compounds from the Petroleum Ether and Ethyl Acetate 

Fractions of C. bonduc 

TCB 1 (319.3 mg) was collected as a yellow crystalline solid from C6a14b4. It was soluble 

in methanol. Its structure was elucidated and it was designated as compound 1. TCB 2 (25.9 mg) 

was collected from C3a4b2 as a colourless crystalline solid, soluble in chloroform. Its structure 

was elucidated and it was designated as compound 2. TCB 3 was obtained as a colourless 

crystalline solid from C6a16b2S4. It was soluble in chloroform. Its structure was elucidated and it 

was designated as compound 3.  

TCB 4 was obtained impure from C6a16b3S2 as a yellow amorphous solid soluble in 

acetone. TCB 5 (15 mg) was obtained from C6a13b6S2 as a colourless crystalline solid soluble in 

chloroform. Its structure was partially elucidated and it was designated as compound 4. TCB 6 

was obtained from C7a4b3c4d5S5e4 as a colourless crystalline solid soluble in chloroform. Its 

structure was partially elucidated and it was designated as compound 5. TCB 7 (5 mg) was 

obtained impure from C6a14b4d4e5f3g6S2h1 as a white amorphous powder soluble in chloroform. 

TCB 8 (4 mg) was obtained impure from C7a4b3c4d5S5e1f4 as a white amorphous powder soluble 

in chloroform.  

TCB 9 (15.60 mg) was obtained from fraction C10a5b4d5 as yellow powder soluble in 

methanol. Its structure was elucidated and it was designated as compound 6. TCB 10 was the 

same compound as in TCB 9. TCB 11 (10.4 mg) was obtained from fraction C10a5b4d2 as a yellow 

powder soluble in methanol. Its structure was elucidated and it was designated as compound 7. 

TCB 12 was the same compound as in TCB 11. 

 



142 
 

TCB 13 (3.4 mg) was obtained from fraction C10a5b5d4 as a brown powder soluble in 

methanol. TCB 14 (800 mg) was obtained from C14a3S3b2 as a white amorphous solid soluble in 

pyridine. Its structure was elucidated and it was designated as compound 8. TCB 15 (12.8 mg) 

was obtained from C12a4b5c1 as a yellow crystal soluble in methanol. Its structure was elucidated 

and it was designated as compound 9. TCB 16 (7.2 mg) was obtained from C12a4b5c1 as a yellow 

crystal soluble in methanol. Its structure was elucidated and it was designated as compound 10. 

TCB 17 (227 mg) was obtained from C12a3b4c1S1 as a yellow crystal soluble in methanol. Its 

structure was elucidated and found to be the same as TCB 16. TCB 18 (3.4 mg) was obtained 

from C16S5b1 as brown powder soluble in methanol. TCB 20 (12.8 mg) was obtained from 

C12a4b5c3 as a yellow crystal soluble in methanol. Its structure was elucidated and found to be the 

same as TCB 15. TCB 21 (5.2 mg) was obtained from C15S6a1 as a white crystalline solid soluble 

in methanol. Its structure was elucidated and assigned as compound 11.  

TCB 22 (11.4 mg) was obtained from C8a4b4c5d1S1 as white powder soluble in pyridine. 

TCB 23 and TCB 24 were obtained from fractions C8a4b4c5d2S1 and C8a4b4c5d2S1 respectively. 

They were isolated as white powder soluble in pyridine. Their structures were the same as in TCB 

22. TCB 25 was obtained from fraction C7a4b3c4d4S5e4 as a white crystal soluble in chloroform. 

Its structure was the same as in TCB 6. TCB 26 was obtained impure from fraction C16S2a2c1 as a 

white powder soluble in pyridine. TCB 27 (24.4 mg) was obtained from C16S4a2c1 as a brown gel 

soluble in methanol. TCB 28 (6.6 mg), TCB 29 (5.9 mg) and TCB 30 (5.3 mg) were all obtained 

from fraction C19S2a1 as a white powder soluble in methanol. TCB 31 (36.1 mg), TCB 32 (7.2 mg), 

TCB 33 (9 mg) and TCB 34 (24.9 mg) were obtained from C19S2a3 as a yellow crystalline solid 

soluble in methanol. TCB 35 (21.78 mg), TCB 36 (22.78 mg) and TCB 37 (10.30 mg) were 

obtained from C16S1a2b3 as a white powder soluble in pyridine. TCB 38 (12.97 mg) was obtained 
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from C5S1a1 as a white powder soluble in pyridine. TCB 39 (64.19 mg) was obtained from 

C5S1a2b1 as a white powder soluble in pyridine. TCB 40, 41, 42, 43 and 44 (79.5 mg) were 

obtained from C20S2a3 as a yellow amorphous solid soluble in methanol. They were identified as 

the same. TCB 45 (17.6 mg) was obtained from C5S1a2b2c1 as a white powder soluble in 

chloroform. TCB 46 (4.8 mg) was obtained from C5S1a3b2c2 as a white powder soluble in 

chloroform. 

 

4.4 Physical Properties, Spectra Assignments and Structural Elucidation of Pure 

Compounds from C. bonduc 

TCB 1 has a melting point of 208oC (McPherson et al., 1983). Its molecular formula was 

determined as C17H14O4, on the basis of the molecular ion peak of positive ESI-MS m/z 305 

[M+Na]+ (See Appendix 3). The 1H and 13C NMR spectra revealed the following: 1H NMR 

(DMSO-d6, 500 MHz): δ 5.35 (2H, d, J = 1.5 Hz, H-2), 7.73 (1H, d, J = 8.5 Hz, H-5), 6.54 (1H, 

dd, J = 8.5, 2.0 Hz, H-6), 6.31 (1H, d, J = 2.0 Hz, H-8), 7.63 (1H, br s, H-11), 7.39 (2H, d, J = 8.5 

Hz, H-2', H-6'), 7.04 (2H, d, J = 8.5 Hz, H-3', H-5'), 3.81 (3H, s, 4'-OCH3); 
13C NMR (DMSO-d6, 

125 MHz): δ 67.5 (t, C-2), 126.5 (s, C-3), 179.5 (s, C-4), 129.4 (d, C-5), 111.1 (d, C-6), 164.6 (s, 

C-7), 102.4 (d, C-8), 162.5 (s, C-9), 114.2 (s, C-10), 135.2 (d, C-11), 128.8 (s, C-1'), 132.2 (d, C-

2', C-6'), 114.3 (d, C-3', C-5'), 160.3 (s, C-4'), 55.3 (q, 4'-OCH3) (See Appendix 1 and 2). The data 

are in agreement with the literature (Purushothaman et al., 1982; McPherson et al., 1983) and the 

structure of TCB 1 was identified as 7-hydroxy-4'-methoxy-3,11-dehydrohomoisoflavanone 

(bonducellin) (Figure 4.1). 
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Figure 4.1: Chemical Structure of TCB 1, (1) - 7-hydroxy-4'-methoxy-3,11-

dehydrohomoisoflavanone - C17H14O4 (M. wt.: 282) 

 

The molecular formula of TCB 2 was determined as C28H58O on the basis of the molecular 

ion peak of positive ESI-MS m/z 411 [M+H]+. The 1H and 13C NMR spectra revealed the 

following: 1H NMR (CDCl3, 500 MHz): δ 0.88 (3H, t, J = 6.48 Hz, H-1), 3.64 (br s, 28-OH), 3.49 

(2H, d, J = 2.55 Hz, H-28), 1.59 (2H, br s, H-27), 1.55 (2H, m, H-26), 1.26 (2H, d, H-26); 13C 

NMR (CDCl3, 125 MHz): δ 14.1 (s, C-1), 22.6 (d, C-2), 31.9 (d, C-3), 29.3 (d, C-4), 29.6 (d, C-

25), 25.6 (d, C-26), 32.2 (d, C-27), 62.8 (d, C-28). The data are in agreement with the literature 

(Yadava and Nigam, 1987). The structure of TCB 2 was identified as 1-octacosanol (Figure 4.2). 

 

 

Figure 4.2: Chemical Structure of TCB 2, (2) - 1-octacosanol - C28H58O (M. wt.: 410) 

 

The molecular formula of TCB 3 was determined as C22H26O8 on the basis of the 

molecular ion peak at positive ESI-MS m/z 441 [M+Na]+, 859 [2M+Na] +. The 1H and 13C NMR 

spectra revealed the following: 1H NMR (CDCl3, 500 MHz): δ 3.10 (2H, br s, H-1, H-5), 4.73 (2H, 

d, J = 3.0 Hz, H-2, H-6), 3.90 (2H, overlap, H-4a, H-8a), 4.28 (2H, m, H-4b, H-8b), 6.58 (4H, s, 
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H-2', H-2'', H-6', H-6''), 3.90 (12H, s, 3'-OCH3, 3''-OCH3, 5'-OCH3, 5''-OCH3), 5.54 (2H, s, 4'-OH, 

4''-OH); 13C NMR (CDCl3, 125 MHz): δ 54.3 (d, C-1, C-5), 86.0 (d, C-2, C-6), 71.7 (t, C-4, C-8), 

132.0 (s, C-1', C-1''), 102.6 (d, C-2', C-2'', C-6', C-6''), 147.1 (s, C-3', C-3'', C-5', C-5''), 134.2 (s, 

C-4', C-4''), 56.3 (q, 3'-OCH3, 3''-OCH3, 5'-OCH3, 5''-OCH3). The data are in agreement with the 

literature (Garnier et.al., 1975; Shu et al., 2007). The structure of TCB 3 was identified as (+)-

Syringaresinol (Figure 4.3). 

 

Figure 4.3:  Chemical Structure of TCB 3, (3) - (+)-Syringaresinol - C22H26O8 (M. wt.: 418) 

 

TCB 5 has a melting point of 236 oC. Its molecular formula was determined as C25H34O11 

on the basis of the molecular ion peak at positive ESI-MS m/z 533 [M+Na]+, 1043 [2M+Na]+ (See 

Appendix 12) and HRESI-MS as m/z 533.2142 [M+Na] + (calculated as C25H34O11Na, 533.2142) 

(See Appendix 13). It has the following chemical properties: Optical rotation [α]11
D  +33.5 (c 0.12, 

CHCl3); UV (MeOH) λmax (log ε) 203 (3.68) nm; IR (KBr) νmax 3572, 3440, 2950, 1788, 1736, 

1441, 1401, 1368, 1234, 1166, 1062, 1027, 856 cm-1 (See Appendices 14, 15 and 16). The 1H and 

13C NMR data are assigned in agreement with the general structures of the cassane diterpenes 

(Wu et al., 2010) (Table 4.2 and Appendices 4, 5, 6, 7, 8, 9 and 10). TCB 5 (compound 4) was 

partially elucidated as 1α,7α-diacetoxy-5α,6β-dihydroxyl-cass-14(15)-epoxy-16,12-olide (Figure 

4.4).  
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Figure 4.4:  Chemical Structure of TCB 5, (4) - 1α,7α-diacetoxy-5α,6β-dihydroxyl-cass-

14(15)-epoxy-16,12-olide (M. wt.: 310) 

 

TCB 6 (compound 5) has a melting point of 243oC. Its molecular formula was determined as 

C26H38O9 on the basis of the molecular ion peak at positive ESI-MS m/z 517[M+Na]+ (See 

Appendix 27), 1011 [2M+Na]+ and HRESI-MS as m/z 517.2402 [M+Na] + (calculated as 

C26H38O9Na, 517.2413 without adjustment) ((See Appendix 26)). It has the following chemical 

properties: Optical rotation [α]18
D  -74.7 (c 0.13, CHCl3); UV (MeOH) λmax (log ε) 219 (3.98) nm 

(Figure 4.37); IR (KBr) νmax 3569, 3541, 3439, 2981, 2939, 1745, 1649, 1369, 1335, 1259, 1226, 

1170, 1065, 1041, 951, 935, 902 cm-1 (See Appendices 28, 29, 30); 1H NMR (CDCl3, 500 MHz) 

and 13C NMR (CDCl3, 125 MHz) data, (Table 4.3 and See Appendices 19, 20, 21, 22, 23, 24 and  

25). The 1H and 13C NMR spectra data are similar to those of 12α-ethoxyl-1α,6α,7β-triacetoxy-

5α,14β-dihydroxy-cass-3(15)-en-16, 12-olide (Wu et al., 2010), with the similar carbon skeleton 

and the presence of ethyl signals at δH3.52 (1H, m, 12-OCH2-a), δH3.17 (1H, m, 12-OCH2-b), 

δH1.13 (3H, overlapped, 12-CH2CH3), δC58.7 (t, 12-OCH2CH3) and δC14.8 (q, 12-OCH2CH3) and 

the absence of acetoxyl signals at 6- and 7- positions. The structure of TCB 6 was elucidated as 

12α-ethoxy-1α,14β-diacetoxy-2α,5α-dihydroxy-cass-13(15)-en-16,12-olide (Figure 4.5).  
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Figure 4.5: Chemical Structure of TCB 6, (5) - 12α-ethoxy-1α,14β-diacetoxy-2α,5α-

dihydroxy-cass-13(15)-en-16,12-olide (M. wt.: 494) 

 

The molecular formula of TCB 9 was determined as C16H14O4 on the basis of the 

molecular ion peak at positive ESI-MS m/z 271 [M+H]+ and 293 [M+Na]+ (See Appendix 35). 

