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Recently, Khan andAbbas initiated the study of approximating fixed points ofmultivalued nonlinearmappings inmodular function
spaces. It is our purpose in this study to continue this recent trend in the study of fixed point theory of multivalued nonlinear
mappings in modular function spaces. We prove some interesting theorems for 𝜌-quasi-nonexpansive mappings using the Picard-
Krasnoselskii hybrid iterative process. We apply our results to solving certain initial value problem.

1. Introduction

Recently, Khan and Abbas [1] initiated the study of approx-
imating fixed points of multivalued nonlinear mappings
in modular function spaces. The purpose of this paper
is to continue this recent trend in the study of fixed
point theory of multivalued nonlinear mappings in mod-
ular function spaces. We prove some interesting theo-
rems for 𝜌-quasi-nonexpansive mappings using the Picard-
Krasnoselskii hybrid iterative process, recently introduced
by Okeke and Abbas [2] as a modification of the Picard-
Mann hybrid iterative process, introduced by Khan [3]. We
also prove some stability results using this iterative process.
Moreover, we apply our results in solving certain initial value
problem.

For over a century now, the study of fixed point theory
of multivalued nonlinear mappings has attracted many well-
known mathematicians and mathematical scientists (see,
e.g., Brouwer [4], Downing and Kirk [5], Geanakoplos [6],
Kakutani [7], Nash [8], Nash [9], Nadler [10], Abbas and
Rhoades [11], and Khan et al. [12]). The motivation for such
studies stemsmainly from the usefulness of fixed point theory

results in real-world applications, as in Game Theory and
Market Economy and in other areas of mathematical sciences
such as in Nonsmooth Differential Equations.

The theory of modular spaces was initiated in 1950 by
Nakano [13] in connection with the theory of ordered spaces
which was further generalized by Musielak and Orlicz [14].
Modular function spaces are natural generalizations of both
function and sequence variants of several important, from
application perspective, spaces like Musielak-Orlicz, Orlicz,
Lorentz, Orlicz-Lorentz, Kothe, Lebesgue, and Calderon-
Lozanovskii spaces and several others. Interest in quasi-
nonexpansive mappings in modular function spaces stems
mainly in the richness of structure of modular function
spaces that, besides being Banach spaces (or 𝐹-spaces in a
more general settings), are equipped with modular equiv-
alents of norm or metric notions and also equipped with
almost everywhere convergence and convergence in submea-
sure. It is known that modular type conditions are much
more natural asmodular type assumptions can bemore easily
verified than their metric or norm counterparts, particularly
in applications to integral operators, approximation, and
fixed point results. Moreover, there are certain fixed point
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results that can be proved only using the apparatus of
modular function spaces. Hence, fixed point theory results in
modular function spaces, in this perspective, which should
be considered as complementary to the fixed point theory in
normed and metric spaces (see, e.g., [15, 16]).

Several authors have proved very interesting fixed points
results in the framework of modular function spaces (see,
e.g., [15, 17–19]). Abbas et al. [20] proved the existence
and uniqueness of common fixed point of certain nonlinear
mappings satisfying some contractive conditions in partially
ordered spaces. Öztürk et al. [21] established some interesting
fixed point results of nonlinear mappings satisfying integral
type contractive conditions in the framework of modular
spaces endowed with a graph. Recently, Khan and Abbas ini-
tiated the study of approximating fixed points of multivalued
nonlinear mappings in the framework of modular function
spaces [1]. A very recent work was given by Khan et al. [12].
They approximated the fixed points of 𝜌-quasi-nonexpansive
multivalued mappings in modular function spaces using a
three-step iterative process, where𝜌 satisfies the so-calledΔ 2-
condition. Their results improve and generalize the results of
Khan and Abbas [1].

Motivated by the above results, we prove some conver-
gence and stability results for 𝜌-quasi-nonexpansive map-
pings using the Picard-Krasnoselskii hybrid iterative process.
Our results improve, extend, and generalize several known
results, including the recent results of Khan et al. [12], in the
sense that the restriction that 𝜌 satisfies the so-called Δ 2-
condition in [12] is removed in the present paper. Moreover,
it is known (see, [2]) that the Picard-Krasnoselskii hybrid
iterative process converges faster than all of Picard, Mann,
Krasnoselskii, and Ishikawa iterative processes. Furthermore,
we apply our results in solving certain initial value problem.

2. Preliminaries

In this study, we let Ω denote a nonempty set and let Σ be
a nontrivial 𝜎-algebra of subsets of Ω. Let P be a 𝛿-ring of
subsets of Ω, such that 𝐸 ∩ 𝐴 ∈ P for any 𝐸 ∈ P and𝐴 ∈ Σ. Let us assume that there exists an increasing sequence
of sets 𝐾𝑛 ∈ P such that Ω = ⋃ 𝐾𝑛 (e.g., P can be the
class of sets of finite measure in 𝜎-finite measure space). By1𝐴, we denote the characteristic function of the set 𝐴 in Ω.
By 𝜀 we denote the linear space of all simple functions with
support fromP. ByM∞ we denote the space of all extended
measurable functions, that is, all functions𝑓 : Ω → [−∞, ∞]
such that there exists a sequence {𝑔𝑛} ⊂ 𝜀, |𝑔𝑛| ≤ |𝑓|, and𝑔𝑛(𝜔) → 𝑓(𝜔) for each 𝜔 ∈ Ω.
Definition 1. Let 𝜌 : M∞ → [0, ∞] be a nontrivial,
convex, and even function. One says that 𝜌 is a regular convex
function pseudomodular if

(1) 𝜌(0) = 0;
(2) 𝜌 is monotone, that is, |𝑓(𝜔)| ≤ |𝑔(𝜔)| for any 𝜔 ∈ Ω

implies 𝜌(𝑓) ≤ 𝜌(𝑔), where 𝑓, 𝑔 ∈ M∞;
(3) 𝜌 is orthogonally subadditive, that is, 𝜌(𝑓1𝐴∪𝐵) ≤𝜌(𝑓1𝐴)+𝜌(𝑓1𝐵) for any 𝐴, 𝐵 ∈ Σ such that 𝐴∩𝐵 ̸= 0,𝑓 ∈ M∞;

(4) 𝜌 has Fatou property, that is, |𝑓𝑛(𝜔)| ↑ |𝑓(𝜔)| for all𝜔 ∈ Ω implies 𝜌(𝑓𝑛) ↑ 𝜌(𝑓), where 𝑓 ∈ M∞;
(5) 𝜌 is order continuous in 𝜀, that is, 𝑔𝑛 ∈ 𝜀 and |𝑔𝑛(𝜔)| ↓0 implies 𝜌(𝑔𝑛) ↓ 0.
A set𝐴 ∈ Σ is said to be 𝜌-null if 𝜌(𝑔1𝐴) = 0 for every 𝑔 ∈𝜀. A property 𝑝(𝜔) is said to hold 𝜌-almost everywhere (𝜌-

a.e.) if the set {𝜔 ∈ Ω : 𝑝(𝜔) does not hold} is 𝜌-null. As usual,
we identify any pair of measurable sets whose symmetric
difference is 𝜌-null as well as any pair ofmeasurable functions
differing only on a 𝜌-null set. With this in mind we define

M (Ω, Σ,P, 𝜌) = {𝑓 ∈ M∞ : 󵄨󵄨󵄨󵄨𝑓 (𝜔)󵄨󵄨󵄨󵄨 < ∞ 𝜌-a.e.} , (1)

where 𝑓 ∈ M(Ω, Σ,P, 𝜌) is actually an equivalence class
of functions equal 𝜌-a.e. rather than an individual function.
Where no confusion exists, we shall write M instead of
M(Ω, Σ,P, 𝜌).

