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Abstract 
In the multiphase flow of oil and gas in pipeline-riser systems, reliable pressure measurements and 
monitoring is of utmost importance for flow assurance. These measurements are usually obtained using 
remote pressure measuring gauges and other devices. They are employed in the automatic slug flow 
control technique. However, these devices are quite expensive and often require calibration at intervals to 
guarantee accuracy and precision. There is therefore, the need for suitable alternatives. In this study, a 
feed-forward back propagation artificial neural network (ANN) for predicting riser base pressure in 
offshore pipeline riser systems is presented. A total of 16,870 experimental data sets were used to 
develop the ANN model. The results revealed near perfect predictions with an average mean square error 
of 0.00207197 and regression correlation coefficient, R values as high as 0.99919. The models obtained 
from this work can be pivotal to the development of data driven control of slug in pipeline-riser systems.  
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1.0 INTRODUCTION  

MULTIPHASE flow of fluid in pipeline-riser systems is a common practice in the oil and 

gas industry and has its attendant problems. One of such challenges is slug flow which 
usually poses significant threat to production facilities. Many solutions have been 
proposed to attenuate slugging. Among them, automatic control of topside valve, an 
active slug control, has been reported to be more production and economic friendly 
(Ogazi et al., 2010; Ehinmowo, 2015). Riser base pressure has been identified as one 
of the best controlled variables for this type of active slug control in multiphase flow 
systems (Storkaas, 2005). However, such measurements are usually expensive, difficult 
to get and when they are available, their reliability might be of concern. Additional 
challenges are also associated with down-hole and subsea pressure measurements as 
any equipment to be deployed would need to be able to withstand the higher 
temperature and pressure conditions. Their operations in this harsh environment 
necessitate periodic maintenance and calibration. This lack of dependability, along with 
the cost (including production deferment) associated with frequently calibrating and/or 
replacing the down-hole gauges makes this a less-preferred alternative (Awadalla et al., 
2016). 
 
Several empirical correlations and mechanistic models have been proposed over the 
last seven decades to address issues such as reliability, cost and harsh environment. 
However, the applicability of these correlations doesn’t cover wide range of data and 
due to the complexities of problems encountered. It has become imperative to go 
beyond the standard mathematical techniques and incorporate soft computing 
techniques and artificial intelligence (Mohammadpoor et al., 2010). These provide an 
efficiently robust and cost-effective alternative that can tolerate imprecision and 
uncertainty to demonstrate superior performance.  
 
The use of artificial neural networks (ANNs) and other forms of artificial intelligence, 
such as Fuzzy Logic to resolve various engineering problems has gained increasing 
popularity in recent decade (Al-Shammari, 2011). ANNs have been used to satisfactorily 
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predict bottom hole pressure as reported in the works of Ternyik et al. (1995), Osman et 
al. (2005), Mohammadpoor et al. (2010), Al-Shammari (2011) and in conjunction with 
multiphase correlations as reported by Li et al. (2014). ANNs have been found to 
achieve better performance over the conventional solution methods. Artificial neural 
networks can be said to be biologically-inspired adaptive systems with the ability to 
acquire, store, recall and utilize experiential knowledge (Mohaghegh et al., 1999). The 
idea is to train a computer program to recognize patterns and predict output values from 
given input values. 
 
There are two types of ANN: static and dynamic. In a static ANN, the model is not 
modelled again if any error exists whereas in a dynamic ANN, the weights and biases 
are updated for better optimization using a suitable algorithm (Kumar, 2012). Dynamic 
model is more frequently used because of its superior prediction property. 
 
Many authors including Storkaas (2005) and Di Meglio et al. (2012) have proposed 
model-based approaches to acquire variables for control in a multiphase pipeline-riser 
system. 
 