The 1H and 13C NMR data revealed the following: 1H NMR (Methanol-d4, 400 MHz): δ 7.50 (2H, 

d, J = 8.4 Hz, H-2, H-6), 6.82 (2H, d, J = 8.4 Hz, H-3, H-5), 7.56 (1H, d, J = 15.6 Hz, H-7), 7.41 

(1H, d, J = 15.6 Hz, H-8), 6.51 (1H, br s, H-3'), 6.45 (1H, br d, J = 8.4 Hz, H-5'), 7.57 (1H, d, J = 

8.4 Hz, H-6'), 3.88 (3H, s, 2'-OCH3); 
13C NMR (Methanol-d4, 100 MHz): δ 128.0 (s, C-1), 131.4 

(d, C-2, C-6), 116.9 (d, C-3, C-5), 161.2 (s, C-4), 144.2 (d, C-7), 125.1 (d, C-8), 193.2 (s, C-9), 

121.8 (s, C-1'), 162.5 (s, C-2'), 100.1 (d, C-3'), 164.5 (s, C-4'), 108.9 (d, C-5'), 133.7 (d, C-6'), 

56.1 (q, 2'-OCH3) ()See Apendices 33 and 34) (Namikoshi et al., 1987a; Liu et al., 2009; Fu et al., 

2008). The 13C and 1H NMR data correlated with the signals for Isoliquiritigenin except for the 

additional signal at δC56.1, δH3.88 (3H, s, 2'-OMe) for the methoxy group at C-2' (Hwang et al., 

1998). The structure of TCB 9 was identified as 4,4'-dihydroxy-2'-methoxy-chalcone (2'-

methoxyisoliquiritigenin) (Figure 4.6).  
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Figure 4.6: Chemical Structure of TCB 9, (6) - 4,4'-dihydroxy-2'-methoxy-chalcone - 

C16H14O4 (M. wt.: 270) 

 

TCB 11 (compound 7) has a melting point in range of 248 to 249oC (Namikoshi et al., 

1987b). Its molecular formula was determined as C16H12O4 on the basis of the molecular ion peak 

of positive ESI-MS m/z 269 [M+H] +(See Appendix 38). The 1H and 13C NMR spectra revealed 

the following: 1H NMR (Methanol-d4, 400 MHz): δ 5.35 (2H, br s, H-2), 7.80 (1H, d, J = 8.0 Hz, 

H-5), 6.52 (1H, br d, J = 8.0 Hz, H-6), 6.31 (1H, br s, H-8), 7.71 (1H, br s, H-11), 7.25 (2H, d, J = 

7.6 Hz, H-2', H-6'), 6.88 (2H, d, J = 7.6 Hz, H-3', H-5'); 13C NMR (Methanol-d4, 100 MHz): δ 

69.0 (t, C-2), 127.1 (s, C-3), 183.1 (s, C-4), 130.7 (d, C-5), 112.2 (d, C-6), 166.6 (s, C-7), 103.6 (d, 

C-8), 164.8 (s, C-9), 115.9 (s, C-10), 138.2 (d, C-11), 129.6 (s, C-1'), 133.5 (d, C-2', C-6'), 116.7 

(d, C-3', C-5'), 160.5 (s, C-4') (See Appendices 36 and 37).  The NMR spectra are very similar to 

those of TCB 1. The data are in agreement with the literature (Namikoshi et al., 1987b). TCB 11 

was identified as 7,4'-dihydroxy-3,11-dehydrohomoisoflavanone (Figure 4.7). 
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Figure 4.7: Chemical Structure of TCB 11, (7) - 7,4'-dihydroxy-3,11-

dehydrohomoisoflavanone - C16H12O4 (M. wt.: 268)   

 

The molecular formula of TCB 14 was determined as C35H60O6 on the basis of the 

molecular ion peak of positive ESI-MS m/z 576 [M+Na]+. The 1H and 13C NMR spectra revealed 

the following: 1H NMR (Pyridine-d6, 500 MHz): δ 1.38 (2H, t, J =  Hz, H-1), 1.53 (2H, m, H-2),  

2.72 (1H, d, J = 12.84 Hz, H-3), 2.13 (2H, d, J = 11.48 Hz, H-4)  1.73 (1H, d, J = 11.30 Hz, H-7), 

2.05 (1H, m, H-7), 1.42 (1H, s, J = 18.78 Hz, H-8), 1.50 (2H, m, H-11), 1.59 (2H, m, H-12), 1.24 

(2H, d, J = 6.82 Hz, H-19), 1.24 (2H, d, J = 6.82 Hz, H-20), 1.55 (2H, m, H-27), 0.97 (3H, d, J = 

6.25 Hz, H-29), 0.92 (3H, s, H-25), 0.92 (3H, s, H-26), 0.91 (3H, s, J = 5.76 Hz, H-28),  5.04 (1H, 

d, J = 7.68 Hz, H-1'), 3.94 (1H, s, H-2'), 3.58 (1H, s, H-3'), 3.97 (1H, s, H-5'), 3.98 (2H, s, H-6'); 

13C NMR (pyridine-d6, 125 MHz): δ 37.0 (d, C-1) 29.6 (d, C-2), 78.7 (t, C-3), 39.9 (d, C-4), 

141.03 (q, C-5), 122.0 (t, C-6), 32.2 (d, C-7), 30.4 (t, C-8), 50.46 (t, C-9), 37.6 (q, C-10), 21.6 (d, 

C-11), 39.9 (d, C-12), 42.6 (q, C-13), 56.9 (t, C-14), 26.5 (d, C-15), 25.8 (d, C-16), 56.2 (t, C-17), 

19.3 (s, C-18), 12.1 (s, C-19), 36.5 (t, C-20), 34.3 (d, C-21), 26.5 (d, C-22), 46.2 (t, C-23), 30.1 (t, 

C-24), 21.4 (s, C-25), 20.1 (s, C-26), 23.5 (d, C-27), 12.3 (s, C-28), 19.5 (s, C-29), 102.7 (t, C-1'), 

75.4 (t, C-2'), 78.3 (t, C-3'), 62.9 (t, C-4'), 78.5 (t, C-5'), 71.8 (d, C-6'). The data are in agreement 

with the literature (Chen and Yang, 2008; Shu et al., 2008). TCB 14 was identified as Daucosterol 

(Figure 4.8).  
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Figure 4.8: Chemical Structure of TCB 14, (8) - Daucosterol - C35H60O6 (M. wt.: 576) 

 

The molecular formula of TCB 15 was determined as C15H10O6 from its molecular ion 

peak at positive ESI-MS m/z 287 [M+H]+ (See Appendix 41). The 1H and 13C NMR revealed the 

following: 1H NMR (Methanol-d4, 400 MHz) (See Appendices 39 and 40): δ 6.54 (1H, s, H-3), 

6.20 (1H, d, J = 1.2 Hz, H-6), 6.44 (1H, br s, H-8), 7.38 (1H, overlap, H-2'), 6.90 (1H, d, J = 8.4 

Hz, H-5'), 7.38 (1H, overlap, H-6'); 13C NMR (Methanol-d4, 100 MHz): δ 166.0 (s, C-2), 103.8 (d, 

C-3), 183.8 (s, C-4), 163.2 (s, C-5), 100.1 (d, C-6), 166.3 (s, C-7), 95.0 (d, C-8), 159.4 (s, C-9), 

105.3 (s, C-10), 123.6 (s, C-1'), 114.1 (d, C-2'), 147.0 (s, C-3'), 151.0 (s, C-4'), 116.7 (d, C-5'), 

120.3 (d, C-6'). The data are in agreement with the literature (Wagner and Chari, 1976; Suarez et 

al., 1984). TCB 15 was identified as 5,7,3',4'-tetrahydroxy-flavone (Luteolin) (Figure 4.9).  

 

Figure 4.9: Chemical Structure of TCB 15, (9) - 5,7,3',4'-tetrahydroxy-flavone - C15H10O6 (M. 

wt.: 286)   
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The molecular formula of TCB 16 was determined as C16H12O7 on the basis of the 

molecular ion peak at positive ESIMS m/z 317 [M+H]+ (Appediced 44). The 1H and 13C NMR 

spectra revealed the following: 1H NMR (Methanol-d4, 400 MHz) (See Appendices 42 and 43): δ 

6.20 (1H, d, J = 2.0 Hz, H-6), 6.39 (1H, d, J = 2.0 Hz, H-8), 7.63 (1H, d, J = 2.0 Hz, H-2'), 7.53 

(1H, dd, J = 8.4, 2.0 Hz, H-5'), 6.90 (1H, d, J = 8.4 Hz, H-6') , 3.78 (3H, s, 3-OCH3); 
13C NMR 

(Methanol-d4, 100 MHz): δ 158.0 (s, C-2), 139.5 (s, C-3), 180.0 (s, C-4), 163.1 (s, C-5), 99.7 (d, 

C-6), 165.9 (s, C-7), 94.7 (d, C-8), 158.4 (s, C-9), 105.8 (s, C-10), 122.9 (s, C-1'), 116.4 (d, C-2'), 

146.5 (s, C-3'), 150.0 (s, C-4'), 116.4 (d, C-5'), 122.3 (d, C-6'), 60.5 (q, 3-OCH3) (Jurd and 

Horowitz, 1957; Nguyen et al., 2007).  The data correlated with the signals for quercetin except 

for the presence of a methoxyl signal at δC60.5, δH3.78 (3H, s) (Tachakittirungrod et al., 2007). 

TCB 16 was identified as 5,7,3',4'-tetrahydroxy-3-methoxyflavone (quercetin-3-methyl ether) 

(Figure 4.10). 

 

Figure 4.10: Chemical Structure of TCB 16, (10) - 5,7,3',4'-tetrahydroxy-3-methoxyflavone - 

C16H12O7 (M. wt.: 316)  

 

The molecular formula of TCB 21 was determined as C7H6O4, on the basis of the 

molecular ion peak at positive ESI-MS m/z 155 [M+H]+. The 1H and 13C NMR spectra revealed 

the following: 1H NMR (Methanol-d4, 500 MHz): δ 6.79 (1H, d, J = 8.0 Hz, H-6), 7.42 (1H, 

overlap, H-3), 7.42 (1H, overlap, H-5); 13C NMR (Methanol-d4, 100 MHz): δ 151.5 (s, C-1), 
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146.1 (s, C-2), 115.8 (d, C-3), 123.2 (s, C-4), 123.9 (d, C-5), 117.8 (d, C-6), 170.2 (s, 4-COOH). 

The data are in agreement with the literature (Perkin, 1897). TCB 21 was identified as 

Protocatechuic acid (Figure 4.11). 
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Figure 4.11: Chemical Structure of TCB 21, (11) - Protocatechuic acid  - C7H6O4 (M. wt.: 154)  

 

The molecular formula of TCB 22 was determined as C19H38O4 on the basis of the 

molecular ion peak at positive ESI-MS m/z 353 [M+Na]+. The 1H and 13C NMR spectra revealed 

the following: 1H NMR (pyridine-d6, 500 MHz): δ 4.61 (1H, dd, J = 11.0, 6.0 Hz, H-1a), 4.68 (1H, 

dd, J = 11.0, 4.5 Hz, H-1b), 4.41 (1H, m, H-2), 4.09 (2H, d, J = 5.5 Hz, H-3), 2.31 (1H, m, H-2'), 

1.60 (1H, m, H-3'), 1.19 (24H, overlap, H-4' - H-15'), 0.82 (1H, m, H-16') ; 13C NMR (pyridine-d6, 

125 MHz): δ 66.8 (t, C-1), 71.0 (d, C-2), 64.3 (t, C-3), 173.8 (s, C-1'), 14.3 (q, C-16'). TCB 22 

was identified as 1-O-Hexadecanolenin (Figure 4.12).  

 

 

Figure 4.12: Chemical Structure of TCB 22, (12) - 1-O-Hexadecanolenin - C19H38O4 (M. Wt.: 

330) 
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The molecular formula of TCB 27 was determined as C20H18O10 on the basis of the 

molecular ion peak at positive ESI-MS m/z 441 [M+Na]+. The 1H and 13C NMR spectra revealed 

the following: 1H NMR (Methanol-d4, 400 MHz): δ 6.18 (1H, br s, H-6), 6.37 (1H, br s, H-8), 

8.01 (2H, d, J = 8.4 Hz, H-2', H-6'), 6.86 (2H, d, J = 8.4 Hz, H-3', H-5'), 5.16 (1H, d, J = 6.8 Hz, 

H-1''), 3.74 (1H, d, J = 4.79 Hz, H-2''), 3.48 (1H, t, J = 5.77 Hz, H-3''),  3.41 (1H, d, J = 8.21 Hz, 

H-4''), 3.76 (2H, s, J = 4.60 Hz, H-5''); 13C NMR (Methanol-d4, 100 MHz): δ 158.4 (s, C-2), 135.3 

(s, C-3), 179.4 (s, C-4), 163.0 (s, C-5), 99.9 (d, C-6), 166.0 (s, C-7), 94.8 (d, C-8), 158.9 (s, C-9), 

105.6 (s, C-10), 122.6 (s, C-1'), 132.2 (d, C-2', C-6'), 116.1 (d, C-3', C-5'), 161.6 (s, C-4'), 104.6 

(d, C-1''), 75.3 (d, C-2''), 77.5 (d, C-3''), 71.0 (d, C-4''), 67.2 (t, C-5'') (Kruglii and Glyzin, 1968). 

Additional signals at δC1''104.6, δH1''5.16; δC2''75.3, δH2''3.74; δC3''77.5, δH3''3.48; δC4''71.0, δH4''3.41; 

δC5''67.2, δH5''3.76 were ascribed to the xylose moiety attached to the C-3 of the flavonol A-ring. 

The data are in agreement with the literature (Kruglii and Glyzin, 1968). TCB 27 was therefore 

identified as kaempferol-3-O-β-D-xylopyranoside (Figure 4.13).  

