
 

 

  
Abstract— This paper witnesses the coupling of two basic 

transforms: the He-Laplace transform (HLT) which is a blend of 
Laplace transformation and Homotopy perturbation methods and the 
fractional complex transform (FCT). This coupling technique is 
applied for the solutions of the time-fractional Navier-Stokes model 
equation. Two examples are considered in demonstrating the 
effectiveness of the coupled technique. The exact solutions of the 
solved problems are obtained with less computational work, while 
still maintaining high level of accuracy with little knowledge of 
fractional calculus being required. Thus, the proposed method is 
recommended for handling linear and nonlinear fractional models 
arising in pure and applied sciences. 
 

Keywords— Fractional complex transform; Analytical solutions; 
Laplace transform; HPM; Navier-Stokes model.  

I. INTRODUCTION 
N applied sciences, Navier-Stokes equations (NSEs) act as 
vital models used in describing the physics of many 

phenomena of scientific and engineering interest. They have 
wider applications in modelling of weather, ocean currents, 
water flow in a pipe and air flow around a wing. These NSEs 
establish the connection between pressure and external forces 
acting on fluid to the response of the fluid flow [1]. In general, 
we consider the time-fractional NSE of the form:  

( ) 1 2
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w w w P v w
t
w

α

α ρ −∂
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   (1.1) 

where w  is the flow velocity, w  is the velocity, v  is the 
kinematics viscosity, P is the pressure, t  is the time, ρ is the 

density, and ∇ is a del operator. For a one dimensional motion 
of a viscous fluid in a tube; the equations of motion governing 
the flow field in the tube are Navier-Stokes equations in 
cylindrical coordinates [1, 2]. These are denoted by: 
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In relation to stochastic dynamics, it appears a tradition to 
represent the solutions of partial differential equations 
associated with the Navier-Stokes models as the expected 
functionals of stochastic processes [3, 4]. In that regard, a 
coupled forward-backward stochastic differential system 
(FBSDS) is formulated in spaces of fields for the 
incompressible Navier-Stokes equation in the whole space [3]. 
Providing solutions (numerical or exact) to linear and 
nonlinear differential equations has led to the development and 
adoption of direct and semi-analytical methods [5-7]. A lot of 
semi-analytical, analytical, and approximate methods have 
been proposed in literature [10-30]. 
Fractional Complex Transform (FCT) transforms fractional 
order differential equations to integer differential equations 
with the help of Riemann-Liouville derivatives [31-33]. FCT 
as a solution method for fractional differential equations 
(FDEs) was first proposed by [34]. The notion of Jumarie’s 
fractional derivative is introduced as follows before the 
overview of FCT. 
In this work, our aim is to provide analytical solutions to the 
NSEs using the He-Laplace method which combines the basic 
features of the Laplace transform and those of He’s 
polynomials method. 

II. THE OVERVIEW OF THE HE-LAPLACE METHOD [35, 36] 
Let Ξ be an integral or a differential operator on the equation 
of the form: 

( ) 0Ξ ℑ = .                        (2.1) 

Let ( ),H pℑ  be a convex homotopy defined by: 

( ) ( ) ( ) ( ), 1H p p p Gℑ = Ξ ℑ + − ℑ          (2.2) 

where ( )G ℑ is a functional operator with 0ℑ  is a known 

solution. Thus, we have: 

( ) ( ),0H Gℑ = ℑ  and ( ) ( ),1H ℑ = Ξ ℑ            (2.3) 

whenever ( ), 0H pℑ =  is satisfied, and ( ]0,1p ∈  is an 

embedded parameter. In HPM, p  is used as an expanding 
parameter to obtain: 
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From (2.4) the solution is obtained as 1p → . The 
convergence of (2.4) as 1p →  has been considered in [25]. 