Cao et al. (2013) for example applied a data driven approach to circumvent this difficulty 
of sub-surface pressure measurements. Despite the advancement made in data driven 
approaches to modelling pipeline-riser systems, artificial neural network has not been 
applied to predict this very important variable - riser base pressure. This study seeks to 
employ ANNs to predict riser base pressure in a multiphase pipeline-riser system based 
on superficial velocity of flowing fluid materials, size of valve opening and topside 
pressure measurements. The models are based on experimental data and different 
training algorithms and network sizes were tested and the results obtained from these 
scenarios were evaluated and compared. The pipeline-riser system adopted for this 
study is presented in Figure 1.  
 

 
Figure 1: An Illustration of the Experimental Setup of the Pipeline Riser System 
 
2.0     METHODOLOGY 
Although many factors can be considered for the estimation of riser base pressure, 
some of them could be redundant and of little effects. Therefore, in this study, the critical 
factors such as liquid flow rates, gas flow rates, and other available topside 
measurements (topside pressure, and valve openings) were considered and combined 
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in various ways to predict the riser base pressure. The proposed functions of these 
factors can be presented in the following mathematical forms. 

PRB = f(VSL, VSG, PRT, Z)                                  (1) 
 
Where  is the riser base pressure,  is the superficial liquid velocity,  is the 

superficial gas velocity, , is the riser top pressure and  is the riser top valve 
opening. 
 
When the flow rates were kept constant, Eq.1 reduces to Eq. 2. 

PRB = f(PRT, Z)                             (2) 

 
Here, the riser base pressure was modelled as a function of the topside pressure and 
valve openings. The ANN architecture for the developed model is illustrated in Figure 2.  
 

 
Figure 2: Neural Network Architecture for the Developed Model 

 

A total of twelve neural network models were developed, three each for the low flow 
rate, medium flow rate, high flow rate regions following mathematical model presented 
in Eq. 2 as well as three for the combined analysis of all three regions following the 
model expressed in Eq.1.  
 

In each of these regions, three training algorithms (Levenberg-Marquardt, Bayesian 
Regularization and Scaled Conjugate Gradient) were tested and the results from all 
twelve scenarios are documented. The number of hidden neurons in each case was set 
as twice the number of input parameters. For each of the individual flow regions, topside 
pressure and riser top valve opening were used as input parameters with four hidden 
neurons while the combined analysis utilized superficial velocity of water and air in 
addition to the topside pressure and riser top valve opening as input parameters with 
eight hidden neurons. 
 

2.1     Model Training, Testing and Validation 
In this study, various feed-forward back-propagation artificial neural networks, 
incorporating three different training algorithms, were developed and trained with 
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experimental data using the ANN toolbox of MATLAB to predict riser base pressure. A 
total of 16,870 experimental data sets adapted from the experimental work of Ehinmowo 
(2015) were used to develop the ANN model. The training stopped after the required 
number of iterations in each case achieving MSE values as low as 0.001062 and 
regression values as high as 0.99919. 
 
The neural network models were trained using 70 % of the data while 15 % each was 
used for validation and testing. This data division is such that each data subset is 
representative of the entire range of data sets and is thus valid for all regions. 
 
The performance of the network is judged based on the average mean square error and 
regression correlation coefficient values. The lower the mean square error, the more 
accurate the neural network model, thus, a mean square error of 0 represents a perfect 
model. Regression Values, on the other hand, measure the correlation between the 
neural network outputs and targets. Regression values, R values, are numerical values 
between 0 and 1 with an R value of 1 signifying a close relationship while an R value of 
0 denotes an absolutely ill-fitted relationship. Other factors or measurement could be 
added to these factors. However, the factors considered in this study were observed to 
be sufficient in predicting the riser base pressure.  
 
2.2 The Experimental Data 
In this study, the data used was obtained from one of the 2-inch multiphase facility of 
Cranfield University, United Kingdom. The details of these experimental works have 
been documented in Ehinmowo (2015). 
 
The summary of the data used in this work is presented in Table 1 while Figures 3, 4 
and 5 are the plots of the riser base and riser top pressures against valve openings for 
the various flow regions. 
 