The following definitions were given in [1].

Definition 2. Let 𝜌 be a regular function pseudomodular.
(a) One says that 𝜌 is a regular convex function modular

if 𝜌(𝑓) = 0 implies 𝑓 = 0 𝜌-a.e.
(b) One says that𝜌 is a regular convex function semimod-

ular if 𝜌(𝛼𝑓) = 0 for every 𝛼 > 0 implies 𝑓 = 0 𝜌-a.e.
It is known (see, e.g., [15]) that 𝜌 satisfies the following
properties:

(1) 𝜌(0) = 0 iff 𝑓 = 0 𝜌-a.e.
(2) 𝜌(𝛼𝑓) = 𝜌(𝑓) for every scalar 𝛼 with |𝛼| = 1 and 𝑓 ∈

M.
(3) 𝜌(𝛼𝑓 + 𝛽𝑔) ≤ 𝜌(𝑓) + 𝜌(𝑔) if 𝛼 + 𝛽 = 1, 𝛼, 𝛽 ≥ 0, and𝑓, 𝑔 ∈ M.

𝜌 is called a convex modular if, in addition, the
following property is satisfied:

(3󸀠) 𝜌(𝛼𝑓 + 𝛽𝑔) ≤ 𝛼𝜌(𝑓) + 𝛽𝜌(𝑔) if 𝛼 + 𝛽 = 1, 𝛼, 𝛽 ≥ 0,
and 𝑓, 𝑔 ∈ M.
The class of all nonzero regular convex function
modulars on Ω is denoted byR.

Definition 3. The convex function modular 𝜌 defines the
modular function space 𝐿𝜌 as

𝐿𝜌 = {𝑓 ∈ M; 𝜌 (𝜆𝑓) 󳨀→ 0 as 𝜆 󳨀→ 0} . (2)

Generally, the modular 𝜌 is not subadditive and therefore
does not behave as a norm or a distance. However, the
modular space 𝐿𝜌 can be equipped with an 𝐹-norm defined
by

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝜌 = inf {𝛼 > 0 : 𝜌 (𝑓𝛼 ) ≤ 𝛼} . (3)

In the case that 𝜌 is convex modular,

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝜌 = inf {𝛼 > 0 : 𝜌 (𝑓𝛼 ) ≤ 1} (4)

defines a norm on the modular space 𝐿𝜌, and it is called the
Luxemburg norm.
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Lemma 4 (see [15]). Let 𝜌 ∈ R. Defining 𝐿0𝜌 = {𝑓 ∈𝐿𝜌; 𝜌(𝑓, ⋅) 𝑖𝑠 𝑜𝑟𝑑𝑒𝑟 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠} and 𝐸𝜌 = {𝑓 ∈ 𝐿𝜌; 𝜆𝑓 ∈𝐿0𝜌 for every 𝜆 > 0}, one has the following:
(i) 𝐿𝜌 ⊃ 𝐿0𝜌 ⊃ 𝐸𝜌.
(ii) 𝐸𝜌 has the Lebesgue property; that is, 𝜌(𝛼𝑓, 𝐷𝑘) → 0,

for 𝛼 > 0, 𝑓 ∈ 𝐸𝜌, and 𝐷𝑘 ↓ 0.
(iii) 𝐸𝜌 is the closure of 𝜀 (in the sense of ‖ ⋅ ‖𝜌).
The following uniform convexity type properties of 𝜌 can

be found in [17].

Definition 5. Let 𝜌 be a nonzero regular convex function
modular defined on Ω.

(i) Let 𝑟 > 0, 𝜖 > 0. Define
𝐷1 (𝑟, 𝜖) = {(𝑓, 𝑔) : 𝑓, 𝑔 ∈ 𝐿𝜌, 𝜌 (𝑓) ≤ 𝑟, 𝜌 (𝑔)

≤ 𝑟, 𝜌 (𝑓 − 𝑔) ≥ 𝜖𝑟} . (5)

Let

𝛿1 (𝑟, 𝜖) = inf {1 − 1𝑟 𝜌 (𝑓 + 𝑔2 ) : (𝑓, 𝑔) ∈ 𝐷1 (𝑟, 𝜖)}
if 𝐷1 (𝑟, 𝜖) ̸= 0,

(6)

and 𝛿1(𝑟, 𝜖) = 1 if 𝐷1(𝑟, 𝜖) = 0. One says that 𝜌
satisfies (UC1) if for every 𝑟 > 0, 𝜖 > 0, 𝛿1(𝑟, 𝜖) > 0.
Observe that for every 𝑟 > 0, 𝐷1(𝑟, 𝜖) ̸= 0, for 𝜖 > 0
small enough.

(ii) One says that 𝜌 satisfies (UUC1) if for every 𝑠 ≥ 0,𝜖 > 0, there exists 𝜂1(𝑠, 𝜖) > 0 depending only on 𝑠
and 𝜖 such that 𝛿1(𝑟, 𝜖) > 𝜂1(𝑠, 𝜖) > 0 for any 𝑟 > 𝑠.

(iii) Let 𝑟 > 0, 𝜖 > 0. Define
𝐷2 (𝑟, 𝜖) = {(𝑓, 𝑔) : 𝑓, 𝑔 ∈ 𝐿𝜌, 𝜌 (𝑓) ≤ 𝑟, 𝜌 (𝑔)

≤ 𝑟, 𝜌 (𝑓 − 𝑔2 ) ≥ 𝜖𝑟} .
(7)

Let

𝛿2 (𝑟, 𝜖) = inf {1 − 1𝑟 𝜌 (𝑓 + 𝑔2 ) : (𝑓, 𝑔) ∈ 𝐷2 (𝑟, 𝜖)} ,
if 𝐷2 (𝑟, 𝜖) ̸= 0,

(8)

and 𝛿2(𝑟, 𝜖) = 1 if𝐷2(𝑟, 𝜖) = 0. one says that 𝜌 satisfies(UC2) if for every 𝑟 > 0, 𝜖 > 0, 𝛿2(𝑟, 𝜖) > 0. Observe
that for every 𝑟 > 0, 𝐷2(𝑟, 𝜖) ̸= 0, for 𝜖 > 0 small
enough.

(iv) One says that 𝜌 satisfies (UUC2) if for every 𝑠 ≥ 0,𝜖 > 0, there exists 𝜂2(𝑠, 𝜖) > 0 depending only on 𝑠
and 𝜖 such that 𝛿2(𝑟, 𝜖) > 𝜂2(𝑠, 𝜖) > 0 for any 𝑟 > 𝑠.

