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ABSTRACT 

The volume of information available  on the Internet  and corporate  intranets continues  to  

increase along with the corresponding increase in the data (structured and  unstructured)  

stored  by  man  organizations.  In customer relationship management, information is the raw 

material for decision making. For this to be effective there is need to discover knowledge 

from the seamless integration of structured and unstructured data for completeness and 

comprehensiveness. 

This study addresses two unique challenges experienced in business decision support 

systems, the first one is how to transform and analyze unstructured data alongside structured 

data. Secondly, the need to improve result obtained from the integrated mining system in order to 

reduce decision failure. There is also a necessity to solve the challenge of Customer Relationship 

Management, in terms of the ability to differentiate useful information from chatter or even 

disinformation. There is also further need to have a holistic view to mining from structured and 

unstructured information sources towards a better Customer Relationship Management. 

Improved Integrated Mining Architecture (IIMA), our approach to solving the above 

challenges, consists of three major phases; the first phase is the Extraction and Integration phase. 

This phase is aimed at optimizing the performance of the knowledge mining phase. It consists of 

unstructured data (text) preprocessing which includes lexical analysis, stemming, application of 

weighing schemes and finally transforming the documents to an XML format. In the integration 
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process, the structured component is selected based on the resulting keywords from the 

unstructured text preprocessed.  The second phase is the Knowledge distillation phase. In this 

phase, knowledge is distilled using the modified Generating Association Rules based on 

Weighting scheme (GARW) algorithm. In the third  phase, generated rules are also interpreted 

for making efficient business decisions. To implement the above described methodology, the 

following programming design tools were used: Microsoft Visual Studio 2008 (C# in particular), 

Microsoft SQL Server 2008 and Extensible Markup Language (XML). For the data 

preprocessing phase, WordNet lexical database was referenced through Proxem Antelope. 

Experiments carried out revealed that the extracted association rules contain important 

features which form a worthy platform for making effective decisions as regards Customer 

Relationship Management. The performance of the IIMA approach is also compared with an 

integrated mining approach which uses just syntactic relevance in its information extraction 

process. The result revealed a significant reduction in the large itemsets and execution time. 

Also, in the novelty evaluation, IIMA produced a 17% increase in novel rules generated when 

compared to the existing integrated mining approach.   
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND INFORMATION 

The volume of information available on the Internet and corporate intranets continues to 

increase along with the corresponding increase in the data (structured and unstructured) 

stored by many organizations. Over the past years, data mining has explored the large 

volume of data (structured) in order to discover knowledge, often in form of decision 

support systems. A critical component for the success of the modern enterprise is its 

ability to take advantage of all available information. This challenge becomes more 

difficult with the constantly increasing volume of information, both internal and external 

to an enterprise. According to this rate of increase, more data will be generated in the 

next three years than in all of recorded history. This explosion of information presents an 

exciting cross-industry business opportunity. Enterprises that can quickly extract critical 

nuggets of information from the sea of accessible data and transform them into valuable 

business assets are in a strong position to dominate their markets.  

 

Decision support systems are interactive computer based systems that aid users in 

judgment and choice of activities.  These systems have gained popularity in various 

domains such as business, engineering, military and medicine and are most valuable in 

situations where the amount of information is too large for human decision makers to use 

optimally and with precision  (Druzdzel & Flynn, 2002). 
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The structured environment is made up of data that has fields, columns, tables, rows and 

indexes. It centers on transactions and has reports, audits and definitions of words. There 

is high degree of predictability associated with the structured environment (Inmon, 2007). 

Mining in this environment involves an analytic process designed to explore the 

structured data in search of consistent patterns and/or systematic relationship between 

variables, and then to validate the findings by applying the detected patterns to new 

subsets of data (http://www.statsoft.com/textbook/stdatmin.html #mining). This type of 

mining is limited due to the fact that the available information accessible to a company is 

mostly unstructured (Unitas Corporation, 2002; Blumberg, 2003). 

 

The unstructured environment has no particular order to it. It consists of text found in 

medical reports, warranties, contracts, email and spreadsheets. The text has no rules 

governing its creation or usage. With text, there are no keys, no indexes, no columns or 

attributes (Inmon, 2007). Unstructured data can take formats such as, excel files, web 

blogs and so on. Closely related to this is the semi-structured environment which is an 

intermediate between structured and unstructured data. Semi structured data usually has 

some form of meta-data attached to it unlike unstructured that has no metadata at all 

(Ukelson, 2006). Examples of semi-structured data include XML (Extensible Markup 

Language) data storage. Mining in the unstructured environment is known as text mining. 

Text mining is the process of extracting interesting and non trivial patterns of knowledge 

from unstructured text documents. It can also be expressed as knowledge discovery from 

unstructured databases (Ah-Hwee, 2006).  Mining unstructured data is important due to 

the following reasons: 
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• In today’s era of information, OLTP (Online Transaction Processing) and data 

warehousing systems take increasing proportion of their data from applications and 

automated systems rather than users, and those applications feed data that has 

become predominantly semi-structured or unstructured. Statistics revealed that, as 

much as 85% of today’s OLTP and data warehouse data are unstructured 

(Kernochan, 2006; Sukumaran & Sureka, 2007; Unitas Corporation, 2002; 

Blumberg, 2003). 

• The rapid growth of the Internet has led to increase in the amount of information 

generated and shared by organizations in almost every industry and sector. This 

increase has led to the creation of huge, but largely unmet need for tools that can be 

used to manage what we call unstructured data (Blumberg, 2003). “In the case of 

web alone, more than 2 billion new web pages have been created since 1995, with 

additional 200 million new pages being added every month, according to market 

research firm IDC”. (Blumberg, 2003). 

• Finally some experiments produce a mix of unstructured and structured data. 

 

Integrated mining in this context therefore can be defined as creating a platform for 

mining structured and unstructured data.  The outcome of such integrated mining will 

solve the problem of having a holistic view to mining from structured and unstructured 

data sources which is currently a major challenge in the field of customer relationship 

management.  Integrated mining will be beneficial to this application area as it combines 

the unique attributes of both structured and unstructured data format in order to provide 

greater efficiency to the organization, especially by minimizing the popular practice of 
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handling structured and unstructured as distinct information entities which often results in 

decision management failure (Sukumaran & Sureka, 2007).   

 

1.2 STATEMENT OF THE PROBLEM 

In business decision support system, information is the raw material for decision making. 

Therefore, effective decision making is based on sound information. There is a need to 

provide data that reduces the level of uncertainty in decision making (Solomon & & Paul, 

2003). In order to do this, the inefficiency of the existing data integration systems needs 

to be reduced by minimizing the problem of uncertainty of extracted features leading to 

unreliable reports.  Presently in the field of business decision support system, (Zhu et. al, 

2005; Kernochan, 2006; Arnold, 2010); has been able to analyze both text and data using 

methods such as OLAP-style interaction model, pattern recognition technology, statistical 

models and text analytic engines. In all the attempts above, semantic analysis of the 

integrated data was not involved. Also, due to the fact that most of the systems reviewed 

just stop at the point of integration, there is also a need to develop a system that combines 

both integration and mining of data based on the most contributing extracted features. 

 

There is also a need to solve the challenge with Customer Relationship Management, 

which is not lack of information (Solomon & & Paul, 2003), but the ability to 

differentiate useful information from chatter or even disinformation  

 Currently, having a holistic view to mining from structured and unstructured information 

sources towards a better Customer Relationship Management is the problem of analytical 

Customer Relationship Management (CRM) system (Cody et al., 2002). Developing a 
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system that can solve this problem will therefore be a great contribution to the world of 

business intelligence. 

 

In this thesis therefore, we intend to address the challenge of improving the efficiency of 

integrated mining system. The following are the research questions which the thesis tries 

to address: 

• Can we source, transform and analyze unstructured data alongside with structured 

data?  

• How can we integrate structured and unstructured data for effective decision 

making? 

• How do we improve result obtained from the integrated mining system in order to 

reduce decision failure? 

 

1.3  AIM AND OBJECTIVES OF THE STUDY 

The aim of the research is to develop an improved integrated mining system for the 

purpose of making effective business decision. To achieve this aim, the following 

objectives were formulated; 

• To develop a system that mines from the integration of structured and unstructured 

data. 

• To improve the efficiency of the developed system by introducing a semantic 

preprocessing of unstructured data. 

• To apply the developed system to improve the organizational profit of 

manufacturing and production companies through an effective Customer 

Relationship Management. 
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• To evaluate the system by comparing its results with an existing one. 

1.4  METHODOLOGY 

In order to evolve an improved integrated mining architecture, a review of the state of the 

art literature on integrated data management was done which revealed that the area of 

concern in integrated data management is in the preprocessing of the unstructured data. 

This led to a rigorous review of the existing text mining systems after which an improved 

system was proposed which is coined Improved Integrated Mining Architecture (IIMA). 

The system consists of three major phases; the first phase is the Extraction and 

Integration phase. This phase is aimed at optimizing the performance of the knowledge 

mining phase. It consists of unstructured data (text) preprocessing which includes lexical 

analysis, stemming, application of weighing schemes and finally transforming the 

documents to an XML format. In the integration process, the structured component is 

selected based on the resulting keywords from the unstructured text preprocessed.  The 

second phase is the Knowledge distillation phase. In this phase, knowledge is distilled 

using the modified GARW (Generating Association Rules based on Weighting scheme) 

algorithm (Hany et al., 2007). The third phase is the rules visualization phase whereby 

the generated rules are interpreted for making efficient business decisions. Association 

rules are easy to understand and to interpret for an analyst or a normal user. However, it 

should be mentioned that the association rule extraction is of exponential growth and a 

very large number of rules can be produced. To implement the above described 

methodology, the following programming design tools were used, Microsoft Visual 

Studio 2008 (C# in particular), Microsoft SQL Server 2008 and Extensible Markup 

Language (XML). For the data preprocessing phase, WordNet lexical database is 
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referenced through Proxem Antelope. Based on the proposed architecture, the customer 

relationship management of the Nigerian mobile phone industry was investigated in order 

to compare and evaluate the efficiency of the developed system over the existing one. 

The mobile phone industry was selected because it provides a real life application to 

justify the research work.  In this project, IIMA system is evaluated using a suitable 

method of estimating the novelty of rules discovered by data-mining methods (Basu et 

al., 2001).  
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Review of literature on   Integrated mining Systems and identifying research questions/statement of 
problem  

Figure 1.1    Model conceptualization of the methodology of this thesis. 
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1.5 SIGNIFICANCE OF THE STUDY 

The following are the significance of this research; 

• The research will minimize the popular practice of handling structured and 

unstructured data as distinct information entities which often results in decision 

management failure (Sukumaran & Sureka, 2007). For example, in the area of 

records management whereby invoices, statements and other operational documents 

need to be tied to customer data or supplier data. 

• The research will help to find out what consumers need before production and 

better service after purchase, thereby improving the efficiency of customer 

relationship management.  

• This is an information age and the level of sophistication in terms of knowledge, 

competition, taste and technology has increased. Therefore, Marketers need to 

procure and process accurate information, there is therefore a need to come up with 

better ways of information processing and gathering which this study aims at. 

• The research will solve the challenge in CRM, which is not lack of information, but 

the ability to differentiate useful information from chatter or even disinformation.  

 

1.6 MOTIVATION FOR THE STUDY 

The desire to extend the capabilities of business intelligence applications to include 

textual information has existed for quite some time. The major inhibitors have included 

the separation of the data on different data management systems, typically across 

different organizations, and the immaturity of automated text analysis techniques for 

deriving business value from large amounts of text. For example, to understand sales 
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effectiveness, a telemarketing revenue data cube can help identify products who generate 

the most sales, and customers who are the most receptive to this sales approach. 