The method considers ( )N ℑ  (the nonlinear term) as: 

( )
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j
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where 'kH s  are the so-called He’s polynomials, which can 
be computed using: 
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A. The He-Laplace Method 

Let ( ) ( ), ,h y y x f x′ =  expressed as: 

( ) ( ) ( )1 2 ,   0y p y p g y g x y β′ + + = =         (2.7) 

be a first order initial value problem (IVP), where ( )1p x  and 

( )2p x are coefficient of y and ( )g y respectively, 

( )g y a nonlinear function and ( )g x a source term. Suppose 

we define the Laplace transform (resp. inverse Laplace 

transform) as  ( ){ }L ⋅  ( ){ }( )1.  resp L− ⋅ . So the Laplace 

transform of (2.7) is as follows: 

{ } { } ( ){ } ( ){ }1 2L y L p y L p g y L g x′ + + =    .     (2.8) 

Applying linearity property of Laplace transform on (12) 
yields: 

{ } { } ( ){ } ( ){ }1 2L y p L y p L g y L g x′ + + =    .     (2.9) 

Therefore, by differential property of Laplace transform, (2.9) 
is expressed as follows: 
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                         (2.11) 
Thus, by inverse Laplace transform, (2.11) becomes: 
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Suppose we the solution ( )y x  assumes an infinite series, 

then by convex homotopy, (2.12) can be expressed as: 
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where ( ) ( )
0

i
i

i
g y p H y

∞

=

= ∑  for some He’s polynomials  

iH , and p  an expanding parameter as defined earlier. 

B. Jumarie’s Fractional Derivative (JFD) 
It is noted here that JFD is a modified form of the Riemann-
Liouville derivatives [22]. Hence, the definition of JFD and its 
basic properties as follows: 
Let ( )h v  be a continuous real function of v  (not necessarily 

differentiable), and v
hD h

v

α
α
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=

∂
 denoting JFD of h , of 

order α w.r.t. v . Then,  
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                                 (2.15) 
where ( )Γ ⋅  denotes a gamma function. As summarized in 

[20], the basic properties of JFD are stated as P1-P5: 
P1:  0,  0vD kα α= > , 

P2: ( )( ) ( ) ,  0v vD kh v kD h vα α α= > , 

P3: 
( )

( )
1

,  0,
1vD v vα β β αβ

β α
β α

−Γ +
= ≥ >

Γ + −
 

P4: 
( ) ( )( ) ( ) ( )( )

( ) ( )
1 2 1 2

1 2                             
v v
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D h v h v D h v h v

h v D h v

α α

α
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+
, 

P5: ( )( )( ) 1
v v gD h v g D h D vα α= ⋅ , 

where k  is a constant. 
Note: P1, P2, P3, P4, and P5 are referred to as fractional 
derivative of: constant function, constant multiple function, 
power function, product function, and function of function 
respectively. P5 can be linked to Jumarie’s chain rule of 
fractional derivative. 
 

III. THE FRACTIONAL COMPLEX TRANSFORM AND DTM 
Here, we briefly introduce the concept of the FCT and the 
RDTM. 
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A. The Fractional Complex Transform 
Let us consider a general fractional differential equation of the 
form: 

( ) ( ), , , , 0,  , , ,t x y zf D D D D t x y zα β λ γϖ ϖ ϖ ϖ ϖ ϖ ϖ= = . (3.1) 

Then, the Fractional Complex Transform [24] is defined as 
follows: 

  

( ) ( ]
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( ) ( ]

( ) ( ]
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β
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= ∈ Γ +
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= ∈ Γ +

                  (3.2) 

where ,  ,  ,  and a b c d  are unknown constants. 
From P3,  

( )
( )

1
,  0,

1vD v vα β β αβ
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.      (3.3) 

Obviously in a similar manner, using properties P1-P5, and the 
FCT in (2.3), the following are easily obtained: 
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Hence,  
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X
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IV. APPLICATIONS: 
In this section, the proposed method is applied to time-
fractional Navier-Stokes models as follows: 

A. Problem 1: 

 Consider the following time-fractional Navier-Stokes 
model: 

 

( )

2

2

1 ,

,0 .
t

α

α

ψ ψ ψ
ξ ξ ξ

ψ ξ ξ

∂ ∂ ∂
= + ∂ ∂ ∂
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                             (4.1) 

Procedure w.r.t Problem 1:   
Solution procedure: 
By FCT,  

 
( )

,
1
atT

α

α
=

Γ +
       

which according to section 3 gives t
uD u
T

α ∂
=

∂
 for 1.a =  

Hence, (4.1) becomes: 
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We take the Laplace transform (LT) of (3.1) as follows: 
2

2

1L
T
ψ ψ ψ

ξ ξ ξ
 ∂ ∂ ∂
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By applying the inverse Laplace transform,  ( ){ }1L− ⋅  of 

( ){ }L ⋅  on both sides of (4.4), we have: 
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By Convex Homotopy approach (4.5) becomes: 
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                       (4.6) 
Thus, comparing the coefficients of the p powers in (4.6) 
gives: 
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So, for 0ψ ξ= , we have the following: 
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Thus, the solution of (4.2) is as follows: 
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8 16 16
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Hence, the exact solution of (4.1) is: 
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                                         (4.10) 
Our solution (4.10) is very much in line with those obtained in 
[2, 23]. 
 

