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1Department of Applied Mathematics and Systems
UAM-Cuajimalpa, Vasco de Quiroga 4871

05348, MEXICO
2 Department of Mathematics

UAM-Iztapalapa, Sn Rafael Atlixco 186
09340, MEXICO

3 Department of Mathematics
Covenant University, Canaanland

Ota, NIGERIA

Abstract: In this paper, an analytical technique, namely the new iterative
method (NIM), is applied to obtain an approximate analytical solution of the
nonlinear Harry-Dym equation which is often used in the theory of solitons. The
rapid convergence of the method results in qualitatively accurate solutions in
relatively few iterations; this is obvious upon comparing the obtained analytical
solutions with the exact solutions. Our results indicate that NIM is highly
accurate and efficient, therefore can be considered a very useful and valuable
method.
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1. Introduction

Nonlinear differential equations play an important role in modelling numerous
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problems in physics, chemistry, biology, economy and engineering science. Many
problems can be modelled as systems of differential equations, integral equa-
tions, integro-differential equations, partial differential equations, fractional or-
der differential equations. Many of these equations are nonlinear. Recently,
Daftardar-Gejji and Jafari [1] proposed a new technique for solving nonlinear
functional equations namely: New Iterative Method (NIM). The NIM has been
extensively used by many researchers for the treatment of linear and nonlin-
ear ordinary, and partial differential equations of integer and fractional orders,
see [2, 3, 4]. The method converges to the exact solution, if it exists through
successive approximations. However, for concrete problems, a few number of
approximations can be used for numerical purposes with high degree of accu-
racy. The NIM possesses a great potential in solving different kinds of functional
equations. Both linear and nonlinear equations, and systems of such types are
all amenable to the method. In the nonlinear case for differential equations and
partial differential equations, the method has the advantage of dealing directly
with the problem. These equations are solved without transforming them to
more simple ones. The method avoids linearization, perturbation, discretiza-
tion, or any unrealistic assumptions.

Considering the Harry-Dym equation being it nonlinear, most of the semi-
analytical methods such as Adomian Decomposition Method (ADM), Differen-
tial Transform Method (DTM), Homotopy Perturbation Method (HPM), etc.,
and their modified versions will require the involvement of Adomian polynomi-
als but this is completely avoided via the NIM, yet high rate of accuracy and
convergence is not neglected [5, 6].

In the present work, we will utilize the NIM to solve the Harry-Dym equa-
tion [15]. This equation is a nonlinear partial differential equation which is
of great importance in terms of applications; for example, in the analysis of
the Saffman-Taylor problem with surface tension [16, 17]. We will design an
algorithm to solve the Harry-Dym equation subject to some initial conditions.
Finally, our proposed solution method is illustrated for effectiveness and relia-
bility by considering the Harry-Dym equation for two different initial conditions
based on their usual nature in the existing literature.

Our work is divided in several sections. In the “Basic idea of new iterative
method (NIM)” section, we present, in a brief and self-contained manner, the
NIM. Some references are given to delve deeper into the subject and to study
its mathematical foundation that is beyond the scope of the present work. In
“The Harry-Dym equation” section, we give a brief introduction to the model
described by the Harry-Dym equation. In the “General solution of the Harry-
Dym equation through NIM” section, we establish that NIM can be used to
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solve this equation as a problem of initial value. After, in “Numerical examples”
section, we show by means of two examples, the quality and precision of our
method, comparing the obtained results with the only exact solutions available
in the literature [19]. Finally, in the “Conclusions” section, we summarize our
findings and present our final conclusions.

2. Basic idea of new iterative method

To describe the idea of the NIM, consider the following general functional equa-
tion [1, 14]:

u = N(u) + f, (1)

where N is a nonlinear mapping between Banach spaces such that N : B → B

and f is a known function. We are looking for a solution u of Eq. (1) having
the series form

u =

∞
∑

i=0

ui. (2)

The nonlinear operator N can be decomposed as

N
(

∞
∑

i=0

ui
)

= N(u0) +

∞
∑

i=1

[

N
(

i
∑

j=0

uj
)

−N
(

i−1
∑

j=0

uj
)

]

. (3)

From (2) and (3), (1) is equivalent to
∞
∑

i=0

ui = f +N(u0) +

∞
∑

i=1

[

N
(

i
∑

j=0

uj
)

−N
(

i−1
∑

j=0

uj
)

]

. (4)

We define the recurrence relation as






u0 = f,

u1 = N(u0),

um+1 = N
(
∑m

i=0 ui
)

−N
(
∑m−1

i=0 ui
)

, m = 1, 2, . . . .