  

 

Figure 4.13: Chemical Structure of TCB 27, (13) - kaempferol-3-O-β-D-xylopyranoside - 

C20H18O10 (M. Wt.: 418) 
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The molecular formula of TCB 40 was determined as C26H28O14 on the basis of the 

molecular ion peak at positive ESIMS m/z 565 [M+H]+. The 1H and 13C NMR spectra revealed 

the following: 1H NMR (Methanol-d4, 500 MHz): δ 6.06 (1H, br s, H-6), 6.24 (1H, br s, H-8), 

7.92 (2H, d, J = 8.5 Hz, H-2', H-6'), 6.82 (2H, d, J = 8.5 Hz, H-3', H-5'), 5.53 (1H, d, J = 7.0 Hz, 

H-1''), 5.21 (1H, br s, H-1'''); 13C NMR (Methanol-d4, 125 MHz): δ 158.1 (s, C-2), 134.3 (s, C-3), 

179.1 (s, C-4), 162.9 (s, C-5), 99.8 (d, C-6), 165.5 (s, C-7), 94.7 (d, C-8), 158.5 (s, C-9), 105.8 (s, 

C-10), 122.9 (s, C-1'), 132.0 (d, C-2', C-6'), 116.1 (d, C-3', C-5'), 161.2 (s, C-4'), 101.2 (d, C-1''), 

79.3 (d, C-2''), 77.9 (d, C-3''), 72.2 (d, C-4''), 66.9 (t, C-5''), 102.5 (d, C-1'''), 71.3 (d, C-2'''), 72.3 

(d, C-3'''), 74.0 (d, C-4'''), 70.0 (d, C-5'''), 17.7 (q, C-6'''). The data are in agreement with the 

literature (Moon et al., 2010; Cui et al., 2003). TCB 40 was identified as Kaempferol-3-O-α-L-

rhamnopyranosyl-1→2)-β-D-xylopyranoside (Figure 4.14). 

  

O

O

OH

OH

HO

O

HO

HO

OH

H3C

O

HO

HO

O

O

1''

2'''

5''

3'''

1'''

4'''

5''6'''

2

3

45
6

7
8

9

10

1'

2'

4'

3'

5'6'

4''

 

Figure 4.14: Chemical Structure of TCB 40, (14) - kaempferol-3-O-α-L-rhamnopyranosyl-(1 → 

2)-β-D-xylopyranoside - C26H28O14 (M. Wt.: 564) 
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Table 4.2:  1H, 13C-NMR and DEPT Spectral Data Assignment for TCB 5 
1H NMR and 13C NMR data for compound TCB 5 in MeOH (δ in ppm, J in Hz) 

No.  δC   δH 

1  76.3 (d)  3.86 (1H, s)  

2  23.0 (t)   1.80 (1H, overlapped H-2a), 1.55 (1H, m)  

3  32.5 (t)   1.25 (1H, overlapped H-3a), 1.61 (1H, overlapped, H-3b) 

4  38.9 (s)                        - 

5                      80.5 (s)                        - 

6  78.0 (d)                3.70 (1H, s, J = 7.30 Hz) 

7  75.5 (d)  4.73 (1H, s) 

8  41.7 (d)  2.94 (1H, m) 

9  30.8 (d)  1.52 (1H, m) 

10  54.3 (s)  -  

11  33.8 (t)   1.77 (1H, d, J = 3.55 Hz, H-11a), 1.55 (1H, m H-11b) 

12  77.0 (d)                       3.88 (1H, s, J = 9.55 Hz) 

13                    42.8 (d)                       3.90 (1H, s, J = 10.05 Hz) 

14                    141.5 (s)                     - 

15                    115.3 (d)  5.56 (1H, s)  

16                    178.1 (s)  - 

17                    24.3 (q)  1.15 (3H, s)  

18                    24.3 (q)  1.14 (3H, s) 

19                    16.2 (q)  1.19 (3H, s)  

1-OCOCH3 169.5 (s)  -  

1-OCOCH3     21.0 (q)  2.02 (3H, s) 

7- OCOCH3 171.7 (s)  - 

7- OCOCH3 20.8 (q)  2.10 (3H, s)  

14-COOCH3 173.2 (s)  - 

14- COOCH3 52.3 (q)  3.69 (3H, s)      
1H NMR and 13C NMR were recorded at 500 and 125 MHz respectively in CDCl3, Rotating-frame Overhauser Effect 

Spectroscopy (ROESY) (Figure 4.21), Heteronuclear Multiple Bond Coherence (HMBC) (Figure 4.20), Heteronuclear Multiple 

Quantum Coherence (HMQC) (Figure 4.19) and Correlation Spectroscopy (COSY) (Figure 4.18) were recorded at 600 MHz. 
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Table 4.3:  1H, 13C-NMR and DEPT Spectral Data Assignment for TCB 6 
1H NMR and 13C NMR data for compound TCB 6 in MeOH (δ in ppm, J in Hz) 

No.  δC   δH 

1  74.3 (d)  5.21 (1H, s)  

2  67.0 (d)  5.28 (1H, m)  

3  35.7 (t)   1.94 (1H, overlapped H-3a), 1.40 (1H, overlapped, H-3b) 

4  40.1 (s)                        - 

5                      76.5 (s)                        - 

6  25.1 (t)                1.76 (1H, m, H-6a), 1.54 (1H, m, H-6b) 

7  19.1 (t)   1.88 (1H, overlapped, H-7a), 1.70 (1H, m, H-7b) 

8  47.4 (d)  1.54 (1H, overlapped) 

9  34.2 (d)  2.45 (1H, t, J = 13.0 Hz) 

10  45.0 (s)  -  

11  40.1 (t)  2.11 (1H, d, J = 13.0 Hz, H-11a), 1.28 (1H, t, J = 13.0 Hz, H-11b), 

12  106.9 (s)                      - 

13                    173.1 (s)                      - 

14                    74.8 (s)                        - 

15                    115.1, (d)  6.02 (1H, s)  

16                    168.7 (s)  - 

17                    20.2 (q)  1.41, (3H, s)  

18                    28.1 (q)  1.09, (3H, s) 

19                    25.6 (q)  1.16 (3H, s)  

20                    16.8 (q)  1.10 (3H, s) 

1-OCOCH3 168.9 (s)  -  

1-OCOCH3     20.8 (q)  2.17, (3H, s) 

12-OCH2CH3 58.7 (t)   3.52 (1H, m, 12-OCH2-a), 3.17 (1H, m, 12-OCH2-b) 

12-OCH2CH3 14.8 (q)  1.13, (3H, overlapped)  

14-OCOCH3 170.3 (s)  - 

14-OCOCH3 20.9 (q)  1.98, (3H, s)      
1H NMR and 13C NMR were recorded at 500 and 125 MHz respectively in CDCl3, Rotating-frame Overhauser Effect 

Spectroscopy (ROESY) (Figure 4.34), Heteronuclear Multiple Bond Coherence (HMBC) (Figure 4.33), Heteronuclear Multiple 

Quantum Coherence (HMQC) (Figure 4.31) and Correlation Spectroscopy (COSY) (Figure 4.32) were recorded at 600 MHz. 
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Figure 4.15:  Major HMBC (H→C) Correlations for TCB 6 
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4.5 In vivo antioxidant activity of the crude extract of Caesalpinia bonduc 

The antioxidant activities of C. bonduc were studied by assaying for antioxidant enzymes. 

Compared with the controls, there were significant increases in the peroxidase and catalase 

activities of the extract treated groups at all doses. Compared with the positive and negative 

controls (rats treated with 10 mg vitamin C/kg bwt and rats treated with 10 mg amodiaqiune/kg 

bwt respectively), these increases are highly significant in rats treated with 150 and 200 mg C. 

bonduc/kg bwt (Figures 4.16 and 4.17). The localization of radical formation resulting in lipid 

peroxidation, measured as the concentration of malondialdehyde (MDA) and TBARS, was 

significantly increased in negative amodiaquine control and decreased in graded doses in extract 

and vitamin C treated rats compared with normal control (Figure 4.18).      
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Figure 4.16: Bar Chart Showing the Effect of the Ethanolic Extract of C. bonduc on the 

Peroxidase Activity in Experimental Rats. * means that the difference between the control and the 

treated groups is significant at p ˂ 0.05. a means that the difference between vitamin C and the 

other treated groups is significant at p ˂ 0.05. Values are presented as mean ± SEM of six 

replicates. 
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Figure 4.17: Bar Chart Showing the Effect of the Ethanolic Extract of C. bonduc on the 

Catalase Activity of the Experimental Rats. * means that the difference between the control and 

the treated groups is significant at p ˂  0.05. a means that the difference between vitamin C and the 

other treated groups is significant at p ˂ 0.05. Values are presented as mean ± SEM of six 

replicates. 
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Figure 4.18: Bar Chart Showing the Effect of the Ethanolic Extract of Caesalpinia bonduc on 

TBARS Concentration of the Experimental Rats. * means that the difference between the control 

and the treated groups is significant at p ˂ 0.05. a  means that the difference between vitamin C 

and the other treated groups is significant at p˂0.05. Values are presented as mean ± SEM of six 

replicates. 
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4.6 Sub-acute Toxicological Evaluation of CB on Food Intake, Body and Relative Organ 

Weights of Experimental Rats  

The water and food consumptions of the animals treated with the extract at doses of 200 

and 400 mg CB/kg bwt did not differ with controls A and B. However, the consumptions of the 

other groups (800 and 1600 mg CB/kg bwt) were reduced compared to control A. Nevertheless, 

the body weights of all the experimental animals were observed to increase progressively 

throughout the duration of the experiment (Figure 1.19). No significant changes in the relative 

organ weights were observed in rats treated with 200 mg CB/kg bwt compared with the control. 

However, there were significant increases in organ weights in rats treated with higher doses of CB 

and in the recovery test groups (Table 4.4).  

  

4.7 Sub-acute Toxicological Evaluation of the Ethanolic Extract of CB on Biochemical 

Parameters of Experimental Rats 

There was no significant alteration in the plasma biochemical parameters: alanine 

aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TB), direct bilirubin 

(DB), indirect bilirubin (IB), cholesterol (PC), urea (PU), triglyceride (PTG), total protein (TP) 

and creatinine (PCT)) in rats treated with 200 mg CB/kg bwt in comparison with rats treated with 

distill water in control A. However, there was a significant reduction in the plasma glucose (PG) 

concentration and increase in the plasma uric acids (PUA) in rats treated with 200 mg CB/kg bwt 

(Tables: 4.5, 4.6 and 4.7). Plasma enzymes levels (AST and ALT) and some plasma biochemical 

parameters (PTG, TB, PU, PUA, PC) were significantly increased in rats treated with higher 400, 

800 and 1600 mg CB/kg bwt in comparison with control A and the extract treated dose of 200 

mg/kg body weight. The levels of glucose, total plasma protein, indirect bilirubin, direct bilirubin 
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and creatinine were slightly altered at extract doses of 400, 800, 1600 mg/kg body weights of 

experimental Wistar rats. 

It was also observed that there was no significant alteration in the biochemical parameters 

of the extract treated test groups (200, 400, 800, 1600 mg/kg body weight) compared with the 

extract treated recovery groups (200R, 400R, 800R and 1600R).  

 

4.8 Haematological Evaluation of Sub-acute Toxicological Effect of the Ethanolic 

Extract of CB on Experimental Rats 

There was no significant change in the number of white blood cells, neutrophils, 

lymphocytes, monocytes and packed cell volume of the extract treated rats at 200mg/kg body 

weight compared with the control. However, these haematological parameters were significantly 

altered at extract doses of 400, 800 and 1600 mg/kg body weight compared with the control and 

with the dose of 200 mg/kg body weight, with a significant increase in lymphocytes counts and a 

decrease in white blood cells, neutrophil and monocyte counts (Table 4.8). 
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Figure 4.19: Changes in Body Weight of Experimental Animals for Sub-acute Study (See 

Appendix 45) 
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Table 4.4: Relative Organ Weights of Animals in the Sub-acute Toxicological Evaluation  

Groups  liver    Heart   Kidney   spleen 

Control A 0.033±0.00  0.003±0.00  0.003±0.00  0.003±0.00 

Control B 0.031±0.00  0.003±0.00  0.003±0.00  0.003±0.00 

200 mg/kg 0.035±0.01  0.003±0.00  0.003±0.00  0.004±0.00 

200R  0.051±0.08*  0.004±0.00  0.004±0.00  0.004±0.00 

400 mg/kg 0.036±0.01  0.003±0.00  0.003±0.00  0.003±0.00  

400R  0.033±0.00  0.004±0.00  0.005±0.00*  0.003±0.00 

800 mg/kg 0.043±0.01*  0.004±0.00*  0.004±0.00*               0.006±0.00* 

800R  0.049±0.00*  0.003±0.00  0.004±0.00            0.005±0.00* 

1600 mg/kg 0.039± 0.00  0.004±0.00  0.003±0.00  0.003±0.00 

1600R  0.054±0.00*  0.004±0.00*  0.004±0.00*  0.004±0.00 

 

Values are presented as mean ± SEM (n = 5 readings). Values marked with * are significantly different at p ˂ 0.05 

compared with control. Control A, Control B, 200 mg/kg, 200R, 400 mg/kg, 400R, 800 mg/kg, 800R, 1600 mg/kg 

and 1600R represent groups of rats treated with distill water; rats treated with sodium caboxylmethyl cellulose; rats 

treated with 200 mg CB/kg bwt; recovery group of rats treated with 200 mg CB/kg bwt; rats treated with 400 mg 

CB/kg bwt; recovery group of rats treated with 400 mg CB/kg bwt; rats treated with 800 mg CB/kg bwt; recovery 

group of rats treated with 800 mg CB/kg bwt; rats treated with 1600 mg CB/kg bwt and recovery group of rats treated 

with 1600 mg CB/kg bwt respectively. 
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Table: 4.5: Effect of Sub-acute Toxicological Evaluation of CB on Liver Function Markers of 

the Animals  

Groups  ALT (U/I)  AST (U/I)  TB (mg/dl)  DB (mg/dl)  