B. Problem 2:   

Consider the following time-fractional Navier-Stokes model: 
2

2

1w w wp
t r r r

α

α

∂ ∂ ∂
= + +

∂ ∂ ∂
                             (4.11) 

subject to: 

( ) 2,0 1w r r= − .                        (4.12) 

Solution procedure: 
By FCT,  

 
( )

,
1
atT

α

α
=

Γ +
       

which according to section 3 gives t
uD u
T

α ∂
=

∂
 for 1.a =  

Hence, (4.5) and (4.6) become: 

( )

2
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2
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,0 1 .

w w wp
T r r r

w r r

∂ ∂ ∂
= + +∂ ∂ ∂

 = −

                     (4.13) 

We take the Laplace transform (LT) of (4.13) as follows: 
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By applying the inverse Laplace transform,  ( ){ }1L− ⋅  of 

( ){ }L ⋅  on both sides of (4.15), we have: 
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By Convex Homotopy Approach (4.16) becomes: 
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                        (4.17) 
Thus, comparing the coefficients of the p powers in (4.17) 
gives: 

( ) ( )0 2
0: 1p w r= −  
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s r r r
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2
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s r r r
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5 1 4 4
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1 11
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j

w w
p w L L j

s r r r
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   ∂ ∂  = + + ≥    ∂ ∂     
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Thus, applying the He-Laplace Method in sections 2.1 and 2.2 
to (4.7) gives the solution of (4.7) as:  

So, simplifying the process for ( )2
0 1w r= − , we have the 

following: 
 

( ) ( ) ( )2, 1 4w r T r p T= − + − .            (4.18) 

Hence, the exact solution of (3.1) is: 

( ) ( ) ( )
( )

2 4
, 1

1
p t

w r t r
α

α
−

= − +
Γ +

.                  (4.20) 

Our solution (4.20) is very much in line with those obtained in 
[2, 23]. 
Remark: for 1p = , the solution is: 

( ) ( ) ( )
2 3, 1

1
tw r t r

α

α
= − −

Γ +
.          (4.21) 

For 1α = , and 1p =  we have ( ) ( )2, 1 3w r t r t= − −  as 

the corresponding exact solution. 
Here, we present in Fig. 1 through Fig. 6, the relationship 
between the exact solutions of the integer cases 1α = , and the 
fractional cases for α ∈  as regards example II. 

 
Fig. 1: The solution graph for [ ]1.5 & 0,1t r= ∈  
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Fig. 2: The solution graph for [ ]1.5 & 0,1t r= ∈  

 
Fig. 3: The solution graph for [ ]1.5 & 0,1t r= ∈  

 

 

Fig. 4: The solution graph for [ ]1.5 & 0,1t r= ∈  

 
Fig. 5: The solution graph for [ ]1.5 & 0,1t r= ∈  

 

 
Fig. 6: The solution graph for [ ]1.5 & 0,1t r= ∈  

 
Remark: In Fig. 7 and Fig. 8, the exact and approximate 
solutions of problem 1 are displayed respectively. These are 
considered at 1.α =   
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Fig. 7: The exact solution graph for problem 1. 

 
 

 
Fig. 8: The approximate solution graph for problem 1 

 

V. CONCLUDING REMARKS 
In this paper, exact solutions of time-fractional Navier-

Stokes model equation were provided in series form with 
easily computable components. The method of solutions 
involved the coupling of two basic transforms: the He-Laplace 
transform (HLT) which is a blend of Laplace transformation 
and Homotopy perturbation methods and the fractional 
complex transform (FCT) with the requirement of little 
knowledge of fractional calculus while still maintaining high  
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