(5)

Then
m+1
∑

i=0

ui = N
(

m
∑

i=0

ui
)

(6)

and

u = f +
∞
∑

i=0

ui. (7)
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The m−term approximate solution of (2) is given by u =
∑m−1

i=0 ui.

It may be observed here that in this decomposition method, computation
of complicated quantities is not required and therefore the computing time is
minimal.

If the operator N is a contraction, i.e.,

‖N(x)−N(y)‖ ≤ k‖x− y‖, 0 < k < 1,

then:

‖um+1‖ = ‖N(u0 + · · ·+ um)−N(u0 + · · ·+ um−1)‖
≤ k‖um‖ ≤ · · · ≤ km‖u0‖, m = 0, 1, 2, . . . ,

and the series
∑∞

i=0 ui absolutely and uniformly converges to a solution of (1),
which is unique, in view of the Banach fixed point theorem [13].

This method decreases considerably the volume of calculations. The de-
composition procedure given by NIM will be easily set, without linearising the
problem. In this approach, the solution is found in the form of a convergent
series with easily computed components; in many cases, the convergence of this
series is very fast and only a few terms are needed in order to have an idea
of how the solutions behave. For more details about convergence, we refer the
reader to [14].

3. The Harry-Dym equation

In physics-mathematics, and in particular in the theory of solitons, the Harry-
Dym equation is the third-order nonlinear partial differential equation given
as:

∂u

∂t
= u3

∂3u

∂x3
. (8)

The Harry-Dym (HD) equation has nonlinearity and dispersion coupled to-
gether. It was discovered by H. Dym in 1973-1974 while its first appearance in
the literature occurred in a 1975 paper of Kruskal [15], where it was named after
its discoverer. The Harry-Dym equation has strong links to the Korteweg-de
Vries equation and the solitons theory, [18].

To make the description of the problem complete, we will consider some
initial conditions for (8):

u(x, 0) = f(x). (9)
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In the next section, we will develop an algorithm using the method described
in Section 2 in order to solve the nonlinear Harry-Dym equation (8) without
resort to any truncation or linearization.

4. General solution of the Harry-Dym equation through NIM

Integrating (8) and considering the initial condition (9), we obtain

u(x, t) =

∫ t

0
u3(x, s)uxxx(x, s)ds + f(x). (10)

Comparing (10) with (1), we have that the nonlinear term is given by

N(u) =

∫ t

0
u3(x, s)uxxx(x, s)ds. (11)

By using (5) through the NIM, we obtain the following, recursively:






















u0(x, t) = f(x),

u1(x, t) =
∫ t
0 u

3
0(x, s)u0,xxx(x, s)ds,

um+1(x, t) =
∑m

i=0

( ∫ t
0 u

3
i (x, s)ui,xxx(x, s)ds

)

−
∑m−1

i=0

( ∫ t
0 u

3
i (x, s)ui,xxx(x, s)ds

)

, m = 1, 2, . . . .

(12)

Finally, the exact solution of the Harry-Dym equation (8) is given by

u(x, t) = f(x) +

∞
∑

i=0

ui(x, t). (13)

The m−term approximate solution of (8) is given by u =
∑m−1

i=0 ui.

Using the expressions obtained above for (8), we will illustrate, with two
examples, the effectiveness of NIM to solve the nonlinear Harry-Dym equation.

5. Numerical examples

To validate the present iterative approach, results are compared with the exact
solution of the Harry-Dym equation provided by Mokhtari in [19] which can be
expressed as

u(x, t) =
(

a− 3
√
b

2
(x+ ct)

)2/3
, (14)

where a, b and c are constants.
In all examples the package of Mathematica Version 11.0 has been used to

solve the test problems.
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Example 1

Using the NIM, we solve the Harry-Dym equation subject to the initial condition
f(x) = (1− 3x)

2

3 .