(v) One says that 𝜌 is strictly convex (SC), if for every𝑓, 𝑔 ∈ 𝐿𝜌 such that 𝜌(𝑓) = 𝜌(𝑔) and 𝜌((𝑓 + 𝑔)/2) =(𝜌(𝑓) + 𝜌(𝑔))/2, there holds 𝑓 = 𝑔.
Proposition 6 (see [15]). The following conditions character-
ize relationship between the above defined notions:

(i) (𝑈𝑈𝐶𝑖) ⇒ (𝑈𝐶𝑖) for 𝑖 = 1, 2.
(ii) 𝛿1(𝑟, 𝜖) ≤ 𝛿2(𝑟, 𝜖).
(iii) (𝑈𝐶1) ⇒ (𝑈𝐶2).
(iv) (𝑈𝑈𝐶1) ⇒ (𝑈𝑈𝐶2).
(v) If 𝜌 is homogeneous (e.g., it is a norm), then all the

conditions (𝑈𝐶1), (𝑈𝐶2), (𝑈𝑈𝐶1), and (𝑈𝑈𝐶2) are
equivalent and 𝛿1(𝑟, 2𝜖) = 𝛿1(1, 2𝜖) = 𝛿2(1, 𝜖) =𝛿2(𝑟, 𝜖).

Definition 7. A nonzero regular convex function modular 𝜌
is said to satisfy the Δ 2-condition, if sup𝑛≥1𝜌(2𝑓𝑛, 𝐷𝑘) → 0 as𝑘 → ∞whenever {𝐷𝑘} decreases to 0 and sup𝑛≥1𝜌(𝑓𝑛, 𝐷𝑘) →0 as 𝑘 → ∞.
Definition 8. A function modular is said to satisfy the Δ 2-
type condition, if there exists𝐾 > 0 such that, for any𝑓 ∈ 𝐿𝜌,
one has 𝜌(2𝑓) ≤ 𝐾𝜌(𝑓).

In general, Δ 2-condition and Δ 2-type condition are
not equivalent, even though it is easy to see that Δ 2-type
condition impliesΔ 2-condition on themodular space 𝐿𝜌; see
[22].

Definition 9. Let 𝐿𝜌 be a modular space.The sequence {𝑓𝑛} ⊂𝐿𝜌 is called
(1) 𝜌-convergent to 𝑓 ∈ 𝐿𝜌 if 𝜌(𝑓𝑛 − 𝑓) → 0 as 𝑛 → ∞;
(2) 𝜌-Cauchy, if 𝜌(𝑓𝑛 − 𝑓𝑚) → 0 as 𝑛 and 𝑚 → ∞.
Observe that 𝜌-convergence does not imply 𝜌-Cauchy

since 𝜌 does not satisfy the triangle inequality. In fact, one
can easily show that this will happen if and only if 𝜌 satisfies
the Δ 2-condition.

Kilmer et al. [23] defined 𝜌-distance from an 𝑓 ∈ 𝐿𝜌 to a
set 𝐷 ⊂ 𝐿𝜌 as follows:

dist𝜌 (𝑓, 𝐷) = inf {𝜌 (𝑓 − ℎ) : ℎ ∈ 𝐷} . (9)

Definition 10. A subset 𝐷 ⊂ 𝐿𝜌 is called
(1) 𝜌-closed if the 𝜌-limit of a 𝜌-convergent sequence of𝐷 always belongs to 𝐷;
(2) 𝜌-a.e. closed if the 𝜌-a.e. limit of a 𝜌-a.e. convergent

sequence of 𝐷 always belongs to 𝐷;
(3) 𝜌-compact if every sequence in 𝐷 has a 𝜌-convergent

subsequence in 𝐷;
(4) 𝜌-a.e. compact if every sequence in 𝐷 has a 𝜌-a.e.

convergent subsequence in 𝐷;
(5) 𝜌-bounded if

diam𝜌 (𝐷) = sup {𝜌 (𝑓 − 𝑔) : 𝑓, 𝑔 ∈ 𝐷} < ∞. (10)
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It is known that the norm and modular convergence are
also the same when we deal with the Δ 2-type condition (see,
e.g., [15]).

A set 𝐷 ⊂ 𝐿𝜌 is called 𝜌-proximinal if for each 𝑓 ∈ 𝐿𝜌
there exists an element𝑔 ∈ 𝐷 such that 𝜌(𝑓−𝑔) = dist𝜌(𝑓, 𝐷).
We shall denote the family of nonempty 𝜌-bounded 𝜌-
proximinal subsets of 𝐷 by 𝑃𝜌(𝐷), the family of nonempty𝜌-closed 𝜌-bounded subsets of 𝐷 by 𝐶𝜌(𝐷), and the family
of 𝜌-compact subsets of 𝐷 by 𝐾𝜌(𝐷). Let 𝐻𝜌(⋅, ⋅) be the 𝜌-
Hausdorff distance on 𝐶𝜌(𝐿𝜌); that is,

𝐻𝜌 (𝐴, 𝐵) = max{sup
𝑓∈𝐴

dist𝜌 (𝑓, 𝐵) , sup
𝑔∈𝐵

dist𝜌 (𝑔, 𝐴)} ,
𝐴, 𝐵 ∈ 𝐶𝜌 (𝐿𝜌) .

(11)

A multivalued map 𝑇 : 𝐷 → 𝐶𝜌(𝐿𝜌) is said to be

(a) 𝜌-contraction mapping if there exists a constant 𝑘 ∈[0, 1) such that

𝐻𝜌 (𝑇𝑓, 𝑇𝑔) ≤ 𝑘𝜌 (𝑓 − 𝑔) , ∀𝑓, 𝑔 ∈ 𝐷, (12)

(b) 𝜌-nonexpansive (see, e.g., Khan and Abbas [1]) if

𝐻𝜌 (𝑇𝑓, 𝑇𝑔) ≤ 𝜌 (𝑓 − 𝑔) , ∀𝑓, 𝑔 ∈ 𝐷, (13)

(c) 𝜌-quasi-nonexpansive mapping if

𝐻𝜌 (𝑇𝑓, 𝑝) ≤ 𝜌 (𝑓 − 𝑝) ∀𝑓 ∈ 𝐷, 𝑝 ∈ 𝐹𝜌 (𝑇) . (14)

A sequence {𝑡𝑛} ⊂ (0, 1) is called bounded away from 0 if
there exists 𝑎 > 0 such that 𝑡𝑛 ≥ 𝑎 for every 𝑛 ∈ N. Similarly,{𝑡𝑛} ⊂ (0, 1) is called bounded away from 1 if there exists 𝑏 < 1
such that 𝑡𝑛 ≤ 𝑏 for every 𝑛 ∈ N.

Okeke andAbbas [2] introduced the Picard-Krasnoselskii
hybrid iterative process. The authors proved that this new
hybrid iterative process converges faster than all of Picard,
Mann, Krasnoselskii, and Ishikawa iterative processes when
applied to contraction mappings. We now give the analogue
of the Picard-Krasnoselskii hybrid iterative process in mod-
ular function spaces as follows: let 𝑇 : 𝐷 → 𝑃𝜌(𝐷) be
a multivalued mapping and {𝑓𝑛} ⊂ 𝐷 be defined by the
following iteration process:

𝑓𝑛+1 ∈ 𝑃𝑇𝜌 (𝑔𝑛)
𝑔𝑛 = (1 − 𝜆) 𝑓𝑛 + 𝜆𝑃𝑇𝜌 (V𝑛) , 𝑛 ∈ N, (15)

where V𝑛 ∈ 𝑃𝑇𝜌 (𝑓𝑛) and 0 < 𝜆 < 1. It is our purpose in the
present paper to prove some new fixed point theorems using
this iteration process in the framework of modular function
spaces.