Unfortunately, the particular sales techniques used by these successful sales 

representatives in various situations are not captured by quantitative measures in the 

OLAP cube. However, these sales conversations are now frequently recorded and 

converted to text. The text of conversations associated with high-revenue sales 

representatives and high-yield customers can be analyzed by various language processing 

or pattern detection techniques to find patterns in the use of phrases or phrase sequences.  

 

Secondly, there is a need, not just to develop a system to solve the above problem, but to 

also provide the most efficient solution. This thesis seeks to create a state-of-the-art 

solution and efficiency of integrated mining systems in the business decision support 

systems. The need described above informed our decision to pick business intelligence as 

our area of application in this thesis.  

 

1.7 CONTRIBUTION TO KNOWLEDGE 

The specific contributions of this research are both in the application area which is in 

business decision support system and also in the computer science field. Firstly, in the 

world of business decision support system (business intelligence), the task of integrating 

various data sources have been the burden of the enterprise application developer (Roth 

et al., 2002). A lot of commercial systems together with academic projects have 

addressed comprehensive information integration platform. Many of these approaches 

start “from scratch,” and build a special-purpose system to optimize a particular use. 

According to (Roth et al., 2002), products such as Tamino 
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(http://www.softwareag.com/tamino/) and Ipedo (http://www.ipedo.com) promise to 

deliver data stores optimized for XML documents. Also, data federation has a solid 

research foundation and several commercial implementations. TSIMMIS, (Garcia-Molina 

et al., 1995), DISCO,(Tomasic et al., 1997) HERMES,(Adali et al., 1996)  and the 

Information Manifold (Levy et al., 1996),  are products that are built specially to explore 

various aspects of federated database technology which includes, compensation, 

mediation and scalability. Also, Nimble, (http://www.nimble.com)  

Callixa,(http://www.callixa.com) and InfoShark (http://www.infoshark.com) federate 

data outside the database engine. In addition, Garlic 

(http://www3.ibm.com/solutions/lifesciences/discoverylink.html) and DB2* (Database 

2*) Relational Connect (http://www3.ibm.com/software/data/db2/relconnect) extend a 

traditional relational database engine with federated capabilities. DiscoveryLink* 

(http://www3.ibm.com/solutions/lifesciences/discoverylink.html) for example, is a 

commercial application that is built on technology tailored to the life sciences 

community. But none of the above systems uses one platform to integrate and mine (with 

specific mining algorithm such as association rule) data at the same time. That is why we 

believe that the development of our integrated mining will be of great benefit to the 

business intelligence world. The following is a diagram showing the contribution of the 

system to business decision support system. 
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Figure 1.2 Marketing Decision Support system (Strauss et  at., 2006) 

 

The difference in the architecture in Figure 1.2, as regards the original marketing decision 

support system is that data mining & Text mining technique has been added to the 

statistical techniques component and the raw data component has been replaced by an 

integrated data warehouse which is obtained as a result of the data preprocessing. By 

applying the IIMA on the CRM data gathered for the purpose of experimental validation 

in this research, the result revealed novel CRM inferences which are an advantage of our 

modified market decision support system.  

 

According to (Frieder et. al., 2000; Roth et. al., 2000; Dean  & Alexandra, 2004; 

Aravindan, 2005; Robert, 2006; Prem, 2007; Sukumaran & Sureka, 2007), data 
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integration  has been approached mainly from the information extraction perspective 

based majorly on syntactic analysis which is void of semantic analysis. Though semantic 

analysis was introduced by Oracle Database 11g (An Oracle White paper, 2007), it relies 

on domain specific ontologies which in turn rely on an application developer, this makes 

it limited in flexibility. The second contribution to knowledge of this research therefore is 

to address the novel problem of classifying semantically related XML documents. To do 

this Improved Integrated Mining Architecture (IIMA) was produced. In IIMA, semantic 

relatedness of XML documents is investigated by analyzing the content information in 

order to generate XML features with the support of lexical ontology knowledge. Content 

analysis applies to textual elements and combines methods that are conceived to compute 

term relevance from both syntactic and semantic viewpoints. Syntactic relevance takes into 

account the structural context of term occurrence, whereas semantic relevance depends on 

the degree of term polysemy.  

 

This thesis therefore introduces efficiency into the integrated mining process. This is done 

through semantic data preprocessing in order to reduce the corpus that will move to the 

key phrase extraction stage to the most relevant documents based on the problem to be 

solved. Efficiency in this context refers to producing patterns (rules) which is interesting 

both objectively and subjectively, that is, rules that are interesting based on the 

underlying data collection, they are unexpected and the user can act on them because it 

contributes directly to the solution of the problem defined. Applying the IIMA on a 

mobile phone industry case study generated inferences towards competitive advantage 

through effective customer relationship management. This is due to the fact that 

semantically related keywords extracted from the combination of structured and 
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unstructured component of the data mostly generated the novel rules. 

 

1.8 DELIMITATIONS OF THE SCOPE OF THE STUDY 

Even though unstructured data also includes video and sound, in the context of the research 

it is limited to text-based information, and does not include video and sound.  Also, Business 

Intelligence systems include components such as GIS, OLAP, EIS but this research is 

limited to the CRM. 

 

1.9 THESIS ORGANIZATION 

Chapter One of this thesis presents a general introduction, highlighting the motivation for 

the research, the aim and objectives of the work and its contributions. 

Chapter Two gives a description of the area of application, a critical review of existing 

integrated mining systems and also a detailed review of existing text preprocessing 

approaches. The chapter presents a review of related work and defines the context of the 

research undertaken in this work by identifying the gaps that exist in literature. The 

chapter concludes with the proposal of a novel approach to integrated mining of 

heterogeneous data. 

Chapter Three is a description of the Improved Integrated Mining Architecture.   

Chapter Four presents the application of the system to the case study of CRM that was 

undertaken to validate the IIMA approach.  

In Chapter Five, the details of the evaluation procedure for IIMA are discussed. 

Finally, in Chapter Six, we give the summary, conclusion and a discussion of the future 

research outlook of this thesis. 
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CHAPTER TWO 

LITERATURE REVIEW OF INTEGRATED MINING SYSTEMS  

2.1       INTRODUCTION  

The current explosion of information presents an exciting cross-industry business 

opportunity. Enterprises that can quickly extract critical nuggets of information from the 

sea of accessible data and transform them into valuable business assets are in a strong 

position to dominate their markets. The challenge for enterprise software applications 

today is information integration.  

 

The integrated data can be differentiated into structured data (e.g., accountings which are 

computer process able) and unstructured data (e.g., text documents which are not 

computer process able). The name “unstructured data” is based on the circumstances that 

the structure of a text document is not clear to an information system because text 

semantics cannot be understood by machines. According to (Blumberg & Atre, 2003), A 

common problem facing many organizations today is that of multiple or disparate 

information sources and repositories, including databases, object stores, knowledge 

bases, digital libraries, information retrieval systems and electronic mail systems.  

Decision makers often need information from multiple sources, but are unable to get and 

fuse the required information in a timely fashion due to the difficulties of accessing the 

different systems and due to the fact that the information obtained can be inconsistent and 

contradictory. Until now there have only been a few published approaches which tackle 

this problem domain and give approved solutions for the coupling of internal and external 

data. This means the already structured data from inside the company and unstructured 

data from the Internet. 
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2.2    DECISION SUPPORT SYSTEMS  

Decision support systems are interactive computer based systems that aid users in the 

judgment and choice of activities (Druzdzel & Flynn, 2002).  DSS are specific class of 

computerized information system that supports decision making activities. In general DSS 

are interactive computer based systems and subsystems intended to help decision makers 

use communication technologies, data, documents, knowledge and /or model to identify and 

solve problems and make decisions (Daniel & Shashidhar, 2000).  

There are three fundamental components of DSSs (Druzdzel & Flynn, 2002; Andrew, 

1991): 

• Database management system (DBMS): The purpose of a DBMS is to serve as 

a data bank for the DSS. The DBMS therefore, stores a large quantity of data that 

is relevant to the class of problems for which the DSS has been designed. It also 

provides logical data structures with which the users interact. A DBMS separates 

the users from the physical aspects of the database structure and processing. 

DBMS should also be capable of informing the user of the types of data that are 

available and how to gain access to them. 

• Model-base management system (MBMS: The role of MBMS is similar to that 

of a DBMS. It basically provides independence between specific models that are 

used in a DSS from the applications that use them. MBMS is used to transform 

data from the DBMS into information that is useful in decision making. Since 

many problems that the user of a DSS will cope with may be unstructured, the 

MBMS should also be capable of assisting the user in model building. 
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• Dialog generation and management system (DGMS):  The users of a DSS are 

often managers who are not necessarily computer trained. The main product of an 

interaction with a DSS is insight. Decision Support Systems therefore needs to be 

equipped with intuitive and easy-to-use interfaces. These interfaces aid in model 

building, but also in interaction with the model, such as gaining insight and 

recommendations from it. The DGMS’s primary responsibility is to enhance the 

ability of the system user to utilize and benefit from the DSS. In the remainder of 

this research work, we will use the broader term user interface rather than DGMS. 

Though a variety of DSSs exists, the above three components can be found in most DSS 

architectures. These three components play a prominent role in the structure of a DSS. 

Essentially, the user interacts with the DSS through the user interface (DGMS). This 

communicates with the DBMS and MBMS, which screen the user and the user interface 

from the physical details of the model base and database implementation (Andrew, 1991). 

 MBMS DBMS 
 

 

 

 

 

 

 

Figure 2.1: The architecture of a DSSs (Andrew, 1991). 

    DGMS 

MODEL BASE DATABASE 

     DSS USER
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A communications-driven DSS supports more than one person working on a shared task, it 

supports communication, collaboration, and coordination. Document-driven DSS manage, 

retrieve, summarize and manipulate unstructured information in a variety of electronic 

format. Knowledge-driven DSS have specialized problem solving expertise stored as facts, 

rules and procedures or similar structures. The "expertise" consists of knowledge about a 

particular domain, understanding of problems within that domain, and "skill" at solving 

some specific problems. A model-driven DSS emphasizes access to and manipulation of 

statistical, financial, optimization or simulation models. Model-driven DSS uses data and 

parameters provided by decision makers to aid them in analyzing a solution. Data-driven 

DSS emphasizes access to and manipulation of a time-series of internal company data and 

sometimes, external data (Daniel & Shashidhar, 2000).  

 

Data driven DSSs include online analytical processing (OLAP) applications and data 

mining applications. OLAP applications allow users to think of a database as having 

multiple dimensions and to query those dimensions in various combinations. The queries 

can be used by the users to analyze relationships among the various dimensions and their 

associated data elements, aggregate data over time periods, and present data in multiple 

formats (e.g., graphical formats).  Specific and unknown patterns in databases and data 

warehouses can be identified by data mining applications. These patterns cannot be 

revealed by typical queries. These applications can include one or more algorithms, 

including neural network algorithms, tree induction algorithms, and/or clustering 

algorithms. Users apply the algorithms to identify hidden patterns in the data (Lauría & 

Peter, 2004). 
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Decision support systems management consists of an ongoing, inseparable process of 

designing, implementing, and evaluating DSS.  Decision support systems assist managers 

in their decision making processes to improve the effectiveness of decision making rather 

than its efficiency (Sean, 2004). Decision support systems have gained popularity in 

various domains such as business, engineering, military and medicine and are most valuable 

in situations where the amount of information is too large for the human decision maker to 

use optimally and with precision (Druzdzel & Flynn, 2004).  In this research, we are 

particularly interested in business DSS, also known as business intelligent systems. This 

research will be applied to the Customer Relationship Management (CRM) component of 

Business Intelligence in the manufacturing and production companies.  