Control A 243.06±23.7  21.19±2.8  0.17±0.0  0.09±0.0 

Control B 246.46±51.0  25.08±0.6  0.11±0.0  0.06±0.0 

200 mg/Kg 242.86±44.5  25.67±1.2  0.17±0.0  0.07±0.0 

200R  247.60±28.9  28.00±1.0  0.22±0.0  0.12±0.0 

400 mg/kg 334.83±11.7*c  32.67±1.8*  0.19±0.0  0.05±0.0 

400R  323.17±12.6*c  34.22±3.4*  0.21±0.0  0.06±0.0 

800 mg/kg 320.83±19.8*c  33.25±0.6*  0.23±0.0*  0.11±0.0 

800R  310.92±20.3   33.06±1.6*  0.21±0.0  0.15±0.0*c 

1600 mg/kg 320.06±13.1*c  31.31±2.5*  0.27±0.0*c  0.11±0.0 

1600R  304.31±20.1   32.96±0.2*  0.30±0.0*c  0.09±0.0 

 

Values are presented as mean ± SEM (n = 5 readings) (ALT, AST, TB, DB represent Alanine aminotransferase 

activity; aspartate aminostrasferase activity; total bilirubin concentration and direct bilirubin concentration 

respecvtively). Values marked with * are significantly different at p ˂ 0.05 compared with control A while values 

marked with superscript c ‘c’  and d ‘d’  are significantly different at p ˂ 0. 05 compared with dose at 200 mg/kg body 

weight of experimental animals and recovery groups respectively.  Control A, Control B, 200 mg/kg, 200R, 400 

mg/kg, 400R, 800 mg/kg, 800R, 1600 mg/kg and 1600R represent groups of rats treated with distill water; rats treated 

with sodium caboxylmethyl cellulose; rats treated with 200 mg CB/kg bwt; recovery group of rats treated with 200 

mg CB/kg bwt; rats treated with 400 mg CB/kg bwt; recovery group of rats treated with 400 mg CB/kg bwt, rats 

treated with 800 mg CB/kg bwt, recovery group of rats treated with 800 mg CB/kg bwt, rats treated with 1600 mg 

CB/kg bwt and recovery group of rats treated with 1600 mg CB/kg bwt. 
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Table: 4.6: Effect of Sub-acute Toxicological Evaluation of CB on Kidney Function Markers 

of the Animals  

Groups  PUA (mg/dl)  PU (mg/dl)  PCT (mg/dl)         PTG (mg/dl) 

Control A 0.39±0.0c  93.92±7.1  1.08±0.1         64.18±3.5 

Control B 1.50±0.2c  84.53±4.0  0.88±0.1         72.42±3.2 

200 mg/kg 4.56±0.4*  85.87±14.2  0.94±0.1         71.95±17.2 

200R  6.60±0.4*  83.18±11.7  0.89±0.3         123.01±26.2 

400 mg/kg 6.89±0.9*c            112.70±12.3*  1.08±0.1         116.90±30.4 

400R  9.00±0.4*c  107.33±7.1  1.15±0.0         123.01±4.4 

800 mg/kg 8.56±0.9*c  112.70±4.7*  1.07±0.2         144.13±37.9*c 

800R  11.60±0.4*c  118.07±2.7  1.10±0.0         149.26±8.6*c 

1600 mg/kg 10.00±1.4*c           185.15±44.8*c  1.23±0.3         154.46±42.4*c 

1600R  13.60±0.8*c  187.83±9.7*c  1.16±0.1         141.59±3.9*c 

 

Values are presented as mean ± SEM (n = 5 readings); PUA, PU, PCT and PTG represent uric acid concentration, 

urea concentration, creatinine concentration and triglyceride concentration. Values marked with * are significantly 

different at p ˂ 0.05 compared with control A while values marked with superscript c ‘c’  and d ‘d’  are significantly 

different at p ˂ 0.05 compared with dose at 200 mg/kg body weight of experimental animals and recovery groups 

respectively. Control A, Control B, 200 mg/kg, 200R, 400 mg/kg, 400R, 800 mg/kg, 800R, 1600 mg/kg and 1600R 

represent groups of rats treated with distill water; rats treated with sodium caboxylmethyl cellulose; rats treated with 

200 mg CB/kg bwt; recovery group of rats treated with 200 mg CB/kg bwt; rats treated with 400 mg CB/kg bwt; 

recovery group of rats treated with 400 mg CB/kg bwt, rats treated with 800 mg CB/kg bwt, recovery group of rats 

treated with 800 mg CB/kg bwt, rats treated with 1600 mg CB/kg bwt and recovery group of rats treated with 1600 

mg CB/kg bwt. 
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Table: 4.7: Effect of Sub-acute Toxicological Evaluation of CB on Other Biochemical 

Markers of the Animals  

Groups  TP (g/dl)  PG (mg/dl)  PC (mg/dl)  IB (mg/dl) 

Control A 9.04±1.5  354.87±5.9  54.44±4.0  0.08±0.0 

Control B 9.56±2.2  365.00±1.9  50.64±10.2  0.04±0.0 

200 mg/kg 8.62±1.7  222.82±55.3*  60.53±1.1  0.10±0.0 

200R  7.38±0.1  183.61±10.9*  66.27±3.7  0.10±0.1 

400 mg/dl 8.45±0.6  418.97±41.4c  70.35±4.1  0.14±0.0 

400R  7.67±0.2  292.22±14.2  70.59±13.6  0.15±0.1 

800 mg/dl 6.51±0.4*  323.59±58.9  77.71±4.1*  0.12±0.0 

800R  7.02±0.1  273.06±126.5  74.12±4.1*  0.06±0.0 

1600 mg/dl 6.65±0.5  314.17±12.1  85.89±7.1*c  0.16±0.0* 

1600R  7.23±0.1  314.17±12.1  71.37±8.2  0.21±0.1 

 

Values are presented as mean ± SEM (n = 5 readings); TP, PG, PC, IB represent total protein concentration, glucose 

concentration, cholesterol concentration and indirect bilirubin concentration.Values marked with * are significantly 

different at p ˂ 0.05 compared with control A while values marked with superscript c ‘c’  and d ‘d’  are significantly 

different at p ˂ 0.05 compared with dose at 200 mg/kg body weight of experimental animals and recovery groups 

respectively. Control A, Control B, 200 mg/kg, 200R, 400 mg/kg, 400R, 800 mg/kg, 800R, 1600 mg/kg and 1600R 

represent groups of rats treated with distill water; rats treated with sodium caboxylmethyl cellulose; rats treated with 

200 mg CB/kg bwt; recovery group of rats treated with 200 mg CB/kg bwt; rats treated with 400 mg CB/kg bwt; 

recovery group of rats treated with 400 mg CB/kg bwt, rats treated with 800 mg CB/kg bwt, recovery group of rats 

treated with 800 mg CB/kg bwt, rats treated with 1600 mg CB/kg bwt and recovery group of rats treated with 1600 

mg CB/kg bwt. 
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Table: 4.8: Effect of Sub-acute Toxicological Evaluation of CB on Haematological Markers of 

the Animals 

Groups             PCV (×1012/L)  WBC (×1012/L)     L (%)          N (%)     M(%) 

Control A 38.33±5.4      9.63±1.7       45.67±2.9  53.00±3.2      1.67±0.3 

Control B 44.50±6.5     10.00±2.0      42.00±4.0  57.00±3.0       2.00±0.0 

200 mg/kg 42.33±4.7     9.13±3.1      47.67±2.6  51.00±2.7      1.67±0.3 

200R  41.00±1.2     4.03±0.8*c      56.33±5.9  48.67±4.1      1.67±0.3 

400 mg/kg 45.67±1.5     8.47±0.1     64.33±12.3* 35.67±12.3*      1.33±0.3 

400R  46.00±1.2    4.37±1.3*c     60.00±5.8*  40.00±2.9      1.33±0.3 

800 mg/kg 42.33±2.6    5.87±1.5*     59.33±11.1* 39.33±11.5*       1.33±1.3 

800R  39.00±0.6    3.47±0.5*c     63.33±6.0*  35.00±5.8*       0.67±0.7 

1600 mg/kg 44.00±3.2    4.23±0.6*c     74.33±2.9*c  25.67±2.9*c          0.67±0.3 

1600R  38.67±2.0    4.80±0.6*c     70.33±5.8*c  29.00±1.2*c          0.67±0.3 

 

Values are presented as mean ± SEM (n = 5 readings); PCV, WBC, L, N, M represent packed cell volume, white 

blood cell count, percentage lymphocyte count, percentage neutrophil count, percentage monocyte count. Values 

marked with * are significantly different at p ˂  0.05 compared with control A while values marked with superscript c 

‘c’  and d ‘d’  are significantly different at p ˂ 0.05 compared with dose at 200 mg/kg body weight of experimental 

animals and recovery groups respectively. Control A, Control B, 200 mg/kg, 200R, 400 mg/kg, 400R, 800 mg/kg, 

800R, 1600 mg/kg and 1600R represent groups of rats treated with distill water; rats treated with sodium 

caboxylmethyl cellulose; rats treated with 200 mg CB/kg bwt; recovery group of rats treated with 200 mg CB/kg bwt; 

rats treated with 400 mg CB/kg bwt; recovery group of rats treated with 400 mg CB/kg bwt, rats treated with 800 mg 

CB/kg bwt, recovery group of rats treated with 800 mg CB/kg bwt, rats treated with 1600 mg CB/kg bwt and 

recovery group of rats treated with 1600 mg CB/kg bwt.  
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4.9 Effect of Sub-acute Ethanolic Extract of CB on Histopathology of the Organs of the 

Animals 

Compared with the control, no remarkable changes on the morphology of organs of the 

experimental rats treated with extract at 200 mg/kg body weight were noticed on gross 

examinations. The histologic section of the liver showed a preserved hepatic architecture, with 

hepatocytes arranged in plates with no vascular congestion; there were no areas of necrosis or 

haemorrhage, fatty change or fibrosis.  The kidney showed cellular turfs of glomeruli surrounded 

by bowman’s spaces with disposed background that contains tubules cut in varying planes. The 

heart muscles, myocytes were composed of interlacing fascicles of myocardial cells which are 

elongated with spindle nuclei while the spleen showed periarteriolar cuffing composed of 

lymphocytes, histiocytes and red blood cells. 

However, the livers of animals treated with higher doses of extract showed noticeable 

cellular alterations such as the presence of; (i) lipid-filled hepatocytes (hepatic fatty changes) in 

rats treated with 400 mg CB/kg body weight (Plate 4.1), (ii) prominent hepatic sinusoids which 

are engorged with red blood cells (sinusoidal congestion), central hepatic venous congestion 

which are engorged with fatty vacuoles (fatty congestion) in rats treated with 800 mg CB/kg bwt 

(Plate 4.2); and aggregation of dead cells, inflammatory cells and amorphous debris (hepatic fatty 

necrosis) in rats treated with 1600 mg CB/kg body weight (Plate 4.3). 

A gross examination of the kidney showed kidney tubular necrosis and glomerular 

congestion (gross dilatation, engorgement or distension of blood vessels by the blood) at extract 

doses of 400, 800 and 1600 mg/kg body weight of the experimental animals (Plate 4.4) while 

there were no noticeable histopathological alterations on the gross examinations of the spleen and 

the heart at extract doses of 400, 800 and 1600 mg/kg body weight. 
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 A   

B  

Plate 4.1: A Cross-sectional View of the Rat Liver of a Group Orally Administered 400 

mg/kg of C. bonduc for 28 days, showing areas of gross hepatic fatty changes (HF) (Plate 4.1A) 

compared with normal liver architecture (Plate 4.1B) (Magnification, × 400).   
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A  

B  

 

Plate 4.2: A Cross-sectional View of the Rat Liver of a Group Orally Administered 800 

mg/kg of C. bonduc for 28 Days, showing areas of central hepatic venous congestion (CHVC) 

and sinusoidal congestion (SC) (Plate 4.2A), compared with normal liver architecture (Plate 4.2B) 

(Magnification, × 400).  
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A  

 B  

Plate 4.3: A Cross-sectional View of the Rat Liver of a Group Orally Administered 1600 

mg/kg of C. bonduc for 28 Days, showing areas of hepatic necrosis (HN) (Plate 4.3A), compared 

with normal liver architecture (Plate 4.3B) (Magnification, × 400).  
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A  

B  

Plate 4.4: A Cross-sectional View of the Rat Kidney of a Group Orally Administered 1600 

mg/kg of C. bonduc for 28 Days, showing areas of tubular necrosis (TN) and glomerular 

congestion (GC) (Plate 4.4A), compared with normal liver architecture (Plate 4.4B) 

(Magnification, × 400).  
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4.10 Effect of Acute Toxicological Evaluation of the Ethanolic Extract of CB on Food 

Intake, Body and Relative Organ Weight and Biochemical Parameters 

The body weights of all tested groups increased progressively throughout the duration of 

the experiment (Figure 4.20). An effect of the extract in causing drowsiness in all the treated 

groups was observed for the first 1 hr after dosing, compared with control. No mortality was 

recorded for any treated groups throughout the duration of the experiment. There were no 

significant changes in the relative liver and heart weights of the experimental rats at any dosage 

however, there were significant decreases in the relative kidney and spleen weights at each extract 

dosage (Tables 4.9).   

There were significant changes in the plasma liver and kidney function makers as well as 

other biochemical toxicological parameters with significant changes in cholesterol (PC), glucose 

(PG), triglyceride (PTG), urea (PU), uric acids (PUA), creatinine (PCT) and aspartate 

aminotransferase activity (AST) while insignificant increase was observed with the activity of 

alkaline aminotransferase (ALT) and decrease in concentration of total plasma protein (TPP) 

(Table 4.10).  