Definition 11. A sequence {𝑓𝑛} ⊂ 𝐷 is said to be Fejér
monotone with respect to subset 𝑃𝜌(𝐷) of 𝐷 if 𝜌(𝑓𝑛+1 − 𝑝) ≤
𝜌(𝑓𝑛 − 𝑝), for all 𝑝 ∈ 𝑃𝑇𝜌 (𝐷) of 𝐷, 𝑛 ∈ N.

The following Lemma will be needed in this study.

Lemma 12 (see [22]). Let 𝜌 be a function modular and 𝑓𝑛 and𝑔𝑛 be two sequences in 𝑋𝜌. Then

lim
𝑛→∞

𝜌 (𝑔𝑛) = 0 󳨐⇒ lim sup
𝑛→∞

𝜌 (𝑓𝑛 + 𝑔𝑛)
= lim sup
𝑛→∞

𝜌 (𝑓𝑛) ,
lim
𝑛→∞

𝜌 (𝑔𝑛) = 0 󳨐⇒ lim inf
𝑛→∞

𝜌 (𝑓𝑛 + 𝑔𝑛)
= lim inf
𝑛→∞

𝜌 (𝑓𝑛) .

(16)

Lemma 13 (see [17]). Let𝜌 satisfy (𝑈𝑈𝐶1) and let {𝑡𝑘} ⊂ (0, 1)
be bounded away from 0 and 1. If there exists 𝑅 > 0 such that

lim sup
𝑛→∞

𝜌 (𝑓𝑛) ≤ 𝑅,
lim sup
𝑛→∞

𝜌 (𝑔𝑛) ≤ 𝑅,
lim
𝑛→∞

𝜌 (𝑡𝑛𝑓𝑛 + (1 − 𝑡𝑛) 𝑔𝑛) = 𝑅,
(17)

and then lim𝑛→∞𝜌(𝑓𝑛 − 𝑔𝑛) = 0.
The above lemma is an analogue of a famous lemma due

to Schu [24] in Banach spaces.
A function 𝑓 ∈ 𝐿𝜌 is called a fixed point of 𝑇 : 𝐿𝜌 →𝑃𝜌(𝐷) if𝑓 ∈ 𝑇𝑓.The set of all fixed points of𝑇will be denoted

by 𝐹𝜌(𝑇).
Lemma 14 (see [1]). Let 𝑇 : 𝐷 → 𝑃𝜌(𝐷) be a multivalued
mapping and

𝑃𝑇𝜌 (𝑓) = {𝑔 ∈ 𝑇𝑓 : 𝜌 (𝑓 − 𝑔) = dist𝜌 (𝑓, 𝑇𝑓)} . (18)

Then the following are equivalent:

(1) 𝑓 ∈ 𝐹𝜌(𝑇), that is, 𝑓 ∈ 𝑇𝑓.
(2) 𝑃𝑇𝜌 (𝑓) = {𝑓}, that is, 𝑓 = 𝑔 for each 𝑔 ∈ 𝑃𝑇𝜌 (𝑓).
(3) 𝑓 ∈ 𝐹(𝑃𝑇𝜌 (𝑓)), that is, 𝑓 ∈ 𝑃𝑇𝜌 (𝑓). Further 𝐹𝜌(𝑇) =

𝐹(𝑃𝑇𝜌 (𝑓)), where 𝐹(𝑃𝑇𝜌 (𝑓)) denotes the set of fixed
points of 𝑃𝑇𝜌 (𝑓).

The following examples were presented by Razani et al.
[25].

Example 15. Let (𝑋, ‖ ⋅ ‖) be a norm space; then ‖ ⋅ ‖ is a
modular. But the converse is not true.

Example 16. Let (𝑋, ‖ ⋅ ‖) be a norm space. For any 𝑘 ≥ 1, ‖ ⋅ ‖𝑘
is a modular on 𝑋.
3. Iterative Approximation of Fixed Points in
Modular Function Spaces

We begin this section with the following proposition.

Proposition 17. Let𝜌 satisfy (𝑈𝑈𝐶1) and let𝐷 be a nonempty𝜌-closed, 𝜌-bounded, and convex subset of 𝐿𝜌. Let 𝑇 : 𝐷 →
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𝑃𝜌(𝐷) be a multivalued mapping such that 𝑃𝑇𝜌 is a 𝜌-quasi-
nonexpansive mapping. Then the Picard-Krasnoselskii hybrid
iterative process (15) is Fejér monotone with respect to 𝐹𝜌(𝑇).
Proof. Suppose 𝑝 ∈ 𝐹𝜌(𝑇). By Lemma 13, 𝑃𝑇𝜌 (𝑝) = {𝑝} and
𝐹𝜌(𝑇) = 𝐹(𝑃𝑇𝜌 ). Using (15), we have the following estimate:

𝜌 (𝑓𝑛+1 − 𝑝) ≤ 𝐻𝜌 (𝑃𝑇𝜌 (𝑔𝑛) , 𝑃𝑇𝜌 (𝑝)) ≤ 𝜌 (𝑔𝑛 − 𝑝) . (19)

Next, we have

𝜌 (𝑔𝑛 − 𝑝) = 𝜌 [(1 − 𝜆) 𝑓𝑛 + 𝜆𝑃𝑇𝜌 V𝑛 − 𝑝] . (20)

By convexity of 𝜌, we have
𝜌 (𝑔𝑛 − 𝑝) ≤ (1 − 𝜆) 𝜌 (𝑓𝑛 − 𝑝)

+ 𝜆𝐻𝜌 (𝑃𝑇𝜌 (𝑓𝑛) , 𝑃𝑇𝜌 (𝑝))
≤ (1 − 𝜆) 𝜌 (𝑓𝑛 − 𝑝) + 𝜆𝜌 (𝑓𝑛 − 𝑝)
= 𝜌 (𝑓𝑛 − 𝑝) .

(21)

Using (21) in (19), we have

𝜌 (𝑓𝑛+1 − 𝑝) ≤ 𝜌 (𝑓𝑛 − 𝑝) . (22)

Hence, the Picard-Krasnoselskii hybrid iterative process (15)
is Fejér monotone with respect to 𝐹𝜌(𝑇). This completes the
proof of Proposition 17.

Next, we prove the following proposition.

Proposition 18. Let𝜌 satisfy (𝑈𝑈𝐶1) and let𝐷 be a nonempty𝜌-closed, 𝜌-bounded, and convex subset of 𝐿𝜌. Let 𝑇 : 𝐷 →
𝑃𝜌(𝐷) be a multivalued mapping such that 𝑃𝑇𝜌 is a 𝜌-quasi-
nonexpansive mapping. Let {𝑓𝑛} be the Picard-Krasnoselskii
hybrid iterative process (15); then

(i) the sequence {𝑓𝑛} is bounded;
(ii) for each 𝑓 ∈ 𝐷, {𝜌(𝑓𝑛 − 𝑓)} converges.

