A FRAMEWORK FOR INTELLIGENT VOICE-ENABLED E-EDUCATION SYSTEMS

BY

AZETA, Agbon Ambrose (CUGP050134)

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES, SCHOOL OF NATURAL AND APPLIED SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE NIGERIA,

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF

DOCTOR OF PHILOSOPHY

IN

COMPUTER SCIENCE

MARCH, 2012

CERTIFICATION

This is to certify that this thesis is an original research work undertaken by Ambrose Agbon Azeta with matriculation number CUGP050134 under our supervision and approved by:

Professor Charles Korede Ayo Supervisor

Dr. Aderemi Aaron Anthony Atayero

Co- Supervisor

Professor Charles Korede Ayo Head of Department

External Examiner

Signature and Date

Signature and Date

Signature and Date

Signature and Date

ii

DECLARATION

It is hereby declared that this research was undertaken by Ambrose Agbon Azeta. The thesis is based on his original study in the department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, under the supervision of Prof. C. K. Ayo and Dr. A. A. Atayero. Ideas and views of this research work are products of the original research undertaken by Ambrose Agbon Azeta and the views of other researchers have been duly expressed and acknowledged.

Professor Charles Korede Ayo Supervisor _____

Signature and Date

Dr. Aderemi Aaron Anthony Atayero Co- Supervisor

Signature and Date

ACKNOWLEDGMENTS

I wish to express my thanks to God almighty, the author of life and provider of wisdom, understanding and knowledge for seeing me through my Doctoral research program. My high appreciation goes to the Chancellor, Dr. David Oyedepo and members of the Board of Regent of Covenant University for catching the vision and mission of Covenant University. My thanks also goes to the Management of Covenant University: the Vice Chancellor, the Registrar, the Deans of the Colleges, the Heads of Department for driving the vision towards attaining excellence and sound academic program.

I am also greatly thankful to my supervisors Professor C. K. Ayo and Dr. A. A. Atayero for their immense support and guidance throughout the course of this research. I am grateful to them for introducing me to an interesting area of speech technology that I enjoyed working on. Despite their extremely busy schedules, I received complete attention and timely guidance that helped me to complete this thesis.

I thank the members of Automated Speech Recognition for Customer Relationship Management (ASR4CRM) research team - Professor C. K. Ayo, Dr. A. A. Atayero and Dr. N. A. Ikhu-Omoregbe, whose inputs and suggestions helped me to advance in this study from the very foundation of this research to its completion. My thanks also goes to Professor E. F. Adebiyi for his words of encouragement and support for the work. I would like to thank my colleague Dr. J. O. Daramola for giving me important suggestions and insight on my work. I have learned immensely during the course of my interaction with him. My appreciation goes to Dr. N. A. Ikhu-Omoregbe and Dr. J. O. Daramola for making their thesis available for other researchers including myself to use as a guideline for thesis writing. I thank the Dean of Post Graduate School, Professor C. O. Awonuga and all my teachers at the postgraduate school.

Special thanks goes to my elder brother- Mr. Victor Azeta, my siblings, my parents (especially my father Mr. P. U. Azeta) who kept encouraging me to push on and complete the research. I dedicate this thesis to my dad. I will not forget my loving wife Mrs A. E. Azeta and my four beautiful children: Joy, Emmanuel, David and Daniel whose unending love and support sustained and encouraged me throughout the Ph.D program. I would not have been able to embark on this journey without their home support. I am also particularly grateful for the invaluable suggestions and insight I received from members of the Department of Computer

and Information Sciences (CIS), particularly the Software Engineering and Intelligent System (SEIS) unit for their constructive comments during the several presentations of the work. May God bless you all.

Special thanks also goes to Voxeo Inc. for freely hosting the prototype version of the voice application.

TABLE OF CONTENTS

Title Page	i
Certification	ii
Dedication	iii
Declaration	iv
Acknowledgments	V
List of Figures	ix
List of Tables	xi
Abstract	xii

CHAPTER ONE

1.0	INTRODUCTION	.1
1.1	Background Information	.1
1.2	Motivation for the study	3
1.3	Statement of the Problem	6
1.4	Aim and Objectives of the study	8
1.5	Research Methodology	9
1.6	Significance of the Study	11
1.7	Contribution to Knowledge	.12
1.8	Limitations of the Study	12
1.9	Glossary of Terms and Definitions	13
1.10	Structure of the Thesis	15
1.11	Summary	15