 2.2.1 Business Intelligence 

Business intelligence (BI) is a data-driven Decision Support Systems (DSS) that 

combines data gathering, data storage, and knowledge management with analysis to 

provide input to the decision process. The term originated in 1989. Prior to that, many of 

its characteristics were part of executive information systems. Business intelligence 

emphasizes analysis of lager volume of data about the firm and its operations.  It includes 

competitive intelligence (monitoring competitors) as a subset (Solomon & Paul, 2008). 

 

Business Intelligence (BI) applies the functionality, scalability, and reliability of modern 

database management systems to build ever-larger data warehouses, and to utilize data 

mining techniques to extract competitive business advantage from the vast amount of 

available enterprise data (Mika & Virpi, 2002). BI systems combine data gathering, data 

storage and knowledge management with analytical tools to present complex and 
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competitive information to planners and decision makers (Solomon & Paul, 2003). 

Business Intelligence was defined in (Strauss et al., 2006) as the activity of gathering 

secondary data and primary information about competitors, markets, customers, and 

more. From the above definitions, it can be inferred that business intelligence is a 

combination of the following terms: ERP (Enterprise resource planning, EIS (Enterprise 

Information System), KM (Knowledge Management), CRM (Customer Relationship 

Management), DSS (Decision Support System), DM (Data Mining), GIS (Geographical 

Information System), OLAP (Online Analytical Processing) and Data Warehousing 

(DW). Business Intelligence is aimed at achieving the following goals: improving the 

timeliness and quality of input to the decision process; improving performance 

management; optimizing customer relations; monitoring business activity and traditional 

decision support; packaging standalone BI applications for specific operations or 

strategies; providing actionable knowledge delivered at the right time (Blumberg, 2003); 

offering better quality information (Mika & Virpi , 2002); offering better observation of 

threats and opportunities; improving the growth of the knowledge base; increasing 

sharing of information; improving efficiency; offering easier information acquisition and 

analysis; and offering cost savings (Mika & Virpi , 2002). 

 

In BI, information is the raw material for decision making (Graham, 2004). Effective 

market decisions are therefore based on sound information and the decisions are not 

better than the information on which they are based. Information is therefore the lubricant 

of Business Intelligence. The more information a firm has, the better the value it can 

provide to each customer and the better the prospects in terms of accuracy, timely and 
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relevant offerings (Strauss et. al., 2006). A complete marketing knowledge database 

includes all data about customers, prospects, and competitor, the analyses and outputs 

based on the data and access to marketing experts, all available 24/7 through a number of 

digital receiving appliances. The Internet and other technologies facilitate marketing data 

collection (Strauss et. al., 2006).  

 

A marketing information system interacts with managers to access their information 

needs, develops the needed information from internal company records and marketing 

intelligence (competitive intelligence)   activities and the marketing research process 

(Linus, 2006).  

 

 BIDSS (Business Intelligence Decision Support System) is divided into three layers: i) 

the bottom layer, which is the path of source data collected and the repository of data 

storage; ii) the middle layer which consists of a wide variety of intelligence software or 

tools; iii) the top layer, the user interface, in which the final report is viewed and 

delivered to users. A Business Intelligence Decision Support System must be deployed 

within an infrastructure or platform with the capabilities to implement the BIDSS process 

to support the range of applications best suited to every business requirement (Kreulen, 

2002). Figure 2.2 is a diagram of the current BIDSS framework as described above. 
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Figure 2.2 Current BI/DSS model (Monica, 2008). 

The Figure 2.3 shows a framework that integrates the structured and semi structured data 

required for Business Intelligence. One implication of the BI framework is that semi-

structured data are equally important, if not more, as structured data for taking action by 

planners and decision makers. A second implication is that the process of acquisition, 

cleanup, and integration applies for both structured and semi structured data (Solomon, 

2004). 
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Figure 2.3 Business Intelligence data framework (Solomon, 2004). 

2.2.2 Customer Relationship Management (CRM) 

Customer relationship management is the component of Business Intelligence that deals 

with managing all customer interactions. Relationship marketing is the current paradigm 

in marketing that deals with attracting, maintaining and enhancing customer 

relationships. Relationship marketing depends solely on market research, which is 

concerned with the provision of information that can be used to reduce the level of 

uncertainty in decision making (Graham, 2004). 

 

CRM is a strategic management system that manages all interactions and businesses with 

customers. It encompasses the capabilities, methodologies and technologies that are used 

to create and maintain lasting relationships with customers. It includes all the tenets of 

relationship marketing, grounded in customer data, and facilitated by technology (Strauss 

et. al., 2006). A typical CRM system is composed of three components:  Operational 

CRM, Analytical CRM and Collaborative CRM. CRM is important because natural 

23 
 



customers’ loyalty is a thing of the past (Linus, 2006) and companies are seeking to gain 

competitive advantage in today’s stormy economy. Customer relationship management 

includes the following building blocks: CRM Vision, CRM strategy, Customer value 

experiences, Organizational collaboration, CRM process, CRM information, CRM 

Technology and CRM metrics. Customer service permeates every stage of the customer 

acquisition, retention and development practices. Report on one study showing customer 

service channels used by 60 firms revealed that information is stored most times in 

unstructured form (Strauss et. al., 2006). Since the CRM information component is the 

focus of this research project, more emphasis will therefore be placed on it.  Data mining 

has changed the sales target of CRM systems from products to customers. How to 

classify customers? How to find out the common character of customers from database? 

How to dig up the potential customers? How to find out the most valuable customers? 

These kinds of questions become the most popular data mining applications in marketing 

(Xiaoshan, 2006). Current research in CRM includes; CRM portal design, development 

and maintenance, and updating to facilitate decision making (Asoo, 2002).  

The grand knowledge discovery challenges in CRM also include; 

• Non-trivial results almost always need a combination of DM techniques.  

Analyzing CRM data requires exploring the data from different angles and looking at its 

different aspects. This should require application of different types of DM techniques. 

• There is a strong requirement for data integration before data mining.  

Data comes from multiple sources, for example in CRM, data needed may come from 

different departments of an organization. Since many interesting patterns span multiple 

data sources, there is a need to integrate these data before an actual data mining 

exploration can start.  
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• Dealing with diverse data types when they are encountered. There is need for the 

integrated mining of diverse and heterogeneous data.  

• Real-world validation of results is essential for acceptance.  

There is need to treat discovered patterns as hypothesis and test them on new data using 

rigorous statistical tests for the actual acceptance of results in DM applications. This is 

even more so for taking or recommending actions, especially in such high-risk 

applications as in the financial and medical domains.  

• Acquiring data for deeper understanding in a non-intrusive, low-cost, high 

accuracy manner.  

Data collection for CRM is still a problem in many industrial settings. Some methods are 

intrusive and costly. Datasets collected could be very noisy and in different formats and 

reside in different departments of an organization. Solving these pre-requisite problems is 

essential for data mining applications. 

Deeper models of customer behavior:  

In CRM, understanding customers is one of the key issues. Current models of customers 

mainly built based on their purchase patterns and click patterns at web sites. These type 

of models are very shallow and might not have a deep understanding of customers and 

their individual circumstances. Thus, many predictions and actions about customers are 

wrong.  

• Managing the “cold start” problem. 

Little is known at the beginning of the customer life cycle, but the list of customers and 

the amount of information known for each customer increases over time. Most times, a 

minimum amount of information is usually required for achieving acceptable results. 
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There is therefore a lot of challenge associated with being able to deal with cases where 

less than this required minimum is known. 

• Highly and unavoidably noisy data must be dealt with. 

In CRM, weblog data is associated with a lot of “noise”. This noise is due to crawlers and 

missed hits because of the caching problem and so on. 

• Legal considerations influence what data is available for mining and what actions 

are permissible.  

There are some countries where it is not allowed to combine data from different sources 

or to use it for purposes different from those for which they have been collected.  

• Evaluation framework for distinguishing between correct/incorrect customer 

understanding. 

Asides from the difficulty of building customer models, evaluating them is also a major 

task. Satisfactory metric still does not exist to tell whether one model is better than 

another and whether a model really reflects customer behaviors.  There also exist some 

metrics for measuring quality of customer models. Example of such includes metrics for 

measuring the quality of recommendations. These are quite rudimentary, and there is a 

strong need to work on better measures. Specifically, the recommender systems 

community has explored this area (Jaideep, 2010).  

 

Finally, it was revealed in (Kernochan, 2006; Jaideep, 2010), that text integrated with 

business Data (structured) can provide valuable insights for improving the quality of 

business decisions. Also, in CRM systems identifying new customers is a critical task for 

any sales-oriented company. Of particular interest are companies that sell to other 

businesses, for which there is a wealth of structured information available through 
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financial and firmographic databases (Prem, 2007). In this research, (Prem, 2007) 

demonstrated that the content of company web sites can often be a richer source of 

information in identifying particular business alignments. They were able to establish that 

supervised learning can be used to build effective predictive models on unstructured web 

content as well as on structured firmographic data. This led to the establishment of the 

fact that there is a need to explore methods to leverage the strengths of both sources by 

combining these data sources. Apart from specific for-purchase marketing databases, 

there are several sources of data relevant to this task. These include: 

1. Extensive financial information for publicly-traded companies (e.g. Standard and 

Poor’s (http://www.standardandpoors.com)) 

2. Firmographic data (e.g. location, industry, estimated company revenue and number of 

employees) for a large number of companies (e.g. D&B (http://www.dnb.com)) 

3. News feeds (e.g. Reuters (http://www.reuters.com)) 

4. Content extracted from the websites of a universe of potential customers. 

Any of these sources of data can be joined with the seller’s historical transactions as a 

basis for building probability-to-purchase models (e.g. (Rosset & Lawrence, 2006). For 

example, D&B firmographic information can be joined with past transactions to build 

customer targeting models (Lawrence et al., 2007) that estimate purchase probabilities 

based a labeled set of positive examples, i.e. previous purchasers of a specific product.  

This scenario has introduced some very interesting machine learning issues in the 

emerging area of analyzing combined structured and unstructured data. 
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2.2.3 Competitive Intelligence (CI) 

Competitive intelligence (CI) is a specialized branch of Business Intelligence. It is a 

systematic and ethical program for gathering, analyzing and managing external 

information that can affect the organization’s plans, decisions and operations. CRM 

targets markets (customers) while competitive intelligence targets markets (customers) 

through industrial opportunities. Studies also show that CRM value strategies 

(operational excellence, innovation process and customer intimacy) and key dimensions 

of CRM harvesting reflect an overall organizational competitive advantage (Amin, 2008). 

The field of competitive intelligence has grown over the past two decades to become an 

integral part of most large organizations (John, 1999; Kahaner, 1996; McKinnon & 

Burns, 1992; Goshal & Westney, 1991). Global competition, the emphasis on quality 

management, and the realization by managers that actionable intelligence can be a key 

competitive advantage have spurred this growth (Prescott & P. Gibbons, 1993).  

Currently, the stage of development in competitive intelligence can be characterized as 

“Competitive Intelligence for Strategic Decision Making.” The future rests on developing 

CI as a source of competitive advantage and is labeled “Competitive Intelligence as a 

Core Capability.”   