Proof. Since {𝑓𝑛} is Fejér monotone as shown in Proposi-
tion 17, we can easily show (i) and (ii). This completes the
proof of Proposition 18.

Theorem 19. Let 𝜌 satisfy (𝑈𝑈𝐶1) and let 𝐷 be a nonempty𝜌-closed, 𝜌-bounded, and convex subset of 𝐿𝜌. Let 𝑇 :
𝐷 → 𝑃𝜌(𝐷) be a multivalued mapping such that 𝑃𝑇𝜌 is a 𝜌-
quasi-nonexpansive mapping. Suppose that 𝐹𝜌(𝑇) ̸= 0. Let{𝑓𝑛} ⊂ 𝐷 be the Picard-Krasnoselskii hybrid iterative process
(15). Then lim𝑛→∞𝜌(𝑓𝑛 − 𝑝) exists for all 𝑝 ∈ 𝐹𝜌(𝑇) and
lim𝑛→∞dist𝜌(𝑓𝑛, 𝑃𝑇𝜌 (𝑓𝑛)) = 0.
Proof. Suppose 𝑝 ∈ 𝐹𝜌(𝑇). By Lemma 13, 𝑃𝑇𝜌 (𝑝) = {𝑝} and
𝐹𝜌(𝑇) = 𝐹(𝑃𝑇𝜌 ). Using (15), we have the following estimate:

𝜌 (𝑓𝑛+1 − 𝑝) ≤ 𝐻𝜌 (𝑃𝑇𝜌 (𝑔𝑛) , 𝑃𝑇𝜌 (𝑝)) ≤ 𝜌 (𝑔𝑛 − 𝑝) . (23)

Next, we have

𝜌 (𝑔𝑛 − 𝑝) = 𝜌 [(1 − 𝜆) 𝑓𝑛 + 𝜆𝑃𝑇𝜌 V𝑛 − 𝑝] . (24)

By convexity of 𝜌, we have
𝜌 (𝑔𝑛 − 𝑝) ≤ (1 − 𝜆) 𝜌 (𝑓𝑛 − 𝑝)

+ 𝜆𝐻𝜌 (𝑃𝑇𝜌 (𝑓𝑛) , 𝑃𝑇𝜌 (𝑝))
≤ (1 − 𝜆) 𝜌 (𝑓𝑛 − 𝑝) + 𝜆𝜌 (𝑓𝑛 − 𝑝)
= 𝜌 (𝑓𝑛 − 𝑝) .

(25)

Using (25) in (23), we have

𝜌 (𝑓𝑛+1 − 𝑝) ≤ 𝜌 (𝑓𝑛 − 𝑝) . (26)

This shows that lim𝑛→∞𝜌(𝑓𝑛 − 𝑝) exists for all 𝑝 ∈ 𝐹𝜌(𝑇).
Suppose that

lim
𝑛→∞

𝜌 (𝑓𝑛 − 𝑝) = 𝐿, (27)

where 𝐿 ≥ 0.
We next prove that lim𝑛→∞dist𝜌(𝑓𝑛, 𝑃𝑇𝜌 (𝑓𝑛)) = 0. Since

dist𝜌(𝑓𝑛, 𝑃𝑇𝜌 (𝑓𝑛)) ≤ 𝜌(𝑓𝑛 − V𝑛), it suffices to show that

lim
𝑛→∞

𝜌 (𝑓𝑛 − V𝑛) = 0. (28)

Now,

𝜌 (V𝑛 − 𝑝) ≤ 𝐻𝜌 (𝑃𝑇𝜌 (𝑓𝑛) , 𝑃𝑇𝜌 (𝑝)) ≤ 𝜌 (𝑓𝑛 − 𝑝) , (29)

and this implies that

lim sup
𝑛→∞

𝜌 (V𝑛 − 𝑝) ≤ lim sup
𝑛→∞

𝜌 (𝑓𝑛 − 𝑝) , (30)

and, by (27), we have

lim sup
𝑛→∞

𝜌 (V𝑛 − 𝑝) ≤ 𝐿. (31)

Using (25), we have

lim sup
𝑛→∞

𝜌 (𝑔𝑛 − 𝑝) ≤ lim sup
𝑛→∞

𝜌 (𝑓𝑛 − 𝑝) , (32)

and, hence, we have

lim sup
𝑛→∞

𝜌 (𝑔𝑛 − 𝑝) ≤ 𝐿. (33)

Next, we have

𝐻𝜌 (𝑃𝑇𝜌 (𝑔𝑛) , 𝑃𝑇𝜌 (𝑝)) ≤ 𝜌 (𝑔𝑛 − 𝑝) ≤ 𝜌 (𝑓𝑛 − 𝑝) , (34)

and this implies that

lim sup
𝑛→∞

𝜌 (𝑔𝑛 − 𝑝) ≤ lim sup
𝑛→∞

𝜌 (𝑓𝑛 − 𝑝) , (35)

and, hence, we have

lim sup
𝑛→∞

𝜌 (𝑔𝑛 − 𝑝) ≤ 𝐿. (36)
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Using (23) and (24), we have

lim
𝑛→∞

𝜌 (𝑓𝑛+1 − 𝑝) = lim
𝑛→∞

𝜌 [(1 − 𝜆) 𝑓𝑛 + 𝜆𝑃𝑇𝜌 V𝑛 − 𝑝]
≤ lim
𝑛→∞

[(1 − 𝜆) 𝜌 (𝑓𝑛 − 𝑝) + 𝜆𝐻𝜌 (𝑃𝑇𝜌 (𝑓𝑛) , 𝑃𝑇𝜌 (𝑝))]
≤ lim
𝑛→∞

[(1 − 𝜆) 𝜌 (𝑓𝑛 − 𝑝) + 𝜆𝜌 (𝑓𝑛 − 𝑝)]
= lim
𝑛→∞

𝜌 (𝑓𝑛 − 𝑝) ≤ 𝐿.
(37)

Moreover,

𝜌 (𝑓𝑛+1 − 𝑝) ≤ 𝜌 [(1 − 𝜆) 𝑓𝑛 + 𝜆V𝑛 − 𝑝]
= 𝜌 [(𝑓𝑛 − 𝑝) + 𝜆 (V𝑛 − 𝑓𝑛)] . (38)

Using Lemma 4 and (38), we have

𝐿 = lim inf
𝑛→∞

𝜌 (𝑓𝑛+1 − 𝑝)
= lim inf
𝑛→∞

𝜌 [(𝑓𝑛 − 𝑝) + 𝜆 (V𝑛 − 𝑓𝑛)]
= lim inf
𝑛→∞

𝜌 (𝑓𝑛 − 𝑝) .
(39)

This means that

𝐿 = lim inf
𝑛→∞

𝜌 (𝑓𝑛 − 𝑝) . (40)

Using (27) and (40), we have

lim
𝑛→∞

𝜌 (𝑓𝑛 − 𝑝) = 𝐿. (41)

Using (27), (31), (37), and Lemma 12, we have

lim
𝑛→∞

𝜌 (𝑓𝑛 − V𝑛) = 0 . (42)

Hence,

lim
𝑛→∞

dist𝜌 (𝑓𝑛, 𝑃𝑇𝜌 (𝑓𝑛)) = 0. (43)

The proof of Theorem 19 is completed.