CHAPTER TWO

2.0	REVIEW OF RELEVANT LITERATURE	16
2.1	Introduction	16
2.2	AI Concepts and Terminologies	16
	2.2.1 Case-Based Reasoning	17
	2.2.2 Information Retriever	17
	2.2.3 Stemming Algorithm	
	2.2.4 Vocabularies and Ontologies	19
2.3	The Generations of Web Technology	19
		vi

PAGE

2.4 E-Education Technologies	21
2.5 Assistive Technology	22
2.6 Voice Interfaces	24
2.7 Voice-Enabled Web Paradigm	26
2.7.1 Voice Portals	26
2.7.2 Voice Servers	26
2.7.2.1 Discrete and continuous speech recognition systems	
2.7.2.2 Hidden Markov Model	27
2.8 Architecture for VoiceXML-based Systems	
2.9 Review of Voice-enabled systems	31
2.10 Review of Existing E-Education Frameworks and Systems	34
2.11 Client devices for voice-based systems	42
2.12 Measuring the usability of systems	43
2.13 Summary	44

CHAPTER THREE

3.0 TH	E INTELLIGENT VOICE-ENABLED E-EDUCATION FRAMEWORK	45
3.1 Introd	uction	45
3.2 Elicita	ation of Requirements	45
3.3 The Fi	ramework	47
3.3.1	Application Interface	48
3.3.2	Learning Objects	49
3.3.3	Learner's Profile	49
3.3.4	The adaptation component service	49
3.3.5	The recommendation component service	52
3.3.6	Ontology-based model of <i>iVeES</i> Framework	55
3.4 Intera	ction Management	61
3.4.1	The VUI Tree Framework	63
3.4.2	The Hidden Markov Model (HMM) Framework	69
3.5 Summ	nary	74

CHAPTER FOUR

4.0 <i>iVe</i>	ES DESIGN AND IMPLEMENTATION	75
4.1 Int	oduction	75
4.2 Ar	hitectural Design	75
4.2	1 The Physical Architecture	75
4.2	2 <i>iVeES</i> Application Architecture	77
4.2	3 The UML Deployment Architecture	79
4.3 A I	Description of CBR and Stemming Approach	80
4.4 Pse	udocode for <i>iVeES</i>	.81
4.4	1 Algorithm Development	81
4.4	2. Voice User Interface (VUI) Design	83
4.4	3 Sample (call flow) of the system	84
4.5 S	stems Implementation	85
4.5	1 Voxeo platform	86
4. :	.2 Web user interfaces of <i>iVeES</i>	.86
4.5	3 Testing and Deployment	38
4.5	4 Accessing the application	89
4.6 Be	nefits of <i>iVeES</i>	.91
4.7 Su	nmary	92

CHAPTER FIVE

5.0 <i>iVeES</i> EVALUATION	
5.1. Introduction	93
5.2 Research Design	93
5.3 Lessons learnt	94
5.4 Evaluation Results	95
5.5 Data Analysis	
5.6 Summary	102

CHAPTER SIX

6.0 SUMMARY, CONCLUSION AND RECOMMENDATIONS	103
6.1 Summary	
6.2. Conclusion	
	viii

6.3 Recommendations	105
6.4. Future work	107

APPENDIX I: List of publications from the thesis	108
APPENDIX II: List of Abbreviations and Symbols	109
APPENDIX III: Sample Questionnaire	112
APPENDIX IV: Sample VoiceXML Source Code	117

FERENCES121

LIST OF FIGURES

PAGE

Figure 1.1: Core of <i>iVeES</i> methodology	.10
Figure 2.1: VoiceXML platform architecture	28
Figure 2.2: Example of VoiceXML document	31
Figure 2.3: Architecture for Voice-enabled Web-based absentee system	37
Figure 2.4: An m-Learning Framework	38
Figure 2.5: M-Learning Architecture with speech recognition enhancement	39
Figure 2.6: Deployment Architecture of the Voice Interactive Classroom	41
Figure 3.1: The system requirement for <i>iVeES</i> framework	46
Figure 3.2: Intelligent voice-based e-Education system (<i>iVeES</i>) framework	48
Figure 3.3: A model of score evaluation criterion	49
Figure 3.4: A UML sequence diagram for adaptation service	51
Figure 3.5: Data flow diagram for adapting learning content in <i>iVeES</i>	52
Figure 3.6: A Case structure for the system	52
Figure 3.7: Recommendation Model of <i>iVeES</i> framework	54
Figure 3.8: A UML sequence diagram for recommendation service	55
Figure 3.9: Enhancing the weight of a term using Ontology	56
Figure 3.10: E-Education repository ontology as a class diagram	57
Figure 3.11: Main Classes of the Education.owl Ontology	58
Figure 3.12: Architecture of Education Ontology model	59
Figure 3.13: A Screenshot of Education Ontology design using Protégé 3.4.1	59
Figure 3.14: (a) A piece of RDF code and (b) The same information in OWL code for <i>iVeEs</i>	560
Figure 3.15: Process flow diagram of <i>iVeES</i>	63
Figure 3.16: A VUI tree framework for the system	64
Figure 3.17: The restructured VUI tree	67
Figure 3.18: The VUI tree	68
Figure 3.19: Partial Call flow for the system	68
Figure 3.20: Example of a three-state HMM	70
Figure 3.21: The state transition diagram of <i>iVeES</i>	71
Figure 3.22: Format of state transition probabilities	72
Figure 4.1: Intelligent voice-based e-Education architecture	76
Figure 4.2: An instance of intelligent voice-enabled e-Education Architecture	77