The sources of CI data include: government sources, online databases, interviews or 

surveys, special interest groups (such as academics, trade association and customer 

groups), private sector sources (such as competitors, suppliers, distributors, customers) 

and media (journals, wire services, newspapers, and financial reports). The collected data 

is transformed into intelligence through analysis. Analysis permits the CI professional to 

draw conclusions from information. Those conclusions then need to be interpreted in 

light of the original request leading to the production of implications and 
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recommendations. Unfortunately for many CI professionals, however, proficiency in 

analytical tools is often one of their weakest areas. Action-oriented CI is the result of 

producing implications and recommendations for managers (John, 1999). 

 

The challenge with CI is not lack of information; it is the ability to differentiate useful CI 

from chatter or even misinformation and also maximize the richness of these 

heterogeneous information sources (Ukelson, 2006).  Since one of the problems of 

competitive intelligence is the validity of the data used, data integration is proposed to be 

used to minimize this problem. For example, the source of competitive intelligence 

information is company’s own propaganda, and this public relations activity can add 

texture to back ground statistical information through integrated mining. 

 

Currently, mining from both unstructured data and XML are not naturally handled by the 

current generation of BI and integration tools (Ukelson, 2006). Companies are often 

seeking to associate unstructured content with structured data for example in the area of 

records management whereby invoices, statements and others (operational documents) 

need to be tied to customer data or supplier data. Review of the current problems faced in 

CI includes real time data warehousing, automated anomaly and exception detection, 

automatic learning and refinement and data visualization (Solomon & Paul, 2003) but the 

ability to differentiate useful CI information from chatter is most related to our research 

work. 
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2.3 INTEGRATED DATA MINING  

2.3.1 Integrated Mining Problem Scenario 

According to (Sukumaran & Sureka, 2007), integrated mining will be beneficial to this 

application area as it combines the unique attributes of both structured and unstructured 

data format in order to provide greater efficiency to the organization, especially by 

minimizing the popular practice of handling structured and unstructured as distinct 

information entities which often results in decision management failure.  For example, 

products defects and warranty claims result in heavy costs to manufacturers. They 

suggested that companies can build early warning system that, by processing warranty 

data, helps in the early discovery of products and system failures. These warranty data is 

generated when a claim form is completed by a customer or a technician. This forms 

request for the following; product code, model number, date, time and customer ID. This 

information falls into the category of structured data. Most times, these forms also 

contain comments section where customer or technician can provide detailed information 

about the problem. The unstructured data part is the key to diagnosing and understanding 

the problem. An integrated analysis across the two forms of data (structured and text) 

might provide discoveries such as the trends of problems or faults exhibited by a 

particular model. It is clear that the concept of the model being complained about is not 

derivable from the unstructured data and at the same time, the structured data alone 

cannot tell us about the nature of the fault been diagnosed. 
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2.3.2 Review of Existing Integrated Mining Systems  

Over the years, systems have been developed in order to achieve the purpose of 

integrated mining. A system was developed in (Frieder et. al., 2000) called SIRE 

(Scalable Information Retrieval Engine).  It is a relational information retrieval system 

that uses relations to model an inverted index. It stores full text in a relational 

environment and integrates the search of unstructured data with the traditional structured 

data search of relational database management systems.  The drawbacks of this system 

include: (1) The problem of uncertainty of extracted features still persists due to the fact 

that semantic analysis is not involved in the retrieval process. (2) Mining in SIRE is 

limited to only information retrieval using SQL and not extended to data mining 

algorithms for the purpose of decision support. (3) SIRE is still prone to the generational 

information retrieval problems which includes high error rate, thereby producing 

unreliable reports. 

 

In Roth et. al., (2000), an integrated architecture consisting of three tier was proposed: 

application, integration and foundation tiers. The application tier provides interfaces that 

allow applications to access and manipulate data and services provided by the foundation 

layer and integration tiers.  The integration tier involves text search, combined text and 

parametric search and mining. The foundation tier offers a set of services to store and 

retrieve heterogeneous data.  The limitations of the system include: (1) The mining 

algorithm is limited to the ones built into the foundation tier, which includes feature 

extraction, summarization and classification. Other mining algorithms could be used to 

mine the integrated data. (2) The architecture reveals a level of individual search of 
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structured and unstructured which is a disadvantage to the specific application area of this 

research work. 

 

ESTEST (Experimental Software To Extract Structure from Text), developed in 2004 by 

(Dean  & Alexandra, 2004), is a data integration approach that combines information 

extraction and data integration techniques (various sources) to better exploit text data. 

The data sources are first identified and integrated into a single global schema. This is 

done using AutoMed (http://www.doc.ic.ac.uk/automed; Dean & Alexandra, 2004).  

ESTEST then takes the metadata in the global schema and uses this to suggest input into 

the information extraction process. GATE (Cunningham et. al. 2002; Dean  & Alexandra, 

2004), IE (Information Extraction) architecture is used to build the ESTEST IE processor. 

The templates filled by the IE process will then be used to add to the extent of concept in 

global schema. Extracted annotations which match objects in the global schema will be 

extracted and put in the HDM (low-level graph-based data model) store. The global query 

facilities of AutoMed are now available to the user in order to query the global schema 

(Poulovassailis, 2001; Jasper, 2002; Dean & Alexandra, 2004). The drawbacks include: 

(1) it is not geared specifically to integrate structured and unstructured, but uses the 

combination of different structured sources to maximize extraction from text; (2) it is not 

detailed as regards data mining algorithms that is, the system stops at information 

retrieval. 

 

SQUAD (Storing and Querying Unstructured Data) (Aravindan, 2005) is a unified 

framework for storing and querying unstructured and structured data. It aims at solving 

the problem of storing and querying unstructured and structured in two steps. It 
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introduces a new type of storage device called Intelligent Storage Node (ISN) to store, 

manage and search unstructured data. Using ISNs as a building block, proposed a new 

framework called SQUAD to seamlessly integrate structured and unstructured data. The 

limitations are that it performs exhaustive search which could be long running and I/ O 

intensive and the system stops at querying the database, no data mining algorithm was 

implemented. 

 

The TSIMMIS system provides integrated access to heterogeneous information, stored in 

conventional databases, the Web, and legacy systems.  The focus of this project is on 

semi-structured and/or unstructured information. This is information that may not 

conform to a rigid schema, and is frequently found, for instance, in the World-Wide-

Web, SGML documents, semi-structured repositories. To represent such data, the authors 

use a “schema-less” object-oriented model, called Object Exchange Model (OEM) 

(Papakonstantinou et. al., 1995).  

 

In their approach, Robert (2006) provided a means of browsing an adaptive database 

system with both structured and unstructured data through simplifying data structures and 

using subject carrying indexing information to order the data. The indexing terms or 

metadata are assigned probabilities, costs, and benefits, and a system that adapts its 

internal organization and its output to these user-based probabilities or costs, as well as to 

other metaphors (e.g., information theoretic) for user needs and interests is created. Their 

system integrates the information in a structure that can be optimally ordered for 

browsing, regardless of the type of source and the type of data, e.g., structured, semi-

structured, or unstructured. Facts retrieved and presented are consistent with minimizing 
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the dissimilarity between adjacent facts, as well as the degree to which the facts match 

with the query.  

 

In Prem (2007), the authors show how supervised learning can be used to build effective 

predictive models on unstructured web content as well as on structured firmographic 

data. Text are preprocessed by removing stop words, stemming the words into inflected 

forms (e.g. from the plural form to the singular form and from the past tense to the 

original form), and selecting features using the scores, which is shown to be the best 

feature-selection method in previous empirical studies (Yang & Pedersen, 1997). These 

processes result in a collection with a vocabulary of around 6000 words, which we 

convert into vectors using the bag-of-word representation with TF-IDF term weighting 

(Buckley et. al., 1994). 

 

Sukumaran and Sureka,  proposed an architecture, in 2007, that uses natural language 

processing and machine learning based techniques (text tagging and annotation) as a 

preprocessing step toward integrating structured and unstructured data.  In the case of 

structured data sources, an ETL (Extract, Transform and Load) process executes the 

required formatting, cleansing and modification before moving data from transactional 

systems to the CDW (Combine Data Warehouse).  For the unstructured data sources, the 

tagging and annotation platform extracts information based on domain ontology into an 

XML database. Extraction of data from an XML database into the CDW is accomplished 

with an ETL tool. This then materializes the unified data creation into the CDW. This 

architecture is not reported to have been implemented and the main component of the 

system which converts unstructured to semi structured (XML) is based on natural 
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language techniques and therefore still subject to the generational problems of 

information extraction such as high error rates thereby producing unreliable results.   

 

Several approaches are being investigated to provide better integrated access to both 

unstructured and structured web sources with good scalability. For example, MetaQuerier 

provides unified entity search interfaces over many structured web sources of the hidden 

web (http://www.reuters.com). PayGo aims at providing web scale, domain-spanning 

access to structured sources (Madhavan, 2007). It tries to cluster related schemas together 

and to improve search results by transforming keyword search queries into structured 

queries on relevant sources. One aspect that is missing from such search approaches is 

the post-processing of heterogeneous search results (Erhard et al., 2007).  

Finally, Oracle Database 11g incorporates native RDF (Resource Description 

Framework)/RDFS/OWL (Web Ontology Language) support in its ETL component, this 

makes for semantic data management. Individual application can be mapped to a standard 

information model order to make the meaning of the concepts in different application 

specific data schema explicit and relate them to each other. In order for Oracle 11g to 

handle data integration (that is, from various databases and also combination of 

structured and unstructured) the RDF and OWL models are integrated directly into the 

corporate DBMS, along with existing organizational data, XML and spatial  information, 

and text documents (An Oracle White paper, 2007). Even though Oracle 11g has the 

facility to manage structured and unstructured using ontologies, the responsibility of 

creating ontologies lies on the application developer which makes it not tailored directly 

towards business intelligence. Also, though it handles structured and unstructured it is not 

directly built for storing data towards integrated mining.  
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The following is yet still another approach to integrating structured and unstructured data; 

a Loosely-Coupled Integration of a Text Retrieval System and an Object-Oriented 

Database System; this integration approach performs complex object retrieval using a 

probabilistic inference net model, and an implementation of this approach uses a loose 

coupling of an object oriented database system (IRIS) and a text retrieval system based 

on inference nets (IN QUERY). The resulting system is used to store long, structured 

documents and can retrieve document components (sections, figures, etc.) based on their 

text contents or the contents of related components (Croft et al., 1992).  

 

2.3.3 Current state of Integrated Mining in CRM. 

In the business decision support system, the CRM component to be specific, there are few 

integrated mining attempts. (Kernochan, 2006), was able to analyze both text and data 

using a particular approach based on an OLAP (on-line analytical processing) model 

enhanced with text analysis. They describe two tools that we have been developed to 

explore this approach—eClassifier performs text analysis, and Sapient integrates data and 

text through an OLAP-style interaction model. In this approach, work is still ongoing in 

the aspect of integrating text information into this OLAP system. Also another area of 

inadequacy in the system is that it promises to integrate (not yet integrated) ontologies 

into the taxonomy generation and dimension publishing portions of the  BIKM (Business 

Intelligence and Knowledge Mining) Architecture. It is intended that these ontologies 

will provide a level of semantics that is not currently addressed, allowing improved 

taxonomies and reasoning about the data and text.  
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The SAS Text miner uses an integrated interface for analyzing text (unstructured data) in 

conjunction with multiple related database (structured) fields but it relies primarily upon 

pattern recognition technology instead of a linguistics-centric or dictionary-based 

approach (Arnold, 2010).  