There were significant changes in the haematological parameters of organ toxicity. There 

were decrease in WBC counts, PCV and Neutrophil counts while there was significant increase in 

lymphocyte counts in all extract treated groups (Table 4.11). 
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Figure 4.20: Changes in Body Weight of Experimental Animals for Acute Study (See 

Appendix 46) 
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Table 4.9: Relative Organ Weights in Acute Toxicological Evaluation of Experimental 

Animals 

Groups      Liver       Heart       Kidney 1  Spleen 

Control 0.04±0.0031  0.005±0.0005  0.009±0.0001            0.005±0.0001   

2000 mg/kg 0.04±0.0038  0.004±0.0008  0.006±0.0006*           0.003±0.0009* 

4000 mg/kg 0.04±0.0178       0.005±0.0009  0.006±0.0015*           0.003±0.0008* 

6000 mg/kg 0.05±0.0068  0.005±0.0011  0.007±0.0011            0.002±0.0014*  

Values are presented as mean±SEM. Values marked with * are significantly different at p˂0.05 

compared with control.  
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Table 4.10: Effects of Acute Toxicological Evaluation of the Ethanolic Extract of CB on 

Biochemical Parameters  

Groups/  Control  2000 mg/kg 400 mg/kg 6000 mg/kg 

Biomarkers        

ALT (U/I)  84.58±6.1 87.11±7.3 93.53±13.1 161.78±64.7  

AST (U/I)             11.47±2.4 11.67±2.1 17.89±4.1 119.77±23.5* 

PUA (mg/dl)  7.24±1.7 9.04±1.6 14.80±1.7 54.57±28.20* 

PU (mg/dl)  144.90±4.7 122.09±3.6 136.85±4.7 461.53±46.8* 

PCT (mg/dl)  0.80±0.1 0.62±0.1 0.73±0.0 1.79±0.21* 

TP (g/dl)  5.65±0.7 5.43±0.9 4.93±0.1 4.06±0.6 

PC (mg/dl)  78.43±5.49 55.69±3.06* 34.90±3.06* 131.65±12.0* 

PG (mg/dl)  131.89±1.7 274.17±16.7*  309±58.3* 412.50±52.2* 

PTG (mg/dl)  117.11±16.8 100.89±7.4 104.12±5.6 188.20±13.4* 

    

Values are presented as mean ± SEM (n = 5 readings); ALT, AST, PUA, PU, PCT, TP, PC, PG, PTG, represent 

alanine aminotransferase activity, aspartate aminotransferase activity, uric acid concentration, urea concentration, 

creatinine concentration, total protein concentration, cholesterol concentration, glucose concentration, triglyceride 

concentration. Values marked with * are significantly different at p ˂ 0.05 compared with control. Control, 2000 

mg/kg, 4000 mg/kg and 6000 mg/kg represent groups of rats treated with distill water; rats treated with 2000 mg 

CB/kg bwt; rats treated with 4000 mg CB/kg bwt and rats treated with 6000 mg CB/kg bwt.  
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Table 4.11:  Effects of Acute Toxicological Ethanolic Extract of CB on Haematological 

Parameters   

Groups  PCV (×1012/L)  WBC (×1012/L) L (%)        N (%)            

Control  39.00±1.0  6.90±0.5  45.00±7.6  55.00±7.6  

2000 mg/kg 31.33±1.8            4.27±0.8  75.6 7±3.4  22.67±1.8  

4000 mg/kg 30.00±6.1            3.87±0.6  75.33±3.2  24.67±3.2  

6000 mg/kg 20.33±2.6            5.63±1.2  72.67±1.5  47.67±6.1  

 

Values are presented as mean ± SEM (n = 5 readings). PCV, WBC, % L, % N represent packed cell volume, white 

blood cell count, percentage lymphocyte count and percentage neutrophil count. Values marked with * are 

significantly different at p ˂ 0.05 compared with control.  Control, 2000 mg/kg, 4000 mg/kg and 6000 mg/kg 

represent groups of rats treated with distill water; rats treated with 2000 mg CB/kg bwt; rats treated with 4000 mg 

CB/kg bwt and rats treated with 6000 mg CB/kg bwt.  
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4.11 Acute Toxicological Effect of Ethanolic Extract of CB on Histopathology of the 

Organs of the Animals 

There were no obvious histopathological alterations or remarkable changes in the internal 

organs of rats in the control group and in all the extract treated groups, except in the liver. The 

liver showed hepatic fatty changes at the extract dose of 2000 mg/kg bwt and hepatic fatty 

congestion at extract doses of 4000 and 6000 mg/kg body weight. All the other organs showed no 

remarkable changes compared with the control (Plates 4.5; 4.6). 
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A  

B  

Plate 4.5: A Cross-sectional View of the Rat Liver of a Group Orally Administered 2000 

mg/kg of C. bonduc (single dose), showing areas of hepatic fatty changes (HF) (Plate 4.5a), 

compared with normal liver architecture (Plate 4.5b) (Magnification, × 400).  
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A  

B  

Plate 4.6: A cross-sectional view of the rat liver of a group orally administered 6000 mg/kg 

of C. bonduc (single dose), showing areas of hepatic fatty congestion (HFC) (Plate 4.6A), 

compared with normal liver architecture (Plate 4.6B) (Magnification, × 400).  
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4.12 In vitro Antimalarial, Selectivity and Cytotoxic Activities of Extracts and 

Compounds Isolated from C. bonduc 

The results of the in vitro antimalarial and selectivity index determinations of the ethanolic extract, 

solvent fractions and compounds isolated from C. bonduc against the chloroquine sensitive strain 

FCR-3 of P. falciparum and mouse mammary tumor FM3A cells are illustrated in Tables 4.12, 

4.13 and 4.14. When compared with standard antimalaria drugs (quinine, mefloquine, 

pyrimethamine and artemisinin) the petroleum ether and ethyl acetate solvent fractions exhibited 

moderate antimalarial activities, with IC50 values of 18 and 16 µg/ml and selectivity indices of 

0.29 and 0.69 respectively (Table 4.12). TCB 9 (6) and TCB 31 exhibited moderate antimalarial 

activities, with IC50 values of 33 µM and 10 µg/ml and selectivity indices of 0.33 and 0.022 

respectively. By contrast, TCB 29 exhibited good antimalarial activities with IC50 values 4.6 

µg/mL and selectivity index of 0.26 (Table 4.13 and 4.14).  

The ethanolic extract and the ethyl acetate fraction of C. bonduc exhibited moderate 

antiproliferation activities against mouse mammary tumor FM3A cells, with IC50 values of 36 and 

11 µg/ml respectively; the petroleum ether fraction had a good antiproliferation activity, with an 

IC50 value of 5.2 µg/ml (Table 4.12). The characterised pure compounds, TCB 1, 9, 11, 15 and 16 

exhibited various antiproliferation activities, with IC50 values of 8.8, 11, 11, 5.4, 0.56 µM 

respectively (Table 4.13). In addition, the uncharacterised compounds TCB 28, 29, 30, 31, 33 and 

38 also exhibited cytotoxic activities, with IC50 values of 1.9, 1.5, 1.2, 1.3, 0.22, 2.2, 3.4 µg/ml 

respectively (Table 4.14). In comparing the antiproliferation activities of samples against 

plasmodium falciparum (Chloroquine sensitive strain (FCR-3) and mammalian tumor FM3A cells, 

the cytotoxicity selectivities of samples were established. TCB 9 and 11 have moderate cytotoxic 

activities with poor selectivity indices of 0.33 and 0.41 respectively (Table 4.13).   
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Table 4.12: Antimalarial and Selectivity Assay Results for Ethanolic Extract and Solvent 

Fractions of C. bonduc 

Samples  aIC50 (µg/mL)   bIC50 (µg/mL)   cSelectivity   

Et. ext.   > 92 (51 %)*   d36   0.39 

Pet. Ether  d18    #5.2   0.29 

Ethyl ac.  d16    d11   0.69  

Buthanol  > 90 (76 %)   > 90 (80 %)  1   

Water   > 62 (82 %)   > 62 (68 %)  1   

 

* > 92 (51 %) means IC50 is greater than 92 µg/ml: there is 51 % growth at 92 µg/ml. “a”  represents chloroquine 

sensitive strain (FCR-3) of P. falciparum, “b”  represensts mouse mammary tumor FM3A cells representing a model of 

host, “c” represent selective toxicity = IC50 value for FM3A/IC50 for P. falciparum. “# and d” represent good and 

moderate P. falciparum and mammalian cell antiproliferation activity. Et. ext., Pet. and Ethyl ac. represent ethanolic 

extract, petroleum ether fraction and ethyl acetate fraction of C. bonduc. 
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Table 4.13: Antimalarial and Selectivity Assay Results of Structurally Characterised 

Compounds from C. bonduc 

Samples   aIC50 (µM)  bIC50
 (µM)   cSelectivity   

TCB 1 (compound 1)  > 27 (64%)*   d8.8    0.33 

TCB 2 (compound 2)  > 10.2 (89%)   > 10.2 (100 %)  1 

TCB 3 (compound 3)  > 14 (81%)   > 14 (96 %)   1 

TCB 5 (compound 4)  > 13 (96%)   > 13 (100 %)   1 

TCB 6 (compound 5)  > 17 (98%)   > 17 (99 %)   1 

TCB 9 (compound 6)  d33    d11      0.33 

TCB 11 (compound 7) > 27 (61%)   d11     0.41 

TCB 14 (compound 8) > 1.8 (76%)   > 1.8 (91%)   1 

TCB 15 (compound 9) > 25 (58%)   #5.4      0.2 

TCB 16 (compound 10) > 9.8 (99%)   ##0.56     0.06 

TCB 22 (compound 12) > 5.5 (100%)   627.0    0.35 

TCB 27 (compound 13) > 9.7 (100%)   > 9.7 (88 %)   1 

TCB 40 (compound 14) > 5.7 (95%)   > 5.7 (97 %)   1 

Quinine   ##0.2    100    500 

Pyrimethamine  ##0.001    #0.1    100 

Mefloquine   ##0.032    #2.8    88 

Artemisin   ##0.01    d9.0    900 

 

* > 27 (64%) means IC50 is greater than 2.7×10-5 µg/mL: there is 64 % growth at 27 µM. “a” 

represents chloroquine sensitive strain (FCR-3) of P. falciparum, “b” represents mouse mammary 

tumor FM3A cells representing a model of host, “c” represents selective toxicity = IC50 value for 

FM3A/IC50 for P. falciparum. “##, #, d and e” represent very good, good, moderate and weak 

antiproliferative activity.  
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Table 4.14: Antimalarial and Selectivity Assay Results of Uncharacterised Compounds from C. 

bonduc 

Samples  aIC50 (µg/ml)   bIC50
 (µg/ml)    cSelectivity   

TCB 24  > 7.85 (95%)*   > 7.85 (100 %)  1 

TCB 28  > 4.1 (96%)   #1.5    0.37 

TCB 29  #4.6    #1.2    0.26 

TCB 30  > 4.9 (97%)   #1.3    0.27 

TCB 31  d10    ##0.22    0.022 

TCB 32  > 5.7 (91%)   > 5.7 (60%)   1 

TCB 33  > 9.6 (70%)   #4.2    0.44 

TCB 34  > 6.0 (100%)   > 6.0 (99 %)   1 

TCB 35  > 9.6 (100%)   > 9.6 (100 %)   1 

TCB 36  > 4.0 (95%)   > 4.0 (100 %)   1 

TCB 38  > 8.2 (100%)   #3.4    0.41 

TCB 45  > 5.8 (62%)   > 5.8 (82 %)   1 

TCB 46  > 9.5 (89%)   > 9.5 (93 %)   1 

“> 7.85 (95%)” means IC50 is greater than 7.85 µg/mL: there was 95 % growth at 7.85 µg/mL, “a” 

represents chloroquine sensitive strain (FCR-3) of P. falciparum, “b”  represents mouse mammary 

tumor FM3A cells representing a model of host, “c” represents Selective toxicity = IC50 value for 

FM3A/IC50 for P. falciparum. “##, #, d and e” represent very good, good, moderate and weak 

antiproliferative activity. 
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4.13 Antibacterial Activity of Caesalpinia bonduc Samples Against Candida albicans 

All tested samples isolated from C. bonduc had no inhibitory activity against the growth of 

Candida albicans when compared with the standard antifungal drug, miconazole nitrate, as the 

positive control (Tables 4.15 and 4.16).  
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Table 4.15: Anti-fungal Pre-test Assessment Results for Ethanolic Extract and Solvent 

Fractions of C. bonduc 

Samples   Concentration (µg/ml)   Candida albicans (I %) 

75 % Ethanol    10    1.92  

Petroleum ether   10     0.027 

Ethyl acetate      10    2.45 

Buthanol    10    0.90 

Water     10    1.81 

MICO     10    97.91 

MICO - antibacterial control - miconazole nitrate. 
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Table 4.16: Anti-fungal Pre-test Assessment for Pure Compounds from C. bonduc 

Samples  Concentration (µg/ml)  Candida albicans (I %) 

TCB 1    10    15.46 

TCB 2    10    3.61 

TCB 3    10       - 12.32 

TCB 5    10    4.56 

TCB 6    10    - 9.04 

TCB 9    10    -12.01 

TCB 11   10    - 2.27 

TCB 14   10    0.34 

TCB 15   10    - 2.70 

TCB 16   10     - 1.31 

TCB 22   10    4.615 

TCB 24   10    - 4.54 

TCB 27   10    - 8.64 

TCB 28   10    5.78 

TCB 29   10    5.89 

TCB 30   10    6.09 

TCB 31   10    3.00 

TCB 32   10    7.90 

TCB 33   10    4.00 

TCB 34   10    10.6 

TCB 35   10    - 4.9 

TCB 36   10    -5.00 

TCB 38   10    3.00 

TCB 40   10    4.90 

TCB 45   10    -5.80 

TCB 46   10    0.90 

Mico (Positive standard) 10    97.91     

Mico - miconazole nitrate 
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4.14 Cytotoxic activities of Caesalpinia bonduc samples against HeLa and BGC - 823 cells 

The ethanolic extract, solvent fractions and all compounds isolated from C. bonduc were 

studied for cytotoxicity against the cancer cell lines HeLa and BGC - 823. Tables 4.17, 4.18, 4.19, 

4.20 and 4.21 summarise these results. The results reveal that several of the compounds and 

solvent fractions are active against the two cancer cell lines. The petroleum ether, water and 

acetyl acetate fractions, as well as the third, fourth, fifth and eighth fractions from the first column 

separation, exhibited moderate activities against the HeLa cell lines, with percentage inhibitory 

concentrations (I %) of 84.55, 80.39, 59.00, 82.00, 60.67, 55.78 and 60.34 (Table 4.17) and IC50 

values of 32.00, 30.14, 35.80, 19.50, 32.04, 32.00 and 30.78 µg/mL respectively (Table 4.18). 