Table 1:  Range of Experimental Data used 

  (m/s)  (m/s)  (bar) (%)  (bar) 

   Min 0.25 0.71 0.97 23.00 1.44 
   Max 1.72 3.38 1.95 100.00 4.67 

 
2.2.1    Low Flow Rate Region 
In this region, the flow rate of the two phases in the conduit is kept constant at 7 
standard m3hr-1 of air with 0.5 kgs-1 of water (0.71 ms-1 and 0.25 ms-1 superficial 
velocities of air and water, respectively). The transient pressure values measured 
against various valve openings is as illustrated in Figure 3. 
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2.2.2    Medium Flow Rate Region 
In this region, the flow rate of the two phases in the conduit is kept constant at 30 
standard m3hr-1 of air with 2.0 kgs-1 of water (1.95 ms-1 and 1.0 ms-1 superficial 
velocities of air and water, respectively). The transient pressure values measured 
against various valve openings is as reported in Figure 4. 
 

Figure 4:  Topside and Riser Base Pressure (barg) per seconds Against Valve Openings for 
Medium Flow Rate 

 
2.2.3 High Flow Rate Region 
In this region, the flow rate of the two phases in the conduit is kept constant at 75 
standard m3hr-1 of air with 3.5 kgs-1 of water  (3.38 ms-1 and 1.72 ms-1 superficial 
velocities for air and water, respectively). The transient pressure values measured 
against various valve openings is as displayed in Figure 5. 

 

Figure 3: Topside and Riser Base Pressure (barg) per seconds Against Valve Openings for Low Flow Rate 
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Figure 5:  Topside and Riser Base Pressure (barg) per seconds Against Valve Openings for 

High Flow Rate 

 
3.0 RESULTS AND DISCUSSION  
The data used in this study cover three distinct flow rate regions comprising low, 
medium and high flow rate regions. The topside pressures used in this study ranged 
from 0.936358 to 1.9494 bar gauge while the riser base pressure values ranged from 
1.44223 to 4.66663 bar gauge and the valve opening ranged from 23 % to the fully open 
100 % condition. 
 
The ANN models in this study tested three different training algorithms, Levenberg-
Marquardt, Bayesian Regularization and Scaled Conjugate Gradient algorithms, for 
each of the flow rate regions as well as for the entire data range. 
 
Figure 6 illustrates the regression values obtained for the low flow region. 
 

Figure 6:  Regression Plots Using Levenberg-Marquardt, Bayesian Regularization and Scaled 
Conjugate Gradient, respectively for Low Flow Rate Region 
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The results revealed that the Levenberg-Marquardt and Bayesian Regularization 
algorithm predicted the riser base pressure at similar level with R-value of about 85 % 
while a lower value of 82 % was obtained for the Scaled Conjugate Gradient algorithm 
(SCGA). 
 
The developed ANN models were tested using different training algorithms. The best 
average MSE of 0.001062 was obtained using Bayesian Regularization. 
 
Figure 7 shows the plots of regression values obtained for the medium flow region. The 
excellent regression values obtained in this region demonstrate a very close relationship 
between the inputs (topside pressure and valve opening) and the output (riser base 
pressure). Unlike the results obtained in the low flow region, each valve opening change 
presents a well-defined change in the pressure values as demonstrated by the presence 
of distinct data cluster groups in the regression plots in Figure 7. Thus, in this region, 
the dependence of the riser base pressure on the topside pressure and valve opening is 
significant and the two stream correlate near to perfection. 

Figure 7:  Regression Plots Using Levenberg-Marquardt, Bayesian Regularization and Scaled 
Conjugate Gradient, respectively for Medium Flow Rate Region 

 
Similar to the medium flow rate region results, the results in Figure 8 indicate a close 
relationship between the output and input parameters. The clusters are well 
differentiated and represent different valve opening sizes. 
 