Next, we prove the following theorem.

Theorem 20. Let 𝐷 be a 𝜌-closed, 𝜌-bounded, and convex
subset of a 𝜌-complete modular space 𝐿𝜌 and 𝑇 : 𝐷 → 𝑃𝜌(𝐷)
be a multivalued mapping such that 𝑃𝑇𝜌 is a 𝜌-contraction
mapping and 𝐹𝜌(𝑇) ̸= 0. Then 𝑇 has a unique fixed point.
Moreover, the Picard-Krasnoselskii hybrid iterative process (15)
converges to this fixed point.

Proof. Suppose 𝑝 ∈ 𝐹𝜌(𝑇). By Lemma 13, 𝑃𝑇𝜌 (𝑝) = {𝑝} and
𝐹𝜌(𝑇) = 𝐹(𝑃𝑇𝜌 ). Using (15), we have the following estimate:

𝜌 (𝑓𝑛+1 − 𝑝) ≤ 𝐻𝜌 (𝑃𝑇𝜌 (𝑔𝑛) , 𝑃𝑇𝜌 (𝑝)) ≤ 𝑘𝜌 (𝑔𝑛 − 𝑝)
≤ 𝜌 (𝑔𝑛 − 𝑝) . (44)

Next, we have

𝜌 (𝑔𝑛 − 𝑝) = 𝜌 [(1 − 𝜆) 𝑓𝑛 + 𝜆𝑃𝑇𝜌 (V𝑛) − 𝑝] . (45)

By convexity of 𝜌, we have
𝜌 (𝑔𝑛 − 𝑝) ≤ (1 − 𝜆) 𝜌 (𝑓𝑛 − 𝑝)

+ 𝜆𝐻𝜌 (𝑃𝑇𝜌 (𝑓𝑛) , 𝑃𝑇𝜌 (𝑝))
≤ (1 − 𝜆) 𝜌 (𝑓𝑛 − 𝑝) + 𝜆𝑘𝜌 (𝑓𝑛 − 𝑝)
≤ (1 − 𝜆) 𝜌 (𝑓𝑛 − 𝑝) + 𝜆𝜌 (𝑓𝑛 − 𝑝)
= 𝜌 (𝑓𝑛 − 𝑝) .

(46)

Using (46) in (44), we have

𝜌 (𝑓𝑛+1 − 𝑝) ≤ 𝜌 (𝑓𝑛 − 𝑝) . (47)

This shows that lim𝑛→∞𝜌(𝑓𝑛 − 𝑝) exists for all 𝑝 ∈ 𝐹𝜌(𝑇).
Using a similar approach as in the proof of Theorem 19, we
see that lim𝑛→∞𝜌(𝑓𝑛 − 𝑝) = 0.

Next, we show that {𝑓𝑛} is a 𝜌-Cauchy sequence. Since
lim𝑛→∞(𝑓𝑛 − 𝑝) = 0, we proceed by contradiction. Hence,
there exists 𝜖 > 0 and two sequences of natural numbers{𝑚(𝑖)}, {𝑛(𝑖)} such that

𝑛 (𝑖) > 𝑚 (𝑖) ≥ 𝑖,
𝜌 (𝑓𝑛(𝑖) − 𝑓𝑚(𝑖)) > 𝜖. (48)

For all integer 𝑖, let 𝑛(𝑖) be the least integer exceeding 𝑚(𝑖)
which satisfy (48); then

𝜌 (𝑓𝑛(𝑖) − 𝑓𝑚(𝑖)) > 𝜖,
𝜌 (𝑓𝑛(𝑖)−1 − 𝑓𝑚(𝑖)) ≤ 𝜖. (49)

So, we have

𝜖 < 𝜌 (𝑓𝑛(𝑖) − 𝑓𝑚(𝑖)) ≤ 𝜌 (𝑓𝑛(𝑖) − 𝑝
2 ) + 𝜌 (𝑝 − 𝑓𝑚(𝑖)2 )

≤ 12𝜌 (𝑓𝑛(𝑖) − 𝑝) + 12𝜌 (𝑝 − 𝑓𝑚(𝑖))
≤ 𝜌 (𝑓𝑛(𝑖) − 𝑝) + 𝜌 (𝑝 − 𝑓𝑚(𝑖)) 󳨀→ 0 as 𝑛 󳨀→ ∞.

(50)

This is a contradiction. Hence, {𝑓𝑛} is a 𝜌-Cauchy sequence.
Therefore, there exists 𝑝 ∈ 𝐷 such that 𝑓𝑛 → 0 as 𝑛 → ∞.

Next, we have 𝑇𝑝 = 𝑝. Clearly,
𝜌 (𝑝 − 𝑇𝑝2 ) ≤ 𝜌 (𝑝 − 𝑓𝑛2 ) + 𝜌 (𝑓𝑛 − 𝑇𝑝2 )

≤ 12𝜌 (𝑝 − 𝑓𝑛) + 12𝜌 (𝑓𝑛 − 𝑇𝑝)
≤ 𝜌 (𝑝 − 𝑓𝑛) + 𝜌 (𝑓𝑛 − 𝑇𝑝)
= 𝜌 (𝑝 − 𝑓𝑛) + 𝜌 (𝑓𝑛 − 𝑝) 󳨀→ 0

as 𝑛 󳨀→ ∞.

(51)

Hence, 𝜌((𝑝 − 𝑇𝑝)/2) = 0. Therefore, 𝑝 = 𝑇𝑝.
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Next, we prove the uniqueness of 𝑝. Suppose that 𝑞 is
another fixed point of 𝑇, and then we have

𝜌 (𝑝 − 𝑞2 ) ≤ 𝜌 (𝑝 − 𝑓𝑛2 ) + 𝜌 (𝑓𝑛 − 𝑞2 )
≤ 12𝜌 (𝑝 − 𝑓𝑛) + 12𝜌 (𝑓𝑛 − 𝑞)
≤ 𝜌 (𝑝 − 𝑓𝑛) + 𝜌 (𝑓𝑛 − 𝑞) 󳨀→ 0

as 𝑛 󳨀→ ∞.

(52)

Hence, 𝑝 = 𝑞. The proof of Theorem 20 is completed.

Next, we give the following example.

Example 21. Let 𝐿𝜌 = [0, ∞) be a vector space and 𝜌 be an
application defined as follows:

𝜌 : 𝐿𝜌 󳨀→ 𝐿𝜌
𝑡 󳨀→ 𝑡2. (53)

We see that 𝜌 is not a norm. However, it is a modular since
the function 𝑡 → 𝑡2 is convex. Consider 𝐷 = [0, 1] as the
closed interval in [0, ∞) which is 𝜌-closed, 𝜌-bounded, and𝜌-complete, since 𝜌 is continuous. Then the mapping

𝑇 : 𝐷 󳨀→ 𝑃𝜌 (𝐷)
𝑡 󳨀→ 𝑡2

(54)

is a 𝜌-contraction mapping with 𝑘 = 1/2. Therefore, by
Theorem 20, it has a unique fixed point in𝐷, which is𝐹𝜌(𝑇) ={0}.
4. Stability Results

We begin this section by defining the concept of 𝑇-stable and
almost 𝑇-stable of an iterative process in modular function
spaces. Moreover, we prove some stability results for Picard-
Krasnoselskii hybrid iterative process (15).