 

Finally, in (Zhu et. al, 2005) a system was proposed to query and analyze seamlessly 

across structured and unstructured data. It proposes an information system in which text 

analytics bridges the structured–unstructured divide. Annotations extracted by text 

analytic engines (TAE), with associated uncertainty, are automatically loaded into a 

structured data store. The interface is capable of supporting rich queries over this hybrid 

data. Uncertainty associated with the extracted information is addressed by building 

statistical models. It also shows that different classes of statistical models can be built to 

address issues such as ranking and OLAP style reporting. There is a prototype system 

called AVATAR that utilizes an existing commercial relational DBMS system as the 

underlying storage engine. The major limitation of this approach is data uncertainty.  This 

is due to the fact that the particular algorithm underlying a TAE is limited in its 

understanding of text. 

. 

The above review of integrated mining systems reveals that the major area of 

contribution in such a system is in preprocessing of unstructured data. The result of the 

review is in agreement to the current problem in business decision support system which 

has to do with the fact that existing system have problem differentiating useful 

information from chatter. This further lead to reviewing existing and state of the heart  

preprocessing of unstructured data for mining. 
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2.4 UNSTRUCTURED DATA MINING (TEXT MINING) 

Traditional data mining algorithms are generally applied on structured databases, but text 

mining algorithms try to discover knowledge from unstructured textual data (Basu, 

2001). “Text mining” is used to describe the application of data mining techniques to 

automated discovery of useful or interesting knowledge from unstructured text (Han, 

2000). Text mining is relatively a new research area at the intersection of natural 

language processing, machine learning and information retrieval. Several techniques have 

been proposed for text mining including conceptual structure, association rule mining, 

episode rule mining, decision trees, and rule induction methods. In addition, Information 

Retrieval (IR) techniques have widely used the “bag-of-words” model (Baeza-Yates, 

1999; Raymond & Un Yong, 2005) for tasks such as document matching, ranking, and 

clustering. In order to reduce the work in handling huge amounts of textual data, various 

technologies have been developed.  Information retrieval technology is probably the most 

common technology to use when we are faced with a very large number of documents. 

The term “text mining” (or “text data mining”) is sometimes used to indicate this 

technology because it detects and extracts documents that we want from mountains of 

documents, and it allows us to select data related to some specific topics that we are 

interested in so that the amount of data we have to handle is reduced without losing the 

information we want. 

Generally, a text mining framework consists of the following components;  

1. Concept extraction based on robust natural language processing 

2. Data mining for discovering rules and patterns 

3. Visualization and interactive analysis 
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Concept extraction for text mining; the term “concept” is a representation of the textual 

content in order to distinguish it from a simple keyword with the surface expression. 

There are certain issues in representing textual content. The first problem is because of 

the ambiguities in natural language, the same keyword may express entirely different 

meanings. For example, the word “Washington” may represent a person, place, or 

something else. The meaning of such polysemous words is normally determined 

according to their context. The inverse problem is that different expressions may refer to 

the same meaning, for instance, “car” and “automobile” or “H/W” and “hardware.” Even 

when the meaning may not be exactly the same, it may be necessary to treat these 

expressions as denoting the same meaning for text mining, especially when some of the 

synonyms are used infrequently, in order to avoid data sparseness, since a small number 

of appearances compared to others tend to be ignored in the final output. 

Disco-TEX(Discovery from Text EXtraction)  is an example of a text mining application 

that discovers prediction rules from natural language corpora using a combination of 

principles of information extraction and data mining.   DiscoTEX (Taffet1, 2001; Joakim, 

2000) in (Raymond & Un Yong, 2005) uses Information Extraction to obtain structured 

data from unstructured text and then use traditional KDD (Knowledge Discovery in Data 

Mining) tools to discover knowledge from this extracted data. It was applied to mine job 

postings and resumes posted to USENET newsgroups as well as Amazon book-

description pages  from the web. In DiscoTEX, IE plays the important role of 

preprocessing a corpus of text documents into a structured database suitable for mining. 

DiscoTEX uses two learning systems to build extractors, Rapier (Levy, 1996) in 

(Raymond & Un Yong, 2005) and BWI (Feldman & Dagan, 1995) in (Raymond & Un 

Yong, 2005). By training on a corpus of documents annotated with their filled templates, 
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these systems acquire pattern-matching rules that can be used to extract data from novel 

documents. Following the construction of an IE system that extracts the desired set of 

slots for a given application, a database is then constructed from a corpus of texts. This is 

done by applying the extractor to each document to create a collection of structured 

records. Standard KDD techniques is then  applied to the resulting database to discover 

interesting relationships. DiscoTEX is used to induce rules for predicting each piece of 

information in each database field using all other information in a record. Prediction rules 

are discovered by treating each slot-value pair in the extracted database as a distinct 

binary feature, and learn rules for predicting each feature from all other features 

(Raymond & Un Yong, 2005). 

TAKMI (Text Analysis and Knowledge MIning) is another text mining system that has 

been developed to acquire useful knowledge from large amounts of textual data such as 

internal reports, various technical documents, messages from various individuals, and so 

on (Nasukawa & Nagano, 2001) TAKMI analysis a large set of documents as a whole 

rather than focus on the specific information in each document. The most important issue 

for this text mining technology is how to represent the contents of textual data in order to 

apply statistical analysis. After the statistical analysis, it applies appropriate mining 

functions adapted to the representations of the original content of the text. Finally, since 

the content of the text varies greatly, it is essential to visualize the results and allow an 

interactive analysis to meet the requirements of analysts working from multiple points of 

view. The system was applied on some specific topics that were of interest. This 

technology is limited when we do not have a clear intention about what to search for and 

knowledge of what can be retrieved from the database we are searching. Moreover, even 

when we have some specific topics to search for and successfully make some queries, the 
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output we obtain is a list of documents that we still have to read to find the information, 

unless we are simply interested in such data as the number of documents that contain 

specific keywords or character strings (Nasukawa & Nagano, 2001). 

 

In the proposed integrated mining system which is an improvement on the Sukumaran 

integration architecture above, the processes of mining from an intermediate data 

(combination of structured and unstructured in an XML data format) is reduced to text 

mining and the algorithm used for the mining is association rule mining algorithm. In the 

following section, we therefore intend to review the state-of-the-art as regards text mining 

using association rule mining algorithm. 

Text mining systems consists basically of two major phases, the text preprocessing phase 

and the knowledge mining phase.  

 

2.4.1 Preprocessing of unstructured data 

This phase is aimed at optimizing the performance of the knowledge mining phase.  

There are many approaches to text preprocessing, one of which is mainly information 

retrieval. Information retrieval (IR) is the science of searching for information in 

documents, searching for documents themselves, searching for metadata that describe 

documents, or searching within databases, whether relational standalone databases or 

hypertext networked databases such as the Internet or intranets, for text, sound, images or 

data. Information Retrieval (IR) deals with the representation, storage, organization of 

and access to information items. The models for text retrieval can be primarily divided 

into two categories: keyword oriented and matrix oriented (Jessup, 2001). Keyword 
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based models uses certain data structures and searching algorithms. Matrix oriented 

models changes the keyword representation of documents into a matrix format. Vector 

Space Model (VSM) is a conventional IR model, which represents a document collection 

by a term-document Matrix ( Aswani & Srinivas,  2009). 

Information extraction (IE) is a type of information retrieval whose goal is to 

automatically extract structured or semi structured information from unstructured 

machine-readable documents. A typical example is the extraction of information on 

corporate merger events, whereby instances of the relation ”MERGE (company1, 

company2, date)” are extracted from online news (“Yesterday, New-York based Foo Inc. 

announced their acquisition of Bar Corp.”). 

The task of information extraction is therefore reduced to natural language processing, 

which can be defined as “the design and implementation of effective natural language 

input and output components for computational systems” (Joakim, 2000). The most 

important problems in Natural Language Processing is in relation to natural language 

input and output. The following are the few typical and uncontroversial examples of such 

problems: 

• Part-of-speech tagging: Annotating natural language sentences or texts with parts-

of-speech. 

• _Machine translation: Translating sentences or texts in a source language to 

sentences or texts in a target language. 

• Natural language generation: Producing natural language sentences or texts from 

nonlinguistic representations. 

Fundamentally, the steps involved in information extraction include the following 

(Taffet1, 2001): 
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• Cleaning: removes unwanted control characters, etc. 

• Tokenization: adds spaces to separate text at boundary points between words and 

surrounding punctuation, or between different punctuation marks.  

• End-of-sentence detection: identifies and marks sentence boundaries. 

• Part-of-speech tagging: adds a tag indicating the part of speech for each token. 

• Phrase detection: identifies and marks units that consist of multiple words - 

typically they are noun phrases of some type. 

• Entity detection: identifies and marks entities, which usually consist of person 

names, place names, organization or company names and other proper nouns 

• Categorization: identifies and marks what category something belongs to; typically 

categorization is used primarily for named entities (i.e. proper nouns) 

• Event detection: identifies and marks events, which generally correspond to verbs. 

• Relation detection: identifies and marks relations, which are connections between 

two or more entities or between entities and events. 

• XML or SGML: applies the designated tagging scheme used to markup the 

document for tagging sentences, phrases, entities, categories, events, relations, etc. 

• Extraction: the identified entities, events, relations, and any other identified 

concepts (such as dates) are extracted from the document and stored externally. 

Literature has revealed that natural language processing systems employ statistical models 

and methods for processing (Joakim, 2000). Most examples of statistical application 

methods in the literature are methods that make use of a stochastic model, but where the 

algorithm applied to this model is entirely deterministic. Typically, the abstract model 

problem computed by the algorithm is an optimization problem which consists in 
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maximizing the probability of the output given the input. The following are some of the 

examples; 

• Language modeling for automatic speech recognition using smoothed n-grams to 

find the most probable string of words out of a set of candidate strings compatible 

with the acoustic data (Jelinek, 1976; Bahl, 1983). 

• Part-of-speech tagging using hidden Markov models to find the most probable tag 

sequence given a word sequence (Church, 1998; Cutting, 1992; Merialdo, 1994). 

• Syntactic parsing using probabilistic grammars to find the most probable parse 

tree given a word sequence w1; : : : ;wn (or tag sequence t1; : : : ; tn) (Black, 1992, 

Stolcke, 1995; Charniak, 1997). 

• Word sense disambiguation using Bayesian classifiers to find the most probable 

sense for word w in context c (Gale, 1992; Yarowsky, 1992). 

•  Machine translation using probabilistic models to find the most probable target 

language sentence t for a given source language sentence s (Brown, 1990; Brown, 

1993).   

 

TF*IDF (term frequency and inverse document frequency) is a commonly used 

weighting technique (a statistical technique) for information retrieval (Evans & Zhai, 

1996). The weighing scheme is applied after POS tagging is used to attach a syntactic tag 

on a word, vector representation is done by selecting only words that are labeled with a 

noun tag, adjective tag or verb tag as features and finally, the words are stemmed. 