Figure 8:  Regression Plots Using Levenberg-Marquardt, Bayesian Regularization and Scaled 
Conjugate Gradient, respectively for High Flow Rate Region 
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The training, validation and testing of the neural network incorporating all three flow 
regions was also done using the three different algorithms. This includes the combined 
flow rates of 7, 30 and 75 standard m3hr-1 of air with 0.5, 2.0 and 3.5 kgs-1 of water, 
respectively. The best average MSE of 0.0020694 was obtained using Bayesian 
Regularization. 

 
Figure 9:  Regression Plots Using Levenberg-Marquardt, Bayesian Regularization and Scaled 

Conjugate Gradient, respectively for Combined Analysis of Low Medium and High Flow 
Regions 

 
Figure 9 is an illustration of the regression values obtained from the training algorithms. 
Similar trend in the degree of accuracy as earlier observed also prevailed. Levenberg-
Marquardt and Bayesian Regularization algorithm predicted the riser base pressure at 
similar level with R-value of about 99.7 % while a lower value of 99.6 % was obtained 
for the SCGA 
 
An illustration of the MSE and Regression values obtained under each of the tested 
scenarios is shown in Figure 10 

 
Figure 10: Mean Square Error Values for Each of the Scenarios Considered 

 
From Figure 10, it is evident that the SCGA consistently achieved the highest mean 
square error value for each of the flow regions and it is therefore the least accurate for 
this study. The Bayesian Regularization algorithm achieved the most ideal MSE values, 
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however, the disparity compared to the results obtained using the Levenberg-Marquardt 
algorithm is very minimal. Thus, any of the two algorithms would give a more excellent 
result compared with the SCGA. 
 
The regression values obtained under the various scenarios considered are presented 
in Figure 11. The Bayesian regularization method outperforms the Levenberg-
Marquardt very marginally.  
 
It is also worthy of note that, in the low flow rate region, the regression values obtained 
are considerably lower than those obtained in other flow regions as well as in the 
combined analysis. This indicates that the type of flow observed in this region is 
significantly different from other regions (Ehinmowo et al., 2016). This also suggests 
that the pressure in this region may need more factors for the prediction of riser base 
pressure than proposed in model 2 (Eq.2). This is supported by the excellent results 
obtained for model 1 (Eq. 1) for all the regions. 
 

 
Figure 11: Regression Values for the Different Scenarios Considered 

 
After testing several network configurations, and the three training algorithms, it was 
found that a neural network of 8 neurons in the hidden layer, utilizing the Bayesian 
Regularization training algorithm performed best with an average mean squared error of 
0.00205947 and 0.00211559 on the training and testing data respectively. An excellent 
agreement was found between the values predicted by the neural network and the 
measured experimental pressure values.0 
 
4.0   CONCLUSION 
Artificial neural network models for the prediction of riser-base pressure in pipeline-riser 
system has been developed and its applicability was validated using experimental data. 
Several network configurations were considered and the results obtained from the 
developed models compared well with the experimental data. The following conclusions 
can be drawn. 

   The use of ANNs in this manner would significantly reduce operating costs, in field 
and laboratory scenarios, as fewer pressure gauges would be required. ANN 
usage in pressure prediction would also eliminate the avoidable pressure losses 
due to the intrusions of pressure measuring devices. 
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   The proposed models can be used to predict riser base pressure in pipeline-riser 
systems. However, model 1 performed better than model 2 for all the regions 
investigated.  

 

   For the riser base prediction in pipeline-riser system, both Bayesian regularization 
and the Levenberg-Marquardt algorithms can be used to obtain excellent results. 

 

   The results obtained from this study can be pivotal to data driven control of slug 
flow in pipeline-riser systems. This is a subject of further studies. 

 

   Further studies may also be carried out using field data to investigate pipeline-riser 
systems at higher pressure conditions. Other factors such as pipeline geometry, 
pipe diameter, pipeline materials, not considered in this study can also be 
investigated. 
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