The result of the pre-evaluation cytotoxic test of isolated compounds showed that TCB 1 

(compound 1), TCB 9 (compound 6), TCB 11 (compound 7), TCB 15 (compound 9), TCB 16 

(compound 10) and TCB 30 have percentage inhibitory activity (I %) values higher than 50 % 

against HeLa cell lines (Table 4.19) from which their IC50 values were calculated. By contrast, 

only TCB 11 (compound 7) and TCB 45 have inhibitory activity (I %) values with more than 

50 % against BGC - 823 cell lines from which their IC50 values were also calculated (Table 4.19).  

TCB 1, 9, 11, 15, 16 and 30 exhibited high to very high cytotoxic activities, with IC50 

values of 5.88, 8.69, 5.91, 5.91, 0.81 and 8.79 µg/ml against HeLa cancer cells  (Table 4.21), TCB 

11 and 45 exhibited good cytotoxic activities of 6.45 and 5.55 µg/ml against BGC - 823 cancer 

cells (Table 4.20). 
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Table 4.17: Cytotoxicity Pre - test Results for Ethanolic Extract, Solvent Fractions and First 

Column Fractions of the Petroleum Ether and Ethyl Acetate Fractions of C. bonduc 

on HeLa Cells 

Samples   Concentration (µg/ml)  HeLa cells (I %) 

75 % Et. ext.    40    10.05  

Pet. ether    40    84.55 

Ethyl ac.      40    59.00 

Butanol    40    10.07 

Water     40    80.00 

C3     40    82.00 

C4     40    60.67 

C5     40    55.78 

C8     40    60.34 

Taxol     40    61.72 

 

I (%) is percentage inhibition; C3, C4, C5 and C8 were third, fourth, fifth, and eighth fractions of the first column 

separation respectively. Et. ext., Pet. ether, Ethyl ac. represent ethanolic extract, petroleum ether fraction and ethyl 

acetate fractionof C. bonduc respectively. 
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Table 4.18: Cytotoxicity Evaluation for Ethanolic Extract, Solvent Fractions and First Column 

Fractions of the Petroleum Ether and Ethyl AcetateFractions of C. bonduc on HeLa 

Cells 

Samples I (%) at Conc.  I (%) at Conc.   I (%) at Conc.  I (%) at Conc. IC50  

  (40 µg/ml)   (20 µg/ml)   (10 µg/ml)    (5 µg/ml)   (µg/ml) 

Pet. Ether 84.55  22.73    7.24     9.194  d32.00 

Water  80.39  6.00    -2.68     -1.54   d 30.14 

Ethyl ac 59.00  21.74    2.78     2.00   35.80   

C3  82.00  50.87    27.25     12.194  d 19.50 

C4  60.67   27.35    9.35     4.45   d 32.04 

C5  55.78  20.04    12.04     0.86   d 32.00 

C8  60.34  33.16    18.67     6.79   d 30.78 

 

I (%) is percentage inhibition; C3, C4, C5 and C8 are first column fraction 3, 4, 5 and 8 respectively. ddenotes moderate 

cytotoxicity activities of samples respectively. 
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Table 4.19: Cytotoxicity Pre - test Results of Compounds Isolated from C. bonduc 

Samples   Concentration (µg/ml)              BGC - 823 cells (I %)        HeLa cells (I %) 

TCB 1 (compound 1)   10   44.94    69.20  

TCB 2 (compound 2)   10   12.91    -26.17 

TCB 3 (compound 3)   10      6.57    -31.02 

TCB 5 (compound 4)   10   10.88    -6.60 

TCB 6 (compound 5)   10   - 0.12    -12.49 

TCB 9 (compound 6)   10   48.15    54.91 

TCB 11 (compound 7)  10   70    69.62 

TCB 14 (compound 8)  10   14.02    - 4.78 

TCB 15 (compound 9)  10   9.20    70.68 

TCB 16 (compound 10)  10   46.89    72.30 

TCB 22 (compound 12)  10   6.010    - 6.29 

TCB 24    10   15.42     - 24.80 

TCB 27 (compound 13)  10   8.73    -8.13 

TCB 28    10   23.23    23.33 

TCB 29    10   42.16    44.13 

TCB 30    10   16.17    53.71 

TCB 31    10   8.13    -16.06 

TCB 32    10   11.67    -14.67 

TCB 33    10   9.40    18.11 

TCB 34    10   3.32    -22.1 

TCB 35    10   15.05    -15.75 

TCB 36    10   18.97    -15.95 

TCB 38    10   22.14    -11.96 

TCB 40 (compound 14)  10   14.98    -13.38 

TCB 45    10   78.03    2.99 

TCB 46    10   5.43    16.74 

Taxol     10   76.69    61.72 

 



194 
 

Table 4.20: Cytotoxicity Evaluation of Pure Compounds of C. bonduc Using BGC-823 Cells  

Samples I (%) at Conc.    I (%) at Conc.    I (%) at Conc.     I (%) at Conc.            IC50 

  (10 µg/ml)      (2 µg/ml)       (0.4 µg/ml)        (0.08 µg/ml)        (µg/ml)  

TCB 1 (1)     44.94  2.20  - 4.73  -8.55   NC 

TCB 9 (6)     48.15  0.66  - 1.79  - 1.81   NC 

TCB 11 (7)     70.95  - 5.79  - 9.61  - 10.07   #6.45 

TCB 16 (10)     35.47  20.76  - 3.05  - 7.34   NC 

TCB 24     15.42  5.29  6.11  2.66   NC  

TCB 30     16.17  5.10  - 4.69  - 7.28   NC 

TCB 34     3.32   - 6.21  - 7.33  - 9.02   NC 

TCB 40 (14)     14.04  - 1.22  - 6.32  -8.41   NC 

TCB 45     78.03  1.39  -5.44  - 7.92   #5.55 

Taxol       76.69  76.22  73.18  26.20   ##0.15 

NC – Not calculated because IH (inhibition above 50 %) could not be determined. ## and # signify 

very good and good cytotoxicity activity.  
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Table 4.21: Cytotoxicity Evaluation of Pure Compounds Isolated from of C. bonduc Using 

HeLa cell 

Samples I (%) at Conc.   I (%) at Conc.      I (%) at Conc.     I (%) at Conc.      IC50  

  (10 µg/ml)     (2 µg/ml)        (0.4 µg/ml)       (0.08 µg/ml)  (µg/ml) 

TCB 1 (1) 69.20  10.97         - 4.77  - 6.38     #5.88 

TCB 9 (6) 54.91  -1.50         - 9.27  - 12.48     #8.69 

TCB 11 (7) 69.62  9.63          6.37  - 6.50     #5.91 

TCB 15 (9) 70.68  18.73           9.32  - 5.52      #5.27 

TCB 16 (10) 69.43  58.99          42.89  - 7.34      ##0.81 

TCB 30 53.71  7.40          - 6.47  - 4.32      #8.79  

Taxol  61.72  60.36          52.68  - 14.34       ##1.13 

##, # and  denote very good and good cytotoxicity activity. 
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CHAPTER FIVE 

DISCUSSION AND CONCLUSION  

5.1  Phytochemical Investigation of C. bonduc 

The phytochemical assessment of the young twigs and leaves of C. bonduc revealed the 

presence of major classes of phytochemicals, except phlobatannins. The presence of these 

phytochemicals in C. bonduc could be responsible for the various reported biological activities of 

the plant. A bioassay-guided fractionation of the petroleum ether and ethyl acetate fractions of the 

ethanolic extract of C. bonduc led to the isolation of two new diterpenoids, 12 known compounds 

and 13 unknown pure samples.  

From previous reports, TCB 1 (bonducellin) was isolated from C. bonduc (Purushothaman 

et al., 1982); TCB 14 (Daucosterol) was isolated from C. millettii (Chen and Yang, 2008); and 

TCB 15 (Luteolin) was isolated from C. gilliesii (Suarez et al., 1984). The following compounds 

isolated from C. sappan: TCB 2 (1-octacosanol) (Yadava and Nigam, 1987); TCB 3 ((+)-

Syringaresinol) (Shu et al., 2007); TCB 9 (4,4'-dihydroxy-2'-methoxy-chalcone) (Liu et al., 2009) 

and TCB 11 (7,4'-dihydroxy-3,11-dehydrohomoisoflavanone) (Namikoshi et al., 1987a). These 

reports are corroborated by the phytochemical study of the young twigs and leaves of C. bonduc 

carried out in the present work. 

 

5.2  Antioxidant Evaluation of C. bonduc Extracts 

The production of free radicals has been associated with various physiological and 

pathological events such as inflammation, aging, mutagenicity and carcinogenicity (Ogunlana and 

Ogunlana, 2008). Antioxidants are vital substances with the ability to protect the body from the 

damage caused by free radical-induced oxidative stress (Ozsoy et al., 2008). Natural antioxidants 
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present in medicinal and dietary plants have been implicated in the prevention of oxidative 

damage (Silva et al., 2005). Hence, the antioxidant activity of the ethanolic extract of C. bonduc 

was investigated by measuring the activities of the antioxidant enzymes (catalase and 

peroxidases). The extent of lipid peroxidation was gauged by measuring the concentration of 

TBARS in rats treated with different doses of the extract. There was graded increase in catalase 

and peroxidase activities and decrease in concentration of TBARS in treated rats in comparison 

with the controls. This increase in antioxidant enzymes was significant in rats treated with 150 

and 200 mg of extract/kg bwt in comparison with rats treated with 10 mg of vitamin C/kg bwt. A 

significant antioxidant activity against Ehrlich ascites carcinoma (EAC) in mice has been reported 

for the methanolic extract of the leaves of C. bonduc (Gupta et al., 2004). Significant in vitro 

antioxidant activities have been reported for protosappanin A, protosappanin B and brazilein (Jun 

et al., 2008). These are phenolic compounds isolated from C. sappan. 

The present study and that of Gaur et al. (2008) have revealed the presence of alkaloids, 

flavonoids, glycosides, saponin, tannins and terpenoids in C. bonduc by phytochemical analysis. 

Flavonoids are phenolic compounds with potent metal chelating and free radical scavenging 

activities (Middleton et al., 2000). Along with other natural antioxidant, vitamins and enzymes, 

they provide protection against free radicals by acting as antioxidants involved in scavenging 

reactive oxygen species (Varalakshmi et al., 2011). Previous studies have reported the presence of 

the triterpenoid lupeol in C. bonduc. Lupeol protects cells and tissues from oxidative stress by 

increasing the activity of catalase (Liby et al., 2007).  

The in vitro antioxidant activity of the methanolic extract of the root of C. digyna was 

highly comparable with reference antioxidants (ascorbic acid and rutin) (Srinivasan et al., 2007). 

This correlated with the estimate of the total phenolic compounds in C. digyna. Polyphenolic 
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compounds with catechol structures are oxidised in neutral and alkaline pH environments and 

form dimerised products which possess higher superoxide radical scavenging activities and iron 

chelating properties (Spencer, 2003). The antioxidant activity of the extracts of C. bonduc seeds, 

measured by their DPPH, hydroxyl, nitric oxide and super oxide radical scavenging activities, has 

a significant linear correlation with their total phenolic content (Shukla et al., 2009). The high 

antioxidant activity exhibited by the extract of C. bonduc might be due to the presence of phenolic 

components such as flavonoids.  

Phenols are very important plant constituents because of their radical scavenging ability 

due to the presence of hydroxyl groups (Hatano et al., 1989). The phenolic compounds may 

contribute directly to antioxidative action (Duh et al., 1999). The phenolic compounds of the 

extract of C. bonduc leaves and twigs could be major contributors to its antioxidant activity. 

 

5.3  Toxicological Evaluation of C. bonduc Extracts 

The ethanolic extract of the leaves and young twigs of C. bonduc at the 200 mg/kg body 

weight dose did not elicit deleterious effects during 28 days treatment in rats while higher 

treatment doses of 400 to 1600 mg/kg body weight were toxic to experimental animals. The 

behavioural profile of all the tested animals revealed that the animals were alert and responded to 

pain and touch. The animals showed no signs of depression or restlessness. Feron et al. (1973) 

reported that in sub-acute toxicity experiments, the relative organ weight (the ratio of the organ to 

the whole body weight) is a useful index of toxicity. Monitoring the body weight during treatment 

provides an index of the general health status of the animals; such information may be important 

for gauging their health (Sharma et al., 2009). There was a progressive increase in the body 

weight of all animals throughout the duration of the experiment. At the highest treatment dose, 
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there was a relative increase in the organ weight compared to the control. The ethanolic extract of 

C. bonduc did not induce toxic changes in the liver and other organs at a dose of 200 mg/kg body 

weight. However, it induced toxic effects on some organs at higher doses. These results are in 

agreement with the results of Gupta et al. (2004) and Kumar et al. (2005). These authors reported 

that there was no significant change in the organ weights of animals treated with 100 and 200 

mg/kg body weight; but there was a significant increase in organ weight at a dose of 400 mg/kg 

body weight after 14 days of treatment. The liver, being the detoxification organ of mammals, and 

the kidney, being the most important excretory organ in the body, might be susceptible to the 

toxic effects of extracts of C. bonduc at higher doses. This has been supported by the report of 

Kumar et al. (2005), who reported the associated toxicity of anticancer agents and plants rich in 

flavonoids on liver and kidney (Kumar et al., 2005).  