Definition 22. Let 𝐷 be a nonempty convex subset of a
modular function space 𝐿𝜌 and 𝑇 : 𝐷 → 𝐷 be an operator.
Assume that 𝑥1 ∈ 𝐷 and 𝑥𝑛+1 = 𝑓(𝑇, 𝑥𝑛) defines an iteration
scheme which produces a sequence {𝑥𝑛}∞𝑛=1 ⊂ 𝐷. Suppose,
furthermore, that {𝑥𝑛}∞𝑛=1 converges strongly to 𝑥∗ ∈ 𝐹𝜌(𝑇) ̸=0. Let {𝑦𝑛}∞𝑛=1 be any bounded sequence in 𝐷 and put 𝜀𝑛 =𝜌(𝑦𝑛+1 − 𝑓(𝑇, 𝑦𝑛)).

(1) The iteration scheme {𝑥𝑛}∞𝑛=1 defined by 𝑥𝑛+1 =𝑓(𝑇, 𝑥𝑛) is said to be 𝑇-stable on 𝐷 if lim𝑛→∞𝜀𝑛 = 0
implies that lim𝑛→∞𝑦𝑛 = 𝑥∗.

(2) The iteration scheme {𝑥𝑛}∞𝑛=1 defined by 𝑥𝑛+1 =𝑓(𝑇, 𝑥𝑛) is said to be almost𝑇-stable on𝐷 if∑∞𝑛=1 𝜀𝑛 <∞ implies that lim𝑛→∞𝑦𝑛 = 𝑥∗.
It is easy to show that an iteration process {𝑥𝑛}∞𝑛=1 which

is 𝑇-stable on 𝐶 is almost 𝑇-stable on 𝐷.

Next, we provide the following numerical example to
show that Picard-Krasnoselskii hybrid iterative process (15)
is 𝑇-stable.
Example 23. Let 𝐿𝜌 = [0, ∞) be a vector space and 𝜌 be an
application defined as follows

𝜌 : 𝐿𝜌 󳨀→ 𝐿𝜌
𝑡 󳨀→ |𝑡| . (55)

Let 𝐷 = [0, 1] be the closed interval in [0, ∞) which is 𝜌-
closed, 𝜌-bounded, and 𝜌-complete. Let 𝑇 : [0, 1] → [0, 1]
be a multivalued mapping such that 𝑃𝑇𝜌 is a 𝜌-contraction
mapping satisfying contractive condition 𝑇𝑥 = 𝑥/2. We now
show that Picard-Krasnoselskii hybrid iterative process (15)
is 𝑇-stable and hence almost 𝑇-stable with 𝑘 = 1/2 and𝐹𝜌(𝑇) = {0}. Suppose that {𝑦𝑛} = 1/𝑛 is an arbitrary sequence
in 𝐿𝜌. Take 𝜆 = 1/2. Then lim𝑛→∞𝑦𝑛 = 0. Put

𝜀𝑛 = 𝜌 (𝑦𝑛+1 − 𝑓 (𝑇, 𝑦𝑛))
= dist𝜌 (𝑃𝑇𝜌 (𝑦𝑛+1) , 𝑃𝑇𝜌 (𝑔𝑛))
≤ 𝐻𝜌 (𝑃𝑇𝜌 (𝑦𝑛+1) , 𝑃𝑇𝜌 (𝑔𝑛)) ,

(56)

and we have

𝜀𝑛 = dist𝜌 (𝑃𝑇𝜌 (𝑦𝑛+1) , 𝑃𝑇𝜌 (𝑔𝑛))
≤ 𝐻𝜌 (𝑃𝑇𝜌 (𝑦𝑛+1) , 𝑃𝑇𝜌 (𝑔𝑛)) ≤ 𝜌 (𝑦𝑛+1 − 𝑔𝑛)
= 󵄨󵄨󵄨󵄨𝑦𝑛+1 − (1 − 𝜆) 𝑦𝑛 − 𝜆𝑦𝑛󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1𝑛 + 1 − 12𝑛 − 12𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1𝑛 + 1 − 1𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .

(57)

Hence,

lim
𝑛→∞

𝜀𝑛 = 0. (58)

Therefore, Picard-Krasnoselskii hybrid iterative process (15)
is 𝑇-stable. Clearly, (15) is almost 𝑇-stable.

Next, we prove the following stability results.

Theorem 24. Let 𝐷 be a 𝜌-closed, 𝜌-bounded, and convex
subset of a 𝜌-complete modular space 𝐿𝜌 and 𝑇 : 𝐷 → 𝑃𝜌(𝐷)
be a multivalued mapping such that 𝑃𝑇𝜌 is a 𝜌-contraction
mapping and 𝐹𝜌(𝑇) ̸= 0. Then Picard-Krasnoselskii hybrid
iterative process (15) is 𝑇-stable.
Proof. Suppose {𝑦𝑛} ⊂ 𝐿𝜌, and define 𝜀𝑛 = 𝜌(𝑦𝑛+1 − 𝑓(𝑇, 𝑦𝑛)).
Let 𝑝 be the unique fixed point of 𝑇. We want to show that
lim𝑛→∞𝑦𝑛 = 𝑝 if and only if lim𝑛→∞𝜀𝑛 = 0. Suppose that {𝑦𝑛}
converges to 𝑝. Using (15) and the convexity of 𝜌, we have

𝜀𝑛 = dist𝜌 (𝑃𝑇𝜌 (𝑦𝑛+1) , 𝑃𝑇𝜌 (𝑔𝑛))
≤ 𝐻𝜌 (𝑃𝑇𝜌 (𝑦𝑛+1) , 𝑃𝑇𝜌 (𝑔𝑛)) ≤ 𝜌 (𝑦𝑛+1 − 𝑔𝑛)
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≤ 𝜌 (𝑦𝑛+1 − (1 − 𝜆) 𝑦𝑛 − 𝜆𝑦𝑛) = 𝜌 (𝑦𝑛+1 − 𝑦𝑛)
≤ 𝜌 (𝑦𝑛+1 − 𝑝) + 𝜌 (𝑝 − 𝑦𝑛) .

(59)

Hence,

lim
𝑛→∞

𝜀𝑛 = 0. (60)

Conversely, suppose that lim𝑛→∞𝜀𝑛 = 0. Then we have

𝜀𝑛 = dist𝜌 (𝑃𝑇𝜌 (𝑦𝑛+1) , 𝑃𝑇𝜌 (𝑔𝑛))
≤ 𝐻𝜌 (𝑃𝑇𝜌 (𝑦𝑛+1) , 𝑃𝑇𝜌 (𝑔𝑛)) ≤ 𝜌 (𝑦𝑛+1 − 𝑔𝑛)
≤ 𝜌 (𝑦𝑛+1 − (1 − 𝜆) 𝑦𝑛 − 𝜆𝑦𝑛) = 𝜌 (𝑦𝑛+1 − 𝑦𝑛)
≤ 𝜌 (𝑦𝑛+1 − 𝑝) + 𝜌 (𝑝 − 𝑦𝑛) .

(61)

Since lim𝑛→∞𝜀𝑛 = 0, it follows from relation (61) that
lim𝑛→∞𝑦𝑛 = 𝑝. The proof of Theorem 24 is completed.