 Let wi,d be a weight associated with a term ti in a document page d. Then, the document 

vector d  is defined as d = {w1,d, w2,d, …,wt,d}. Moreover, the weight of each attribute 

(vector) can be assigned either a boolean value or a tf-idf (term frequency-inverse 
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document frequency) value. Here, the tf-idf weight is a statistical measure used to 

evaluate how important a word is to a document in a collection; hence the learning 

algorithm could distinguish this relatively accurately. The tf-idf function assumes that 

the more frequently term ti occurs in documents dj, the more important it is for dj, and 

furthermore the more documents dj that term ti occurs in, the smaller its contribution is 

in characterizing the semantics of a document in which it occurs. Weights computed by 

tf-idf techniques are often normalized so as to contrast the tendency of tf-idf to 

emphasize long documents. The type of tf-idf that will provide the normalized weights 

for data representation considered in our term classification is 
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In (Theobald & Weikum, 2002; Al-Khalifa & Jagadish, 2003; Fuhr & Grobjohann, 

2001), information retrieval related features such as ranking and relevance-oriented 

search has been proposed to be integrated with XML query languages.  

Currently, research is gradually moving from the statistical approach to natural language 

processing to semantic analysis (Evans & Zhai, 1996). 

 

2.4.1.1 Text preprocessing with Information Extraction 

Over the past two decades, significant efforts have focused on the problem of extracting 

structured information (e.g., researchers, publications, co-author and advising 

relationships, etc.) from such data. The information extracted is then exploited in search, 

browsing, querying, and mining. Recently, the explosion of unstructured data on the 

World Wide Web has generated significant further interests in the above extraction 

problem. This interest is the central research goal in the database, AI, data mining, IR, 

NLP, and Web communities’ extraction (AnHai et. al., 2006).  

According to (Andrew & David, 2003), finite state machines are the dominant model for 

information extraction both in industry and research.  Hidden Markov models, which is a 

finite state machine whose parameters are set by machine learning, have parameters for 

state-to-state transition probabilities and per-state observation emission probabilities. 

This makes it easy to calculate the probability that the model would have generated a 

particular state sequence associated with a particular observation symbol sequence. When 

used for extraction, the emission symbols are with different extraction fields. Hidden 

Markov model for example, have two states, to extract person names, one for person-

names, and one for other. The Viterbi algorithm is used to perform extraction on a 

particular word sequence, to find the state sequence most likely to have generated the 
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observed word sequence, and then designates as person names any words Viterbi that 

claims were generated while in the person-name state. 

According to Andrew & David (2003), the disadvantage of hidden Markov models is 

that, being generative models of the observation sequence, they are limited in their ability 

to represent many non-independent, overlapping features of the sequence. Consequently, 

since the observations are generated by the model, the model must represent any 

correlations between features in order to faithfully reproduce them. If there are many 

correlated features, or complex dependencies among them, this modeling is prohibitively 

difficult, and in many cases impossible. 

As a result of the above described disadvantage, Andrew & David (2003),   proposed the 

use of unified, relational, undirected graphical models for information extraction and data 

mining, such that extraction decisions and data-mining decisions are made in the same 

probabilistic “currency,” with a common inference procedure where each component is 

able to make up for the weaknesses of the other and therefore improving the performance 

of both. An example is that data mining run on a partially filled database can find patterns 

that provide “topdown” accuracy-improving constraints to information extraction. 

Information extraction can therefore provide a much richer set of “bottom-up” 

hypotheses to data mining if the mining is set up to handle additional uncertainty 

information from extraction. 

 

Marios et. al., (2003) also proposed an approach that is based on using hierarchical 

hidden Markov models to represent the grammatical structure of the sentences being 

processed. Their approach uses a shallow parser to construct a multi-level representation 

of each sentence being processed. After which they trained hierarchical HMMs to capture 
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the regularities of the parses for both positive and negative sentences. They evaluated 

their method by inducing models to extract binary relations in three biomedical domains. 

 

In their work, Ganesh et. al, (2006) approached information extraction using Inductive 

Logic Programming (ILP). Specifically, they demonstrated the use of ILP to define 

features for seven IE tasks using two disparate sources of information. Their findings 

reveal that the ILP system is able to identify efficiently large numbers of good features. 

Typically, the time taken to identify the features is comparable to the time taken to 

construct the predictive model. They also discovered that SVM (Support Vector 

Machines) models constructed with these ILP-features are better than the best reported to 

date that rely heavily on hand-crafted features. For the ILP practitioner, they also present 

evidence supporting the claim that, for IE tasks, using an ILP system to assist in 

constructing an extensional representation of text data (in the form of features and their 

values) is better than using it to construct intentional models for the tasks (in the form of 

rules for information extraction). This explanation is captured in Figure 2.4 below. 
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Figure 2.4  A simplified view of a role for ILP in information extraction (Ganesh et. 

al, 2006).  

One type of IE, named entity recognition, involves identifying references to particular 

kinds of objects such as names of people, companies, and locations (Bikel & Weischede, 

1999).  In addition to recognizing entities, an important problem is extracting specific 

types of relations between entities. For example, in newspaper text, one can identify that 

an organization is located in a particular city or that a person is affiliated with a specific 

organization (Zelenko et. al., 2003).  IE can also be used to extract fillers for a 

predetermined set of slots (roles) in a particular template (frame) relevant to the domain. 

In their work, (Raymond & Razvan, 2005) considered the task of extracting a database 

from postings to the USENET newsgroup, Austin jobs. Another application of IE is 

extracting structured data from unstructured or semi-structured web pages. When applied 
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to semi-structured HTML, typically generated from an underlying database by a program 

on a web server, an IE system is typically called a wrapper (Kushmerick et al., 1997) and 

the process is sometimes referred to as screen scraping. A typical application is extracting 

data on commercial items from web stores for a comparison shopping agent (shopbot) 

(Doorenbos et al., 1997) such as MySimon (www.mysimon.com) or Froogle 

(froogle.google.com). 

 

Text mining concerns looking for patterns in unstructured text, it is capitalizes on 

locating specific items in natural-language documents (which can be termed Information 

Extraction (IE)). A framework for text mining by (Raymond & Un Yong, 2005) called 

DISCOTEX, uses a learned information extraction system to transform text into more 

structured data which is then mined for interesting relationships. It integrates an IE 

module acquired by an IE learning system, and a standard rule induction module. Also 

added is the rules mined from a database extracted from a corpus of texts, used to predict 

additional information to extract from future documents, thereby improving the recall of 

the underlying extraction system. Figure 2.5 is the general overview of an Information 

Extraction based Text mining framework. 
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Figure 2.5: Overview of IE-based text mining framework  (Raymond & Un Yong, 2005). 

 

Furthermore, the following is a list of projects that addresses information extraction 

(AnHai et. al., 2006):  

• Entity matching and approximate joins at AT&T Research, MSR and Stanford. 

• Answering structured queries over text at Columbia and UCLA. 

• Personal information management and intelligent email (PIM) at CMU, 

Massachusetts, MIT and Washington. 

• Querying and Extracting semantic entities/relations at IIT Bombay, CMU, MSR 

and Washington. 

• Data cleaning at MSR. 

• Doing OLAP-style analysis using extracted information at IBM Almaden and 

Wisconsin. 

• Standardization efforts at IBM Watson on interfaces for NLP extraction tools. 

• Managing unstructured data in bioinformatics at Illinois and Michigan. 

• Web-based community information management (CIM) at Illinois and Wisconsin. 
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2.4.1.2 Using ontology for semantic information extraction/ text preprocessing 

Ontology is a branch of philosophy that attempts to model things as they exist in the 

world (Shanmugasundaram et al., 1999). It is particularly appropriate for modeling 

objects including their relationships and properties (EXCELON CORP, 2002). A domain 

ontology is a vocabulary of concepts and their relationships for that given domain, which 

defines the domain semantics (Viral, 2004). Other benefits that could be derived from the 

use of ontologies apart from knowledge sharing are reusability of domain knowledge and 

separation of domain knowledge from operational knowledge (Noy, 200). Ontologies are 

viewed as the most advanced knowledge representation model. 

Efficiency gains in information extraction are realized by formalizing concepts and the 

relations of these concepts which are to be searched in documents. This formalization can 

be done through specification of a taxonomy of concepts, or more generally an ontology. 

Different domains require different categories of terms, phrases, and concepts (Goffman, 

1992). Formalizing the coding schemes and organizing the knowledge extracted can be 

aided by the development of ontology for specifying and relating document 

characteristics and concepts of interest. Therefore, integration of an ontological backbone 

into information extraction tool will result in better coding consistency. This is because 

the target categories will be clearly defined and the ontology will be able to establish a 

common controlled vocabulary for concepts (Karin, 2004). 

After clarifying the usage of the term ontology, a variety of methods have been used to 

extract information from text using ontologies (Sánchez & Moreno, 2005; Leveling & 

Hartrumpf, 2005). Taxonomies that are built automatically from web data are used by 
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Sánchez and Moreno in (Sánchez & Moreno, 2005) to group query results returned by a 

search engine. In this case, the user’s behavior of accepting or rejecting the interface is 

the instance of judgment. Improving question answering by overcoming the shortfalls of 

the bag-of-words model is the objective of Leveling and Hartrumpf in (Leveling & 

Hartrumpf, 2005). Here, a semantic lexicon forms the background knowledge for 

semantic parsing, which yields a semantic representation much more precise than simply 

considering presence or absence of terms. Despite the immense efficiency introduced in 

information extraction by using domain specific ontologies, there is a need to promote 

ontologies with high coverage as applications are usually tested in a generic rather than in 

a domain-specific setting. Research reveals that  using a semantic resources such as 

WordNet (Nasukawa T. & Nagano,  2001) as  additional features, could bring about more 

gain though small in magnitude due to lack of subject coverage. 

Also of not is that, the enormous amount of information existing in natural language form 

can be automatically processed and analyzed, if it is first be distilled into a more structured 

form, from which individual facts are accessed. Information extraction and wrapping 

technologies therefore offer the potential for selective information structuring: 

extracting selected data from documents and structuring such data in order to make it 

processable in enterprise applications. There exist recently, a variety of information 

extraction and wrapping applications for which XML is the preferred output format. 

(Andrea & Sergio, 2010). 

Recently, there exist several approaches to XML data storage and management which fall 

into four main categories: flat files (Sahugue, 2000), relational database systems 

(Deutsch et al., 1999; Shanmugasundaram et al., 1999), object oriented database systems 

(EXCELON CORP, 2002; Lahiri, 1999; Runapongsa & Patel; 2002) and native XML 
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repositories (Jagadish et al. 2002; Fiebig, 2002). Also, ACM Transactions on Information 

Systems (TOIS) recently devoted a special issue to advances in XML retrieval (Baeza-

Yates & Ribeiro-Neto, 1999). The presence of structure and content information in XML 

data enables us to devise various scenarios of data management and knowledge discovery 

for which it might be advisable to consider structure features alone, or content features 

alone, or even features of both kind. Early approaches to structural similarity detection are 

based on tree edit distances, which allow for computing a minimum cost sequence of 

edit operations to align a pattern document to a target document. In (Nierman & 

Jagadish, 2002) an XML-aware edit distance is exploited in a standard hierarchical 

clustering algorithm to evaluate how closely clustered documents correspond to their 

respective DTDs. In general, computing tree edit distances turns out to be unpractical, as 

it requires a quadratic number of comparisons between document elements. To address 

this issue, the level similarity measure is introduced in (Nayak. & Xu, 2006), to compute 

the structural match between elements according to the level of information of each 

object. Elements in different level positions are differently weighted, whereas 

hierarchical relationships are taken into account by counting occurrences of common 

elements sharing common ancestors. A different approach  to similarity detection is 

proposed in (Flesca et al., 2003), where the structure of an XML document is represented 

as a time series in which each occurrence of a tag corresponds to an impulse, and the 

degree of similarity between documents is computed by analyzing the frequencies of the 

corresponding Fourier transforms.  Mining XML data from a structure/content combination 

point of view has attracted significant attention in the last few years. The XML document 

mining track at INEX has been proposed as a major contest for researchers since 2005, with 

a special focus on clustering and categorization (Denoyer, L. and Gallinari, 2007). Early 

54 
 



attempts in XML document clustering by structure and content are given in (Guillaume & 

Murtagh, 2000);  In (Guillaume & Murtagh, 2000), clustering of data-centric XML 

documents is seen as a partitioning problem based on a weighted graph-based 

representation, in which nodes are documents, edges are links between documents, and 

edge weights are computed by considering keywords in the documents. An alternative 

representation of XML data, called BitCube, is presented in (Yoon, 2001) as a 3-

dimensional bitmap index of triplet document, XML-element path, word. BitCube indexes 

can be manipulated to partition a document set into clusters, by exploiting bit-wise distance 

and popularity measures. However, the approach suffers from the typical disadvantages of 

Boolean representation models, such as the lack of partial matching criteria and natural 

measures of document ranking.  Vector-space models have been increasingly used to 

represent XML data, especially text-centric XML documents (Andrea & Sergio, 2010).  It 

should be noted that none of these approaches take semantic aspects into account in 

handling information available from XML structure and content.  To date, no approach is 

effective for the unsupervised semantic organization of XML data. In this respect, our work 

differs from existing ones in that it originally addresses the XML document clustering 

problem from the more complex perspective of semantic relatedness. Moreover, our 

approach uses a tree-tuple based decomposition of the documents that is particularly 

suitable to represent semantically cohesive portions of the individual documents. 