The 28 days toxicological assessment of the ethanolic extract of C. bonduc indicates that 

ALT, AST, TB, TP, DB, IB, PTG, PC and PCT remain unchanged at an extract dose of 200 

mg/kg body weight. The plasma enzymes (ALT and AST) and the other biochemical parameters 

mentioned above were significantly increased at the higher treatment doses of 400, 800 and 1600 

mg/kg body weight. The depletion in the total plasma protein level has also been observed in the 

present assessment. This may be due to impaired protein synthesis in the damaged liver or to the 

altered nutritional status of the animals (Sharma et al., 2009). It has been reported that the 

synthesis of plasma proteins in the liver was quantitatively and qualitatively affected during liver 

damage (Kumar et al., 2005). The decrease in plasma albumin or in the total plasma protein 

indicated hepatocellular dysfunction or liver disease (Kumar et al., 2005). Elevated levels of ALT 

and AST may be due to pathological changes such as necrosis of hepatocytes, which causes an 

increase in the permeability of the cell membranes, resulting in the release of aminotransferases 
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into the blood stream (Ali et al., 2008). ALT has been reported to be a marker with a high 

specificity for acute hepatocellular injury (Friedman et al., 1996). 

A high level of plasma cholesterol has been reported in obstructive jaundice or in chronic 

hepatitis (Albrink et al., 1950). There was a significant increase in the plasma cholesterol of 

animals given C.  bonduc extract dosages of 800 and 1600 mg/kg body weight. The kidney 

eliminates the waste products of metabolism from the body. In renal failure, there is an increase in 

metabolic waste products, especially nitrogenous substances like plasma urea and uric acid. An 

elevated plasma urea level has been linked to elevated non-protein nitrogen in diseases associated 

with nephrotoxicity (Varley et al., 1980). There was no observable changes in plasma urea 

concentration at an extract dose of 200 mg/kg body weight in rats compared with the control. The 

plasma urea concentration was significantly increased at higher doses: 400, 800 and 1600 mg/kg 

body weight.   

The occurrence high levels of plasma triglycerides have been reported as a useful 

biomarker in the prediction of renal dysfunction (Muntner et al., 2000). There was a significant 

increase in plasma triglyceride in the rats at extract dosages of 800 and 1600 mg/kg body weight. 

The increase in creatinine concentration, the least variable nitrogenous constituent of the blood, 

was found to be insignificant. Nevertheless, increased plasma creatinine has been reported in 

renal injury subsequent to trauma or anuria, in traumatic injuries to the muscle and in muscular 

dystrophy (Srisawat et. al., 2010). The findings in this work corroborate the report of Gupta et al. 

(2004) on the 14 days interperitoneal toxicity of the methanolic extract of C. bonduc with a 

significant increase in plasma urea, ALT and AST of the experimental animals.   

Blood is a sensitive index of the physiological changes in an animal in response to any 

environmental pollutant, and it has been documented that toxicant or potentially toxic substances 
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induce conspicuous and significant changes in the haematological parameters (Jain et al., 2009). 

In the 28 days toxicological assessment, the white blood cell count and the differential counts 

(lymphocyte and neutrophil counts) were not significantly altered at a dosage of 200 mg/kg body 

weight. But there were significant decreases in the neutrophil and white blood cell counts and an 

increase in the lymphocyte count at extract dosages of 400, 800 and 1600 mg/kg body weight. 

However, the PCV value did not show any dose graded response. The results of the findings were in 

agreement with those of Sagar and Vidyasagar (2010b) and Gupta et al. (2004) on the effects of 

ethyl acetate and methanolic extracts of C. bonduc on treated animals.   

Kramp et al. (1974) opined that functional studies in toxicology should be coupled with the 

appropriate histological studies because appropriate morphological studies are useful, especially 

during the anatomical localization of the action of a toxin. Based on this, a histological study of the 

effect of ethanolic extract of C. bonduc was conducted. It was observed that the extract (at a dose of 

200 mg/kg body weight) and the control groups caused no histopathological alterations in the 

cellular architectures of the liver, heart, kidney and spleen. However, at higher extract doses (400, 

800 and 1600 mg/kg body weight), there were noticeable histopathological alterations in the 

cellular architectures of the liver and kidney. The liver, at the higher doses of 400 mg/kg and 

above, showed hepatic degeneration due to the lipid-filled hepatocytes, sinusoidal congestion, 

fatty congestion, aggregation of dead cells, inflammatory cells and amorphous debris (fatty 

necrosis) (Plate 4.1 to 4.3). At these higher doses (400, 800 and 1600 mg/kg body weight), the 

kidney showed gross alterations in the cellular architecture, such as necrosis and congestion (Plate 

4.4). The above histopathological damages at the increased extract doses are probably responsible 

for the alterations in the biochemical and haematological markers of the liver and kidney 

functions. These are markers of induced organ toxicity or injury. This finding corroborates the 

finding of Sagar and Vidyasagar (2010b) who observed slight changes in cellular architecture of the 
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livers of animals treated with 250 mg/kg body weight of an ethyl acetate extract of C. bonduc. On the 

other hand, the methanolic extract of C. bonduc seeds orally administered to mice at a dosage of 400 

mg/kg body weight for 28 days has been reported to be non-toxic to the experimental animals (Pillaia 

and Suresh, 2011).   

In the recovery groups (200R, 400R, 800R and 1600R mg/kg body weight), no significant 

changes were observed in the biochemical, haematological and histopathological assessment of 

actual tested and recovery groups. The induceable alterations in the markers of toxicity caused by 

the extract on rats might be irreversible two weeks after the end of dosing.  

In the investigation on the acute toxicological effects of C. bonduc in albino Wistar rats, 

there was no mortality in the experimental animals at all the extract treatment doses. However, 

there were significant alterations in the haematological and biochemical markers of toxicity at all 

extract doses. These are decreases in white blood cell and neutrophil counts, increases in 

lymphocyte counts and in cholesterol, glucose, uric acid, triglyceride, urea and creatinine 

concentrations and in alanine aminotransferase levels.  There was also induced cellular damage to 

the liver in all extract administered rats in all treatment groups (Plate 4.5 and 4.6). Although the 

LD50 of the C. bonduc extract at all the tested doses could not be determined from this study, the 

markers of toxicity showed that C. bonduc was toxic to all experimental animals at all tested 

doses. 

 

5.4  Antimalarial and Antiproliferation Activities of C. bonduc 

Malaria is a globally recognized serious public health issue, mainly in the tropical and 

sub-tropical regions of the world. Plasmodium falciparum, the most widespread etiological agent 

of human malaria, is becoming increasingly resistant to conventional antimalarial drugs. This 

increased resistance of malarial parasite to exsiting drugs has presented a major obstacle to 
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antimalarial chemotherapy.  The in vitro bioassay study of the ethanolic extract and solvent 

fractions of C. bonduc revealed its antimalarial and cytotoxic activities. The petroleum ether and 

ethyl acetate fractions had moderate antimalarial activities with IC50 values of 18 and 16 µg/ml 

respectively, compared with the crude fraction and other solvent fractions that had no antimalarial 

activities. However, a poor selectivity was observed in the antiproliferation activities of the 

petroleum ether and the ethyl acetate fractions; with selectivity indices were 0.29 and 0.69 

respectively. Low selectivity indices of samples have been reported as an indication of normal 

cellular damage (Wright, 2010). A bioassay guided fractionation of C. bonduc led to the isolation 

of antimalarial compounds with various activities. TCB 9 (4,4'-dihydroxy-2'-methoxy-chalcone), 

TCB 29 and 31, were compounds isolated from C. bonduc with considerable antimalarial activity 

but with low selectivity indices.  

The in vitro antiplasmodial activities of the flavonoids, exiguaflavanone A and B, from 

Artemisia indica have been reported (Chanphen et al., 1998). The in vitro antimalarial activity of 

(−)-cis-3-acetoxy-4′,5,7-trihydroxyflavanone, isolated from Siparuna andina has also been 

reported (Jenett-Siems et al., 2000). The antimalarial activities of 6-Hydroxyluteolin-7-O-(1″-α-

rhamnoside) against K1 and NF54 strains of P. falciparum, acacetin against poW and Dd2 strains 

of P. falciparum (Bringmann et al., 2000) and calycosin and genistein, first isoflavones to possess 

antiplasmodial activity, against poW and Dd2 strains of P. falciparum (Kaur et al., 2009) have 

been reported. Elford et al. (1987) demonstrated that in vitro the methoxylated flavonones, 

artemetin and casticin, act synergistically with artemisinin against P. falciparum. Although, the 

exact antiplasmodial mechanism of action of flavonoids is unknown, they have been shown to 

inhibit the influx of L-glutamine and myoinositol into infected erythrocytes (Elford, 1986). It has 

also been speculated that their mode of action is linked to their unusual antioxidant pathway. The 
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ability of flavonoids to form reactive oxygen species has also been linked to their antimalarial 

activities (Iwu et al., 1986). A lack of defence mechanisms against oxidative stress in P. 

falciparum makes the parasite susceptible to drugs with the ability of generating reactive oxygen 

species (Ribeiro et al., 1997).  

Structure-activity relationship analyses of the antimalarial flavonoids isolated in this 

investigation, together with those of Kim et al. (2004), suggest that the introduction of a hydroxyl 

group at the 7 position and O-methylation at the 5 position of the A ring might be responsible for 

the antimalarial activity of methoxy-chalcone.  

  

5.5  Antifungal Evaluation of the Extracts of C. bonduc 

There was no inhibitory activity against the growth of Candida albicans for all the tested 

samples. Young twigs and leaves of C. bonduc obtained from Nigeria may have no inhibitory 

activity against C. albicans. This corroborates the findings of Woldemichael et al. (2003), which 

reported that compounds isolated from C. paraguariensis have no inhibitory activity against C. 

albicans. However, a good inhibitory activity has been reported for α-(2-hydroxy-2-

methylpropyl)-ω-[2-hydroxy-3-methylbut-2-en-1-yl] polymethylene isolated from the leaves of C. 

bonduc in India (Sagar and Vidyasagar, 2010a).  

 

5.6  Cytotoxic Activity of C. bonduc 

Cancer is a major public health burden in both the developed and developing countries of 

the world, with over six million estimated deaths in the year 2002 (Parkin et al., 2005). It is one of 

the major causes of death in the United States (Hoyert et al., 2005), where one in four deaths is 

due to cancer. Plants have long been used in the treatment of cancer (Hartwell, 1982). Drugs from 
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medicinal plants have played an important role in the treatment of cancer, and medicinal plants 

have accounted for about 40 % of the anticancer drugs produced between 1940 and 2002 

(Newman et al., 2003). A number of active compounds have been shown to possess anticancer 

activity; these include flavonoids, diterpenoids, triterpenoids, and alkaloids (Han et al., 2008). 

The cytotoxic activity of flavonoids in malignant cells is characterised by an increased generation 

of reactive oxygen species (ROS) (Wang et al., 1999), accompanied by a decrease in the level of 

redox active proteins, superoxide dismutase and thioredoxin which are crucial for maintaining the 

cellular redox balance (Lu et al., 2006).  

Reactive oxygen species (ROS) are released from normal oxidative metabolism in 

eukaryotic cells and cellular antioxidants, such as superoxide dismutase and thioredoxin which 

carry out the detoxification process in these species. However, an overproduction of ROS or a 

decrease in the antioxidative capacity of cells can cause oxidative stress (Halliwell, 1992). Almost 

all cancer cells are under an oxidative stress associated with increased metabolic activity; hence 

they have an increased production of ROS (Szatrowski and Nathan, 1991). The increased basal 

oxidative stress in transformed cells makes them highly dependent on their antioxidant systems to 

counteract the damaging effect of ROS; this makes them susceptible to further oxidative stress 

(Schumacker, 2006). ROS-generating agents can effectively kill cancer cells by increasing the 

intracellular ROS to a toxic level (Schumacker, 2006). Human cancer cells with an intrinsic 

oxidative stress are highly sensitive to ROS stress (Huang et al., 2000; Zhou et al., 2003). 

Promoting ROS generation in mitochondria can effectively kill them (Pelicano et al., 2003). 

The anticancer activity of medicinal plants has been associated with their possession of 

flavonoids among their secondary metabolites. They anticancer activity of flavonoids in 

malignant cells is characterised by an increased generation of reactive oxygen species (ROS) 
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(Wang et al., 1999) accompanied by decrease in the level of redox active proteins, superoxide 

dismutase and thioredoxin which are crucial for maintaining the cellular redox balance (Lu et al., 

2006). The cancer chemopreventive activity of kaempferol, a flavonoid, has been linked to the 

induction of apoptosis in glioma cells arising from the elevation of intracellular oxidative stress 

(Sharma et al., 2007). Flavonoid-generated induced apoptosis is associated with membrane 

hyperpolarisation, leading to a decrease in the mitochondrial membrane potential and to an 

alteration in the plasma membrane potential (Trachootham et al., 2006). High levels of ROS can 

cause apoptosis by triggering a mitochondrial permeability transition pore opening and the release 

of proapoptotic factors (Brenner and Grimm, 2006).  

The results of the present investigation are consistent with the reports of Kawaii et al. 

(1999) and Rubio et al. (2006) on the cytotoxic activity of quercetin-3-methyl ether (TCB 16), 

luteolin (TCB 15) and other flavonoids. Kaempferol-3-methyl ether has a cytotoxic activity with 

an IC50 value of 35 µM on HeLa cells (Rubio et al., 2006); its glycones (TCB 27 and 40) lack 

cytotoxic activity. It is suggested that the lack of cytotoxic activity might be due to the additional 

sugar moiety attached at position 3 of the C-ring; this increases their polarity and limits their 

cellular permeability (Spencer, 2003). Samples isolated from C. bonduc showed good cytotoxicity 

against HeLa and BGC - 823 cancer cell lines. 