Following the recurrent formula (12) we have:

u0(x, t) = (1− 3x)
2

3 ,

u1(x, t) =
∫ t
0 u

3
0(x, s)u0,xxx(x, s)ds = − 8t

3
√
1−3x

,

u2(x, t) =
16t2(7168t3+3040t2(3x−1)+400t(1−3x)2+5(3x−1)3)

5(1−3x)13/3
, and

u3(x, t) = K







































































123363717358719057912659968t18

+193719587414863520628473856t17 (3x− 1)
+136875836595891063698227200t16(1− 3x)2

+56790926743757769911828480t15(3x− 1)3

+15013293579608519564328960t14(1− 3x)4

+2491321806795244547604480t13 (3x− 1)5

+203312399629040505323520t12 (1− 3x)6

−12290244149344783564800t11(3x− 1)7

−5943603552977053286400t10(1− 3x)8

−771521951049526476800t9(3x− 1)9

−34544909525635891200t8 (1− 3x)10

+3980557304743219200t7(3x− 1)11

+792770448614144000t6(1− 3x)12

+53551228034304000t5(3x− 1)13

−26729020032000t4(1− 3x)14

−292556876612000t3(3x− 1)15

−23265676434000t2(1− 3x)16

−737782670625t(3x − 1)17

−3233230000(1 − 3x)18







































































where K = 256t3

606230625(1−3x)61/3
. Then, the approximate solution for this example

is given by uNIM = u0 + u1 + u2 + u3.

In Figure 1 we plot both the approximate solution and the exact solution
for Harry-Dym equation. The approximate solution appears under the exact
solution but as it can be observed, the approximate solution, obtained using
NIM, converges to the exact solution in such a way that it becomes difficult to
distinguish them. All the numerical work and the graphics was accomplished
with the Mathematica software package.
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Figure 1: Plot of uNIM (x, t) (below) and uex(x, t) (above) for nonlin-

ear Harry-Dym equation with the initial condition f(x) = (1− 3x)
2

3

corresponding to Example 1.
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t = 0.01 t = 0.02

x uNIM uex [19] Error uNIM uex [19] Error

0.00 0.9985997498 0.9989997498 0.00000000 0.9975989986 0.9975989986 0.00000000
0.05 0.9479266016 0.9479266234 2.101 × 10−8 0.9468994402 0.9468995371 9.691 × 10−8

0.10 0.8958611352 0.8958612311 9.590 × 10−8 0.8948045348 0.8948053108 7.701 × 10−7

0.15 0.8422363927 0.8422364367 4.400 × 10−8 0.8411466591 0.8411472554 5.963 × 10−7

0.20 0.7868468658 0.7868479856 1.119 × 10−6 0.7857194085 0.7857196522 2.437 × 10−7

0.25 0.7294343591 0.7294356781 1.319 × 10−6 0.7282633449 0.7282644128 1.067 × 10−6

0.30 0.6696662665 0.6696674318 1.165 × 10−6 0.6684440750 0.6684452319 1.156 × 10−6

0.35 0.6071005221 0.6071017108 1.188 × 10−6 0.6058168437 0.6058271731 1.032 × 10−5

0.40 0.5411254648 0.5411266729 1.208 × 10−6 0.5397657013 0.5397768201 1.111 × 10−5

0.45 0.4708480035 0.4708493592 1.355 × 10−6 0.4693901583 0.4694231902 3.303 × 10−5

0.50 0.3948612702 0.3948624809 1.210 × 10−6 0.3932690771 0.3933698128 1.007 × 10−4

Table 1: For t = 0.01 and t = 0.02, related to Example 1
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Example 2

Using the NIM, we solve this Harry-Dym equation subject to the initial condi-
tion f(x) = (2− 9

2x)
2

3 .

Again, using the recursive formula (12) we have

u0(x, t) =

(

2− 9x

2

)2/3

,

u1(x, t) =

∫ t

0
u30(x, s)u0,xxx(x, s)ds = − 27t

3

√

2− 9x
2

,

u2(x, t) =
803538792 3

√
2t5

5(4− 9x)13/3
− 40389516 3

√
2t4

(4− 9x)13/3
+

90876411 3
√
2t4x

(4− 9x)13/3

+
15943230 3

√
2t3x2

(4− 9x)13/3
+

3149280 3
√
2t3

(4− 9x)13/3
− 14171760 3

√
2t3x

(4− 9x)13/3

+
531441t2x3

22/3(4− 9x)13/3
− 354294 3

√
2t2x2

(4− 9x)13/3
− 23328 3

√
2t2

(4− 9x)13/3

+
157464 3

√
2t2x

(4− 9x)13/3
− 177147 3

√
2tx4

(4− 9x)13/3
+

314928 3
√
2tx3

(4− 9x)13/3

− 209952 3
√
2tx2

(4− 9x)13/3
+

27t

3

√

2− 9x
2

− 6912 3
√
2t

(4− 9x)13/3
+

62208 3
√
2tx

(4− 9x)13/3
,
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u3(x, t) = H

[

417556597392940948420895373324258437234688t18

+ 97139902865718901195138854210851789217792

× t17(9x− 4)