Remark 25. Theorem 24 generalizes the results of Mbarki
and Hadi [26] to multivalued mappings in modular function
spaces.

5. Applications to Differential Equations

In this section, we apply our results to differential equations.
The results of this section follow similar applications in [15].
Let 𝜌 ∈ R, and we consider the following initial value
problem for an unknown function 𝑢 : [0, 𝐴] → 𝐶, where𝐶 ∈ 𝐸𝜌.

𝑢 (0) = 𝑓
𝑢󸀠 (𝑡) + (𝐼 − 𝑇) 𝑢 (𝑡) = 0, (62)

where 𝑓 ∈ 𝐶 and 𝐴 > 0 are fixed and 𝑇 : 𝐶 → 𝐶 is
such that𝑃𝑇𝜌 is𝜌-quasi-nonexpansivemapping.The following
notations will be used in this section. For 𝑡 > 0 we define

𝐾 (𝑡) = 1 − 𝑒−𝑡 = ∫𝑡
0

𝑒𝑠−𝑡𝑑𝑠. (63)

For any function ] : [0, 𝐴] → 𝐿𝜌, where 𝐴 > 0, and any𝑡 ∈ [0, 𝐴], we define
𝑆 (]) (𝑡) = ∫𝑡

0
𝑒𝑠−𝑡] (𝑠) 𝑑𝑠. (64)

We also denote

𝑆𝜏 (]) (𝑡) = 𝑛−1∑
𝑖=0

(𝑡𝑖+1 − 𝑡𝑖) 𝑒𝑡𝑖−𝑡] (𝑡𝑖) , (65)

for any 𝜏 = {𝑡0, . . . , 𝑡𝑛}, a subdivision of the interval [0, 𝐴].
The following lemmawhich is needed to prove our results

in this section can be found in [15].

Lemma 26. Let 𝜌 ∈ R be separable. Let 𝑥, 𝑦 : [0, 𝐴] → 𝐿𝜌 be
two Bochner-integrable ‖ ⋅ ‖𝜌-bounded functions, where 𝐴 > 0.
Then for every 𝑡 ∈ [0, 𝐴] one has

𝜌 (𝑒−𝑡𝑦 (𝑡) + ∫𝑡
0

𝑒𝑠−𝑡𝑥 (𝑠) 𝑑𝑠)
≤ 𝑒−𝑡𝜌 (𝑦 (𝑡)) + 𝐾 (𝑡) sup

𝑠∈[0,𝑡]

𝜌 (𝑥 (𝑠)) . (66)

We now state our results for this section.

Theorem 27. Let 𝜌 ∈ R be separable. Let 𝐷 ⊂ 𝐸𝜌 be
a nonempty, convex, 𝜌-bounded, 𝜌-closed set with the Vitali
property. Let 𝑇 : 𝐷 → 𝑃𝜌(𝐷) be a multivalued mapping such
that 𝑃𝑇𝜌 is a 𝜌-quasi-nonexpansive mapping. Let one fix 𝑓 ∈ 𝐶
and𝐴 > 0 and define the sequence of functions𝑢𝑛 : [0, 𝐴] → 𝐶
by the following inductive formula:

𝑢0 (𝑡) = 𝑓
𝑢𝑛+1 (𝑡) = 𝑒−𝑡𝑓 + ∫𝑡

0
𝑒𝑠−𝑡𝑇 (𝑢𝑛 (𝑠)) 𝑑𝑠. (67)

Then for every 𝑡 ∈ [0, 𝐴] there exists 𝑢(𝑡) ∈ 𝐶 such that

𝜌 (𝑢𝑛 (𝑡) − 𝑢 (𝑡)) 󳨀→ 0 (68)

and the function 𝑢 : [0, 𝐴] → 𝐶 defined by (68) is a solution
of initial value problem (62). Moreover,

𝜌 (𝑓 − 𝑢𝑛 (𝑡)) ≤ 𝐾𝑛+1 (𝐴) 𝛿𝜌 (𝐶) . (69)

Proof. Since 𝑃𝑇𝜌 is 𝜌-quasi-nonexpansive mapping, the proof
of Theorem 27 follows the proof of ([15], Theorem 5.28).

Next, we obtain the following corollaries as a consequence
of Theorem 27.

Corollary 28. Let 𝜌 ∈ R be separable. Let 𝐷 ⊂ 𝐸𝜌 be
a nonempty, convex, 𝜌-bounded, 𝜌-closed set with the Vitali
property. Let 𝑇 : 𝐷 → 𝑃𝜌(𝐷) be a multivalued mapping such
that 𝑃𝑇𝜌 is a 𝜌-nonexpansive mapping. Let one fix 𝑓 ∈ 𝐶 and𝐴 > 0 and define the sequence of functions 𝑢𝑛 : [0, 𝐴] → 𝐶 by
the following inductive formula:

𝑢0 (𝑡) = 𝑓
𝑢𝑛+1 (𝑡) = 𝑒−𝑡𝑓 + ∫𝑡

0
𝑒𝑠−𝑡𝑇 (𝑢𝑛 (𝑠)) 𝑑𝑠. (70)

Then for every 𝑡 ∈ [0, 𝐴] there exists 𝑢(𝑡) ∈ 𝐶 such that

𝜌 (𝑢𝑛 (𝑡) − 𝑢 (𝑡)) 󳨀→ 0 (71)

and the function 𝑢 : [0, 𝐴] → 𝐶 defined by (71) is a solution of
initial value problem (62). Moreover,

𝜌 (𝑓 − 𝑢𝑛 (𝑡)) ≤ 𝐾𝑛+1 (𝐴) 𝛿𝜌 (𝐶) . (72)
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Corollary 29. Let 𝜌 ∈ R be separable. Let 𝐷 ⊂ 𝐸𝜌 be
a nonempty, convex, 𝜌-bounded, 𝜌-closed set with the Vitali
property. Let 𝑇 : 𝐷 → 𝑃𝜌(𝐷) be a multivalued mapping such
that 𝑃𝑇𝜌 is a 𝜌-contraction mapping. Let one fix 𝑓 ∈ 𝐶 and𝐴 > 0 and define the sequence of functions 𝑢𝑛 : [0, 𝐴] → 𝐶 by
the following inductive formula:

𝑢0 (𝑡) = 𝑓
𝑢𝑛+1 (𝑡) = 𝑒−𝑡𝑓 + ∫𝑡

0
𝑒𝑠−𝑡𝑇 (𝑢𝑛 (𝑠)) 𝑑𝑠. (73)

Then for every 𝑡 ∈ [0, 𝐴] there exists 𝑢(𝑡) ∈ 𝐶 such that

𝜌 (𝑢𝑛 (𝑡) − 𝑢 (𝑡)) 󳨀→ 0 (74)

and the function 𝑢 : [0, 𝐴] → 𝐶 defined by (74) is a solution of
initial value problem (62). Moreover,

𝜌 (𝑓 − 𝑢𝑛 (𝑡)) ≤ 𝐾𝑛+1 (𝐴) 𝛿𝜌 (𝐶) . (75)

Remark 30. Corollary 28 generalizes the results of Khamsi
and Kozlowski ([15], Theorem 5.28) to a multivalued map-
ping.
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