Figure 4.3: <i>iVeES</i> application architecture	78
Figure 4.4: UML Deployment scheme for <i>iVeES</i>	80
Figure 4.5: A process model of tutorial questions for <i>iVeES</i>	81
Figure 4.6: Modified Porter Stemming (MPS) algorithm for <i>iVeES</i>	82
Figure 4.7: Sample call flow of <i>iVeES</i>	
Figure 4.8: Voxeo IVR hosting platform	
Figure 4.9: A screenshot of lecture note Web interface	
Figure 4.10: A screen shot of tutorial questions Web interface	
Figure 4.11: A screenshot of unresolved questions Web interface	
Figure 4.12: Voxeo Prophecy SIP Softphone keypad	90
Figure 4.13: A model of mobile phone interaction with <i>iVeES</i>	91
Figure 5.1: Mean rating for Q5 (Efficiency)	97
Figure 5.2: Frequency distribution for Q5 (Efficiency)	97
Figure 5.3: Frequency data for Q5 (Efficiency) Histogram	98
Figure 5.4: Usability attributes analysis of <i>iVeES</i>	
Figure 5.5: Effectiveness Analysis	99
Figure 5.6: Efficiency Analysis	100
Figure 5.7: User Satisfaction Analysis	100
Figure 5.8: Learnability Analysis	101
Figure 5.9: Memorability Analysis	101
Figure 5.10: Usability Attributes Analysis	

LIST OF TABLES

Table 3.1: Interpretation of Nodes in the VUI tree	65
Table 3.2: Properties of VUI tree nodes	67
Table 3.3:State transition probabilities	73
Table 4.1: VUI Design for getting learning content in <i>iVeES</i>	
Table 5.1: Descriptive Statistical Analysis of Questionnaire Data	94
Table 5.2: User survey results	96

xii

PAGE

ABSTRACT

Voice-enabled e-Education system is the enabling technology that allows users to access Learning resources on a web using a telephone. Telephony applications in the area of education are developed mainly for the visually impaired to address the limitations of user interface of a mobile learner in accessing web learning resources. However, with the proliferation of learning resources on the web, finding suitable content (using telephone) has become a rigorous task for voice-based online learners to achieve better performance. The problem of Finding Content Suitability (FCS) with voice e-Learning applications is more complex when the sight impaired learner is involved. Existing voice-enabled applications in the domain of e-Education lack the attributes of adaptive and reusable learning objects to be able to address the FCS problem. Nevertheless, the adoption of artificial intelligence methodologies involving case-based reasoning (CBR) and domain ontology is required to provide recommender and adapted systems in voice-enabled learning towards solving the FCS problem. This study provides a framework for intelligent Voice-based e-Education Systems (*iVeES*) and an implementation of a system based on the framework with dual user interfaces – voice and web.

The framework was designed using schematic diagram, mathematical models and ontology; and implemented using PHP, VoiceXML and MySQL. A usability study was carried out in a visually impaired and a non visually impaired school using the International Standard Organization 9241-11 (1998) and Nielsen (2003) specification to determine the level of effectiveness, efficiency, user satisfaction, learnability and memorability. The result of the usability evaluation reveals that the prototype application developed for the school has "Good Usability" rating of 4.12 out of 5 scale. This shows that the application will not only complement existing mobile and web-based learning systems but will be of immense benefit to users, based on the system's capacity for taking autonomous decisions that are capable of adapting to the needs of both visually impaired and non-visually impaired learners.