+ 10168271724530912624176064009104155340800

× t16(4− 9x)2

+ 625022338687930785359319801888125917440

× t15(9x− 4)3

+ 24478724703422023127484982150229429760

× t14(4− 9x)4

+ 601781548616684359018704784199659635t13(9x− 4)5

+ 7275605314654963976138841502590480t12(4− 9x)6

− 65157138446771921494923637272900t11 (9x− 4)7

− 4668179566361326613796010289400t10(4− 9x)8

− 89772275536125677895558883725t9(9x− 4)9

− 595489671942347798974203300t8(4− 9x)10

+ 10165535974706000989074975t7 (9x− 4)11

+ 299937026237149453902750t6 (4− 9x)12

+ 3001568714062581663000t5 (9x− 4)13

− 221951517731658000t4(4− 9x)14

− 359899812647124750t3(9x− 4)15

− 4240169530096500t2(4− 9x)16

− 19920132106875t(9x − 4)17

− 12932920000(4 − 9x)18
]

,

where H = 6561t3

202076875 22/3(4−9x)61/3
. Then, the approximate solution for this

example it is given by uNIM = u0 + u1 + u2 + u3.

In Figure 2 we plot both the approximate solution and the exact solution
for Harry-Dym equation. The approximate solution appears under the exact
solution but as it can be observed, the approximate solution, obtained using
NIM, converges to the exact solution in such a way that it becomes difficult to
distinguish them.
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Figure 2: Plot of uNIM (x, t) (below) and uex(x, t) (above) for nonlin-

ear Harry-Dym equation with the initial condition f(x) = (2− 9
2x)

2

3

corresponding to Example 2.

From Tables 1 and 2, we can conclude that the difference between the exact
and the obtained NIM approximate solution is very small. This fact tells us
about the effectiveness and accuracy of the NIM method.
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t = 0.01 t = 0.03

x uNIM uex [19] Error uNIM uex [19] Error

0.00 1.5872772408 1.5872772408 0.00000000 1.5872296181 1.5872296181 0.00000000
0.05 1.4658693758 1.4658693180 5.780 × 10−8 1.4658198203 1.4658198762 5.590 × 10−8

0.10 1.3392047001 1.3392042319 4.682 × 10−7 1.3391528541 1.3391539312 1.077 × 10−6

0.15 1.2062335848 1.2062337188 3.341 × 10−7 1.2061789559 1.2061897250 1.076 × 10−5

0.20 1.0654731746 1.0654739281 7.535 × 10−7 1.0654150493 1.0654421775 2.712 × 10−5

0.25 0.9146950617 0.9146976701 2.608 × 10−6 0.9146323286 0.9146783221 4.599 × 10−5

0.30 0.7502355547 0.7502464282 1.087 × 10−5 0.7501662866 0.7502991445 1.328 × 10−4

0.35 0.5651344572 0.5651469427 1.248 × 10−5 0.5650546481 0.5657982318 7.435 × 10−4

0.40 0.3418438881 0.3418669251 2.303 × 10−5 0.3417412741 0.3429892145 1.247 × 10−3

Table 2: For t = 0.01 and t = 0.03, related to Example 2
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6. Conclusions

Very few exact solutions of the nonlinear Harry-Dym equation were known in
the literature. In this work, we have obtained accurate approximate solutions
for the Harry-Dym nonlinear partial differential equation using the new iterative
method (NIM); thereby illustrating in this way, the use of NIM in the solution
of nonlinear partial differential equations. We have chosen the Harry-Dym
equation due to its importance in the theory of solitons. In order to show the
accuracy and efficiency of our method, we have solved two examples, comparing
our results with the exact solution of the equation that was obtained in [19].
The obtained results demonstrate the reliability of the algorithm and its wider
applicability to nonlinear partial differential equations.

We therefore, conclude that the NIM is a notable non-sophisticated power-
ful tool that produces high quality approximate solutions for nonlinear partial
differential equations using simple calculations and that attains converge with
only few terms.
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