Structure-activity relationship (SAR) analyses of flavonols and flavones isolated from C. 

bonduc suggest that the introduction of a hydroxyl group at the 3' position of the B ring might 

cause an increase in cytotoxicity; on methlylation of the 3-hydroxyl group on the C ring, there is 

an enhancement of cytotoxicity. O-methylated flavonoids obtained from flavonoid metabolism in 

the small intestine have been shown to possess enhanced cytotoxicities while their glucuronides, 

especially at the 5 and 7 positions, have been shown to inhibit cytotoxicity (Spencer, 2003). 
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A number of bioactive flavonoids as well as other phytochemicals with anticancer activity 

have been isolated from C. bonduc (Han et al., 2008) However, this thesis is the first report on the 

isolation, purification and structural elucidation of cytotoxic compounds (TCB 9, 11, 15 and 16) 

from C. bonduc. Since flavonoids display a wide array of cellular activities, several mechanisms 

have been proposed to account for their cytotoxicity. These include the inhibition of DNA 

topoisomerase I/II activity, an increased generation of reactive oxygen species (Wang et al., 1999), 

a decrease in the level of redox active proteins (Lu et al., 2006), DNA oxidation and 

fragmentation, regulation of heat-shock-protein expression, cell cycle arrest, modulation of 

survival/proliferation pathways and activation of proapoptotic cellular factors (Ramos, 2007). 
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5.7  CONCLUSION AND RECOMMENDATION  

From the phytochemical assessment of the young twigs and leaves of C. bonduc, two new 

cassane diterpenoids (one fully structurally characterised and the other partially characterised), 

seven known flavonoids, one lignan, four different plant phytochemicals were isolated and their 

structures elucidated and identified. Furthermore, 13 uncharacterised compounds were also 

isolated separated from the young twigs and leaves of C. bonduc obtained from Ibadan, Oyo state, 

Nigeria, West Africa. Their antimalarial and cytotoxicity activities were evaluated. The cytotoxic 

activity of C. bonduc was linked to the presence of bioactive flavonoids with a B-ring as part of 

their phytoconstituents. The petroleum ether and ethyl acetate fractions showed moderate 

antimalarial activity. But these activities are not comparable to those of the available antimalarial 

drugs. Some solvent fractions and compounds of C. bonduc showed good anticancer activities. 

These activities are comparable with those of the existing anticancer drugs. In the present 

investigation, the 28 days of repeated doses, cellular alterations observed at the higher doses of 

extract (400, 800 and 1600 mg/kg body weight) corroborate the biochemical and haematological 

alterations found in the investigated experimental animals. Similarly, in the acute toxicological 

investigation, fixed extract doses of 2000 mg/kg and above caused cellular alterations which 

corroborated the biochemical and haematological alterations. It can be concluded that the daily 

administration of crude ethanolic fractions of C. bonduc at a dose of 400 mg/kg body weight for 

28 days is toxic to experimental animals. Similarly, the fixed dose of C. bonduc at 2000 mg/kg 

body weight and above is also toxic to experimental animals, even though, no mortality was 

observed at all the tested doses.  

Based on the present assessments and investigations, the daily use of concentrated extracts 

of the young twigs and leaves of C. bonduc, as is done in the southwestern part of Nigeria, should 
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be carefully considered in view of the observed toxicities recorded in this investigation. It is clear 

form this study and from another (Kumar et al., 2005) that potential toxicity might arise from the 

continuous intake of plants such as C. bonduc which are rich in flavonoids. The phenolic ring 

containing flavonoids, upon oxidation by peroxidases, yields the phenoxyl radical. This radical is 

cytotoxic, co-oxidizes unsaturated lipids, GSH and nucleic acids and causes ROS formation and 

mitochondrial toxicity. The antiproliferation and antimalarial activities of C. bonduc, as well as 

the indepth understanding of their mechanism of action should be further explored. This can help 

in exploring the possibility of using flavonoids, after structural modifications, as both anticancer 

and antimalarial agents. The in vivo prophylactic and chemotherapeutic activities of the extracts 

of C. bonduc will further validate its folkloric use as an antimalarial. This might constitute a topic 

for future research focus. 
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5.8  CONTRIBUTIONS TO KNOWLEDGE 

This research work has contributed the following to the body of scientific knowledge: 

1. The discovery of two new compounds, a fully structurally characterised one, TCB 6 (12α-

ethoxyl-1α,14β-diacetoxy-2α,5α-dihydroxyl-cass-13(15)-en-16,12-olide) and a partially 

characterised compound, TCB 5 (1α,7α-diacetoxy-5α,6β-dihydroxyl-cass-14(15)-epoxy-

16,12-olide) from the young twigs and leaves of C. bonduc.  

2. The isolation and structural elucidation of eleven compounds from the young twigs and 

leaves of C.bonduc which are being reported for the first time. These include: 1-

octacosanol, (+)-Syringaresinol, 4,4'-dihydroxy4,4'-dihydroxy-2'-methoxy-chalcone, 7,3'-

dihydroxy-3,11-dehydrohomoisoflavanone, Daucosterol, 5,7,3',4'-tetrahydroxy-flavone, 

5,7,3',4'-tetrahydroxy-3-methoxyflavone, Protocatechuic acid, 1-O-Hexadecanolenin, 

kaempferol-3-O-β-D-xylopyranoside and Kaempferol-3-O-α-L-rhamnopyranosyl-1→2)-

β-D-xylopyranoside. 

3. The moderate antimalarial activity of 4,4'-dihydroxy4,4'-dihydroxy-2'-methoxy-chalcone, 

isolated from C. bonduc is reported for the first time. 

4. The ethanolic extract and some compounds isolated from C. bonduc have antimalarial and 

cytotoxic activities. 

5. The ethanolic extract and compounds isolated from the young twigs and leaves of C. 

bonduc have no inhibitory activity against Candida albicans. 
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APPENDICES 

Appendix 1:  13C NMR Spectrum of TCB 1 
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Appendix 2: 1H NMR Spectrum of TCB 1 
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Appendix 3: ESI-MS Spectrum of TCB 1 
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a  
 

b  
 

Appendix 4  1H NMR Spectral of TCB 5 (Compound 4) recorded at 500 MHz in 

deuterated chloroform (CDCl3) with a: showing the extended spectrum of b between 0 to 3.0 ppm. 

The chemical shifts for the spectral were assigned in ppm. 
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a  
 

b  

Appendix 5 13C NMR Spetral of TCB 5 (Compound 4) recorded at 125 MHz in deuterated 

chloroform (CDCl3) with a: showing the extended spectrum of b between 10 to 81 ppm. 

Chemicaal shifts were assigned in ppm. 
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a  
 

b  
 

Appendix 6 13C NMR DEPT (Distortion-less Enhancement by Polarization Transfer) Spectral 

of TCB 5 (Compound 4) recorded at 125 MHz in deuterated chloroform (CDCl3) with a: showing 

the shift due to the presence of CH and CH3 in a phase opposite to CH2 and b: showing  shift due 

to only CH groups. Chemicaal shifts were assigned in ppm. 
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Appendix 7  Correlation Spectroscopy (COSY) Spectrum of TCB 5 recorded at 600 MHz in 

deuterated chloroform (CDCl3). 
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Appendix 8 Heteronuclear Multiple Quantum Coherence (HMQC) Spectrum of TCB 5 

recorded at 600 MHz in deuterated chloroform CDCl3. 
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Appendix 9 Heteronuclear Multiple Bond Coherence (HMBC) Spectrum of TCB 5 recorded at 

600 MHz in deuterated chloroform CDCl3. 
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Appendix 10 Rotating-frame Overhauser Effect Spectroscopy (ROESY) Spectrum of TCB 5 

recorded at 600 MHz in deuterated chloroform CDCl3. 
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Appendix 11 Electrospray Ionization Mass Spectroscopy (ESI-MS) Spectrum of TCB 5 
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Appendix 12  High Resolution Electrospray Ionisation Mass Spectroscopy (HR - ESI – MS) 

Spectrum of TCB 5 
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Appendix 13 IR Spectrum of TCB 5 
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Appendix 14 UV Spetrum of TCB 5 
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Appendix 15 Optical Rotation Measurement of TCB 5 
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Appendix 16  Elemental Composition Calculation for TCB 5 
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Appendix 17 Elemental Calculation for TCB 5 Continued 
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a  
 

b  
 

Appendix 18 1H NMR Spectral for TCB 6 (Compound 5) recorded at 500 MHz in deuterated 

chloroform (CDCl3) with a: showing the extended spectrum of b between 0 to 3.0 ppm. The 

chemical shifts for the spectral were assigned in ppm. 
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Appendix 19 13C NMR Spectral of TCB 6 (Compound 5) recorded at 125 MHz in deuterated 

chloroform (CDCl3) with a: showing the extended spectrum of b between 10 to 80 ppm. 

Chemicaal shifts were assigned in ppm. 
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a  
 

b  
 

Appendix 20 13C NMR DEPT (Distortion-less Enhancement by Polarization Transfer) Spectral 

of TCB 6 (Compound 5) recorded at 125 MHz in deuterated chloroform (CDCl3) with a: showing 

the shift due to the presence of CH and CH3 in a phase opposite to CH2 and b: showing  shift due 

to only CH groups. Chemicaal shifts were assigned in ppm. 
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Appendix 21 Heteronuclear Multiple Quantum Coherence (HMQC) Spectrum of TCB 6 

recorded at 600 MHz in deuterated chloroform CDCl3. 
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Appendix 22 Correlation Spectroscopy (COSY) Spectrum of TCB 6 recorded at 600 MHz in 

deuterated chloroform (CDCl3). 

 

 

 



275 
 

 

Appendix 23 Heteronuclear Multiple Bond Coherence (HMBC) Spectrum of TCB 6 recorded at 

600 MHz in deuterated chloroform CDCl3. 
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Appendix 24 Rotating-frame Overhauser Effect Spectroscopy (ROESY) Spectrum of TCB 6 

recorded at 600 MHz in deuterated chloroform CDCl3. 
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Appendix 25 High Resolution Electrospray Ionisation Mass Spectroscopy (HR - ESI – MS) 

Spectrum of TCB 6 
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Appendix 26 Electrospray Ionization Mass Spectroscopy (ESI-MS) Spectrum of TCB 6 
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Appendix 27 UV Spetrum of TCB 6 
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Appendix 28 IR Spectrum of TCB 6 
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Appendix 29 Optical Rotation Measurement of TCB 6 
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Appendix 30  Elememental Calculation for TCB 6  
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Appendix 31 Elemental Calculation for TCB 6 Continued 
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Appendix 32 1H NMR Spectrum of TCB 9 
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Appendix 33 13C NMR Spectrum of TCB 9 
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Appendix 34 ESI-MS Spectrum of TCB 9 
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Appendix 35 1H NMR Spectrum of TCB 11 
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Appendix 36 13C NMR Spectrum of TCB 11 
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Appendix 37 ESI-MS Spectrum of TCB 11  
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Appendix 38 1H NMR Spectrum of TCB 15   
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Appendix 39 13C NMR Spectrum of TCB 15 
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Appendix 40 ESI-MS Spectrum of TCB 15 
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Appendix 41 1H NMR Spectrum of TCB 16  
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Appendix 42 13C NMR Spectrum of TCB 16  
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Appendix 43 ESI-MS Spectrum of TCB 16 
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Appendix 44: Changes in weight of Experimental Animals for Sub-acute study  

Groups  Weight 1(g)     Weight 2 (g)         Weight 3 (g) Weight 4 (g)   Weight 5 (g) 

Control A 100.40±32.5    119.40±27.7        122.80±27.5         133.2±25.9         146.80±29.8 

Control B 88.40±21.8    115.60±23.3        122.00±24.3         135.20±22.6       151.20±26.4 

200 mg/kg 96.57±14.6    116.00±15.0        129.43±11.9         142.29±16.9       158.00±12.9 

200R  93.33±23.7    109.33±22.7        124.67±17.2         144.67±11.4    154.00±17.1 

400 mg/kg 82.29±16.9       106.29±15.1          116.29±15.9         131.14±17.6      146.29±16.1  

400R  78.00±12.5    102.67±15.3        113.33±12.2         132.67±13.0    146.00±16.4 

800 mg/kg 103.43±21.1      119.43±18.7         125.71±18.3         130.86±26.9      152.00±24.6 

800R  88.00±8.0    117.33±9.2          124.67±9.9           135.67±8.1    153.33±9.5 

1600 mg/kg 73.67±23.9    94.33±22.4         106.67±23.9        113.67±20.1      125.00±20.3 

1600R  57.33±15.3    73.33±8.3         84.00±10.4          94.33±10.6   103.33±9.9 

 

Values are presented as mean ± SEM (n = 5 readings). Weight 1, weight 2, weight 3, weight 4 and weight 5 represent 

weight of rats on day 0, weight of rats on day 7, weight of rats on day 14, weight of rats on day 21 and weight of rats 

on day 28 respectively. Control A, Control B, 200 mg/kg, 200R, 400 mg/kg, 400R, 800 mg/kg, 800R, 1600 mg/kg 

and 1600R represent groups of rats treated with distill water; rats treated with sodium caboxylmethyl cellulose; rats 

treated with 200 mg CB/kg bwt; recovery group of rats treated with 200 mg CB/kg bwt; rats treated with 400 mg 

CB/kg bwt; recovery group of rats treated with 400 mg CB/kg bwt, rats treated with 800 mg CB/kg bwt, recovery 

group of rats treated with 800 mg CB/kg bwt, rats treated with 1600 mg CB/kg bwt and recovery group of rats treated 

with 1600 mg CB/kg bwt. 
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Appendix 45:  Changes in weight of Experimental Animals for Acute study 

Groups   Week 1  Week 2  Week 3 

Control  127.00±3.00  129.00±4.00  131.67±4.16 

2000 mg/kg  135.00±1.00  138.00±2.52  140.33±3.21 

4000 mg/kg  128.00±1.73  131.00±1.00  133.33±1.53 

6000 mg/kg  131.67±7.23  135.33±8.50  137.00±9.64 

Values are presented as mean±SEM.   
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