2.4.2 Knowledge Mining  

2.4.2.1 Association Rule Mining 

The formal statement of the association rule problem is stated below: (Agrawal et. al., 

1993), (Cheung et. al., 1996) and (Margaret et. al., 1999): 
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Definition 1: Let I ={I1, I2, … , Im} be a set of m distinct attributes, also called literals. 

Let D be a database, where each record (tuple) T has a unique identifier, and contains a 

set of items such that T⊆I . An association rule is an implication of the form X⇒Y, 

where X, Y⊂ Ι, are sets of items called itemsets, and X∩Y= φ. Here, X is called 

antecedent, and Y consequent. 

The two important measures for association rules, support (s) and confidence (c), can be 

defined as follows: 

Definition 2: The support (s) of an association rule is the ratio (in percent) of the records 

that contain X ∪Y to the total number of records in the database. 

Definition 3: For a given number of records, confidence (c) is the ratio (in percent) of the 

number of records that contain X∪Y to the number of records that contain X. Mining of 

association rules from a database consists of finding all rules that meet the user-specified 

threshold support and confidence.  

 

Apriori 

(Agrawal & Srikant, 1994) developed the Apriori algorithm.  It is a great achievement in 

the history of mining association rules according to (Cheung et. al., 1996). It is by far the 

most well-known association rule algorithm. Apriori technique uses the property that any 

subset of a large itemset must be a large itemset. Also, it is assumed that items within an 

itemset are kept in lexicographic order.  These common itemsets are extended with other 

individual items in the transaction to generate candidate itemsets. However, those 

individual items may not be large. A superset of one large itemset and a small itemset 

will result in a small itemset, these techniques generate too many candidate itemsets 

which turn out to be small. The Apriori algorithm therefore addresses the issue just 
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mentioned. The Apriori generates the candidate itemsets by joining the large itemsets of 

the previous pass and deleting those subsets which are small in the previous pass without 

considering the transactions in the database. By only considering large itemsets of the 

previous pass, the number of candidate large itemsets is significantly reduced. 

In the first pass, the itemsets with only one item are counted. The discovered large 

itemsets of the first pass are used to generate the candidate sets of the second pass using 

the apriori_gen() function. Once the candidate itemsets are found, their supports are 

counted to discover the large itemsets of size two by scanning the database. In the third 

pass, the large itemsets of the second pass are considered as the candidate sets to discover 

large itemsets of this pass. This iterative process terminates when no new large itemsets 

are found. Each pass i of the algorithm scans the database once and determines large 

itemsets of size i. Li denotes large itemsets of size i, while Ci is candidates of size i. 

 

The apriori_gen() function as described in (Agrawal & Srikant, 1994) in (Margaret et. al., 

1999) has two steps: 

Step 1: Lk-1 is joined with itself to obtain Ck.  

Step 2: apriori_gen() deletes all itemsets from the join result, which have some (k-1)–

subset that is not in Lk-1. Then, it returns the remaining large k-itemsets. 

 

 

 

 

 

 

57 
 



 

Input: set of all large (k-1)-itemsets Lk-1 

Output: A superset of the set of all large k-itemsets 

//Join step 

Ii = Items i 

insert into Ck 

Select p.I1, p.I2, ……. , p.Ik-1, q .Ik-1 

From Lk-1 is p, Lk-1 is q 

Where p.I1 = q.I1 and …… and p.Ik-2 = q.I k-2 and p.Ik-1 < q.Ik-1. 

//pruning step 

forall itemsets c ϵ Ck do 

forall (k-1)-subsets s of c do 

If (s ∉ Lk-1) then 

delete c from Ck 

Method: apriori_gen()  (Agrawal & Srikant, 1994)  

 

 

 

 

 

 

 

 

 

 

Figure 2.6 appriori_gen() (Margaret et. al., 1999) 

 

In Table  2.1, large itemsets after the third pass are shown in the first column. Suppose a 

transaction contains {Plantain, Bagel, Chicken, Eggs, Fanta}. After joining L3 with itself, 

C4 will be {{ Plantain, Bagel, Chicken, Fanta }, { Plantain, Chicken, Fanta, Eggs}. The 

prune step deletes the itemset { Plantain, Chicken, Fanta, Eggs} because its subset with 3 

items { Plantain, Fanta, Eggs} is not in L3. 
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Table 2.1 Appriori Example 

Large Itemsets in the third 

pass (L3) 

Join (L3, L3) Candidate sets of the 

fourth pass (C4 after 

pruning) 

{{ Plantain , Bagel, Chicken}, 

{ Plantain , Bagel,  Fanta }, 

{ Plantain , Chicken,  Fanta }, 

{ Plantain , Chicken, Eggs}, 

{Bagel, Chicken,  Fanta }} 

{{ Plantain , Bagel, 

Chicken,  Fanta }, 

{ Plantain , 

Chicken, 

Fanta , Eggs}} 

{{ Plantain , Bagel, 

Chicken, 

Fanta }} 

 

Table 2.2  Transaction Table 

Transaction ID Items 

T1 Bread,Butter,Eggs 

T2 Butter, Eggs, Milk 

T3 Butter 

T4 Bread,Butter 
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 end 

end 

x.count++; 

if x ϵ C then 

forall subsets x ⊆  T do 

for each transaction T ϵ D=∪Di do begin 

begin 

Function count(C: a set of itemsets, D: database) 

Figure 2.7  function count () (Margaret et. al., 1999) 

 

 

 

 

 

 

 

 

 

 

 

 

//procedure LargeItemsets 

1) C 1: = I;  //Candidate 1-itemsets 

2) Generate L1 by traversing database and counting each occurrence of an attribute in a 

transaction; 

3) for (k = 2; Lk-1; k++) do begin 

//Candidate Itemset generation 

//New k-candidate itemsets are generated from (k-1)-large itemsets 

4) Ck = apriori-gen(Lk-1); 

//Counting support of Ck 

5)  Count (Ck, D) 

6)  Lk = {c ϵ Ck | c.count ε minsup} 

7) end 

9) L:= ∪kLk 

//Apriori Algorithm proposed by Agrawal R., Srikant, R. (Agrawal & Srikant, 1994) in ( 

Margaret et. al., 1999 

Apriori (Agrawal & Srikant, 1994) 

Input: 

I, D, s 

Output: 

L 

Algorithm: 

Figure 2.8 Apriori Algorithm (Margaret et. al., 1999) 
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The illustration of how the Apriori algorithm works on the following example is shown in 

Figure 2.9; 

Consider a small database with four items I={Bread, Butter, Eggs, Milk} and  four 

Transactions as shown in Table 2.2. Suppose that the minimum support and minimum 

confidence of an association rule are 40% and 60%, respectively. There are several 

potential association rules. At first, we have to find out whether all sets of items are 

large. Secondly, we have to verify whether a rule has a confidence of at least 60%. If the 

above conditions are satisfied for a rule, we can say that there is enough evidence to 

conclude that the rule holds with a confidence of 60%. Itemsets associated with the 

aforementioned rules are: {Bread, Butter}, and {Butter, Eggs}. The support of each 

individual itemset is at least 40%.  Therefore, all of these itemsets are large. It is evident 

that the first rule (Bread ⇒ Butter) holds. However, the second rule (Butter ⇒ Eggs) 

does not hold because its confidence is less than 60%. 

 

Initially, each item of the itemset is considered as a 1-item candidate itemset. Therefore, 

C1 has four 1-item candidate sets which are {Bread}, {Butter}, {Eggs}, and {Milk}. L1 

consists of those 1-itemsets from C1 with support greater than or equal to 0.4. C2 is 

formed by joining L1 with itself, and deleting any itemsets which have subsets not in L1. 

This way, we obtain C2 as {{Bread Butter}, {Bread Eggs}, {Butter Eggs}}. Counting 

support of C2, L2 is found to be {{Bread Butter}, {Butter Eggs}}. 

Using apriori_gen(), we do not get any candidate itemsets for the third round. This is 

because the conditions for joining L2 with itself are not satisfied. 
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Figure 2.9 Discovering Large Itemsets using the Apriori Algorithm (Margaret et. al., 

1999) 

2.4.2.2. Knowledge Mining from XML data 

Organizations are increasingly employing machines capable of generating semi-

structured (XML-like) text data (for example, projections by IBM in that corporation’s 

Global Technology Outlook for 2003 suggests that by 2010, nearly 75% of the data 

stored in an organization may be of this type). This trend has led to a substantial 

industrial need to develop automated methods for extracting information of potential 

commercial interest from such data (Ganesh et. al, 2006). 

 

Since XML allows the definition of semantic markup that is, customized tags describing the 

data enclosed by them. The increase in volume and heterogeneity of XML-based 

application scenarios has made data sources exhibit both different structures and contents 
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and different ways to semantically annotate the data. As a result of this, differently 

annotated XML documents may refer to similar concepts, thereby being semantically 

related to a certain degree.  Dealing with XML documents can be simplified if they are 

explicitly associated with a schema. This schema can be used to specify the content models 

of document elements and their relationships. For example, XML documents having 

different element values but similar schemas could be put together in the same structural 

class. Since most real world XML sources do not provide schema, exploiting schemas for 

organizing XML data may not be always feasible in practice.  Organizing XML data 

from a large collection is central in the context of XML data management and 

knowledge discovery. Most research on XML clustering centers around the ever increasing 

interest for developing solutions to the document clustering problem, which has been 

studied intensively because of its wide applicability. There exists a difficulty of devising 

suitable notions of semantic features and semantic relatedness among XML documents. 

This difficulty is caused by  the weak  support offered by traditional models for representing 

and understanding XML documents. Structural models of XML documents are based on 

tree or graph paradigms, whereas content models usually refer to the vector-space model. 

Another issue is related to the generation of XML features which are able not only to 

bundle structure and content information together, but also to handle the semantics of 

structure and content (Andrea & Sergio, 2010).  

Currently, knowledge has been mined from XML data using different data mining 

techniques, such as   SOM (Self Organized Map) and k-means clustering. Of note is the 

XK-means (k-means algorithm adapted for xml data) algorithm which is developed in two 

main phases. In the  first phase, it works as k -Means to compute k + 1 clusters: starts 

choosing k objects as the initial cluster centroids, then iteratively reassigns each remaining  
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object to the closest cluster and recomputes the centroid of clusters, until all  the cluster 

centroids do not change. The (k + 1)-th cluster, the trash cluster, is created to contain 

unclustered object i.e. objects not assigned to any of the early k clusters. The second phase 

recursively splits the trash cluster into a small number of clusters (Andrea & Sergio, 

2010).  In this project, association rule mining technique is used for knowledge discovery.  

According to (Feldman & Dagan, 1995) and (Feldman & Hirsh, 1996), association rules 

have been mined from manually assigned keywords. This method has the following 

disadvantages: it is time consuming, subjected to discrepancy and the textual sources are 

constrained to those that have the keywords predetermined. In (Rajman & Besancon, 

1997), two examples of text mining task were presented, association extraction and 

prototypical document extraction, along with several related NLP techniques. In the case 

of association extraction task, association rules were extracted from a collection of 

indexed documents. In their work on mining association rule form biomedical text, they 

performed entity extraction using BioTeKS which aims at both identifying the location of 

an entity in a text and categorize it according to the standard MeSH (Medical Subject 

Headings) taxonomy (Berardi et. al., 2005). This makes the application restricted to only 

the medical domain. In their work on the survey of basic concepts in the area of text data 

mining and some of the methods used in order to elicit useful knowledge from collections 

of textual data, the authors suggested that there has been some minor attempts to use 

(partially or fully) structured textual documents such as HTML or XML documents in 

order to develop text mining systems (Jan P. & Peter, 1999). There have also been some 

approaches to text mining with information extraction as the text preprocessing phase. 

This approaches inherits the generational problems of information extraction systems 

which includes uncertainty of extracted features. Some of the approaches include that of 
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(Shenzhi et al., 2004) where an algorithm that learns rules and extracts entities from 

unstructured textual data was developed. In (http://www.reuters.com) semi-automatic 

ontology based text annotation (OnTeA) tool is used to analyze  document or text using 

regular expression patterns and detects equivalent semantics elements according to the 

defined domain ontology which can then be used as input to a text mining system, again, 

this approach is domain specific.  

 

In addition to the above, knowledge has also been mined from XML data using 

association rule mining. This can be done by mapping the XML documents to relational 

data model and to storing them in a relational database. This allows standard tools to be 

used to perform rule mining from relational databases. Though this approach makes use 

of existing technology, it is often time consuming and involves manual intervention 

because of the mapping process. The above stated reasons makes it not quite suitable for 

XML data streams (Ding  & Gnanasekaran, 2007). 

Recently World Wide Web consortium introduced an XML query language called 

XQuery (Brundage, 2004). This query language addresses the need to intelligently query 

XML data sources. The query language is also flexible enough to query a broad spectrum 

of XML information sources, including both databases and documents. Naturally this led 

to the use of XQuery to perform the association rule mining directly from XML 

documents. Since XQuery is designed to be a general purpose XML query language, it is 

often very difficult to implement complicated algorithms. So far only the Apriori 

algorithm has been implemented by using XQuery (Wan & Dobbie, 2003). It has been 

raised as an open question in (Wan & Dobbie, 2003), whether or not FP-Growth 

65 
 



algorithm can be implemented by using XQuery, and there is no such implementation 

available at this point. 

The other approach is to use programs written in a high level programming language for 

this task. Most of such implementations require the input to be in a custom text format 

and do not work with XML documents directly. In order to adopt this approach to XML 

rule mining, it requires an additional step to convert the XML documents into the custom 

text files and apply these tools.  

 

Ding & Gnanasekaran (2007) looked at the various approaches for association rule 

mining from XML data. They presented a Java-based implementation of the Apriori and 

the FP-Growth algorithms for this task and compared their performances. They also 

compared the performance of their implementation with an XQuery-based 

implementation. Their findings revealed that the Java based approach proposed by them 

performed very well against the one that we compared. 

 

2.5 EVALUATION  

Evaluation of DSS is concerned with analyzing costs and benefits of decision support 

systems before and after DSS development and implementation. DSS evaluation is often 

a difficult problem though some DSS provides substantial cost saving and profit increase. 

This difficulty is due to the fact that quantification of the positive impacts of improved 

decision process is difficult (Keen & Scott, 1978). Evaluating DSS is concerned with 

determining the value of DSS. The value of DSS can be measured by a smorgasbord of 

eight methodologies: (1) decision outputs; (2) changes in the decision process; (3) 

changes in managers' concepts of the decision situation; (4) procedural changes; (5) 
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classical cost/benefit analysis; (6) service measures; (7) managers' assessment of the 

system's value; and (8) anecdotal evidence (Keen & Scott, 1978). In this project, we have 

chosen to measure the value of our DSS using the decision output since this is directly 

related to the result of our system which is a set of rules upon which decisions can be 

made. 

Data mining tools tend to produce a huge number of patterns which makes it difficult for 

users to find interesting and useful ones quickly and easily (Xin & Yi-Fangm, 2006). 

According to (Xin & Yi-Fangm, 2006): most of the rules generated from data mining 

systems are not useful, and those “that come out at the top, are things that are obvious”. This 

problem is even compounded in text mining because of large number of documents and the 

high dimensionality of textual data. In evaluating the interestingness of association rules, 

there are objective and subjective methods, which have been proposed in (Liu et al., 2001; 

Padmanabhan & Tuzhilin, 1999; Piatesky-Shapiro & Matheus, 1994; Silberschatz  & 

Tuzhilin A., 1996). 

Objective methods are insufficient because they rely only on the characteristics (surface 

features) of the patterns and the underlying data collection without considering users’ 

knowledge and interests. This is a big disadvantage because, a large number of rules can 

be generated that are interesting “objectively” but of little interest to the user 

(Klemettinen, 1994). Subjective measures, such as unexpectedness (a pattern is 

interesting if it is “surprising” to the user) and actionability (a pattern is interesting if the 

user can act on it to his/her benefit), Silberschatz  & Tuzhilin (1996), assess the 

interestingness of patterns from the users’ perspective, but they require explicit 

expressions of users’ subjective opinions (expectation/unexpectation) in order to perform 

the comparison.  This is difficult or even nearly impossible in practice for users to do, 
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especially before the discovered patterns are presented to them. In this project, we will be 

evaluating IIMA (Improved Integrated Mining Architecture) system using a new method 

of estimating the novelty of rules discovered by data-mining methods using WordNet 

(Basu et al., 2001). WordNet is a lexical knowledge-base of English words. We will 

assess the novelty of a rule by the average semantic distance in a knowledge hierarchy 

between the words in the antecedent and the consequent of the rule - the more the average 

distance, more is the novelty of the rule.  This method of evaluation is used because 

according to (Basu et al., 2001), by computing correlation coefficients between pairs of 

human ratings and between human and automatic ratings, this method was found to 

correlate with human judgments as well as human judgments correlate with one another 

(Basu et al., 2001). 

 

2.6 THE CONTEXT OF THIS RESEARCH 

From the foregoing issues, a number of gaps exist in literature which defines the context 

of this research. The first is the need for the generation of more dependable decision 

making rules which have not been adequately addressed by existing integrated data 

environments examined. This gap becomes the premise for the central research question 

being investigated in this thesis, which is: 

How do we improve result gotten from the integrated mining system in order to reduce 

decision failure? 
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2.7 SUMMARY 

The chapter presents the issues that define the research context of this thesis. It started by 

introducing decision support systems in the field of customer relationship management 

which is intended to expose the current state of the application area to reveal the need for  

an improved integrated mining framework in such a domain. Furthermore it gives the 

current state of integrated data issues generally as regards customer relationship 

management. This is followed by a detailed review of the state-of-the-art as regards 

information extraction which is the area we intend to introduce the contribution of thesis 

research work. Finally, we introduce evaluation method to be employed in evaluating 

such a contribution. 
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CHAPTER THREE  

IMPROVED INTEGRATED MINING ARCHITECHURE (IIMA) APPROACH 

3.1 INTRODUCTION 

The Improved Integrated Mining Architecture is the proposed solution to the three 

research questions posed in this thesis. The chapter presents an overview of IIMA 

(Improved Integrated Mining Architecture) as a novel hybrid of Association Rule Mining 

and Information Retrieval technique based on content similarity of XML (Extensible 

Markup Language) document. It gives insight into 

its strategy and underlining assumptions, its process architecture, and its main sub-

processes. In addition the modalities for the validation of the IIMA approach are 

discussed. The chapter closes with a summary and discussion on expected results. 

 

3.2 OVERVIEW OF THE EXISTING INTEGRATED MINING SYSTEM 

The existing integrated mining architecture as proposed by Sukumaran and Sureka, in 

2007 is based on natural language processing and machine learning based techniques 

(text tagging and annotation). These two approaches form the preprocessing step toward 

integrating structured and unstructured data. For the unstructured data preprocessing, text 

tagging and annotation platform extracts information (basically using syntactic analysis) 

into an XML database. Apart from the fact that this architecture has not been 

implemented, the main component of the system which converts unstructured to semi 

structured (XML) is based on natural language techniques and therefore still subject to 

the generational problems of information extraction such as high error rates thereby 

producing unreliable results.  The Figure 3.1 below represents the Sukumaran 

architecture. 
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Figure 3.1  Data integration architechure  (Sukumaran & Sureka, 2007). 

Due to the inefficiencies of the system described above the IIMA approach is introduced 

as an improvement on this existing system by introducing a domain independent semantic 

analysis in the data preprocessing stage. 

 

3.3 IIMA DESIGN CRITERIA 

The following are the basic design criteria required to be fulfilled by the IIMA. 

• IIMA should be able to preprocess unstructured data syntactically and 

semantically and integrate it with structured data into an XML database. 

• IIMA should be flexible and applicable to any domain of interest. 

• Knowledge distillation in the IIMA approach should be based on a dataset which 

is a basis for novel rules. 
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• Rules generated as a result of the application of the IIMA approach which is in 

the textual format should be easy to understand. 

 

3.4   OVERVIEW OF THE PROPOSED SOLUTION: IIMA APPROACH 

The IIMA approach originated from the generic data integration architecture presented in 

section 2.3.2, which is an approach to integration that is based on information extraction 

technique. The proposed approach is domain independent, so it is flexible and can be 

applied on different domains without having to build a domain specific stemming 

dictionary. The approach is focused on providing a solution to the existing problem of data 

uncertainty, which stems from natural language processing. It integrates structured and 

unstructured data seamlessly for association rule mining. The unstructured component of 

the integration is based on information retrieval technique which combines syntactic and 

semantic relevance-oriented search with XML technology. 

 

3.4.1 IIMA Process architecture 

The IIMA process architecture consists basically of two major phases: the data 

preprocessing phase and the knowledge distillation phase. In the data preprocessing 

phase, the structured component of the integration is selected based on the resulting 

keywords from the information retrieval process. 

 

3.4.2 The Data Preprocessing Phase 

This phase is aimed at optimizing the performance of the knowledge mining phase. It 

consists of text filtration, stemming and clustering of XML document generated using 

semantic content similarity.                                                                                          
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3.4.2.1 Filtration 

In this process, the textual documents are filtered by removing the unimportant words 

from documents content. Such unimportant words include: articles, pronouns, 

determiners, prepositions and conjunctions, common adverbs and non-informative verbs. 

As a result of this process, more important or highly relevant words are single out. To 

achieve this, we build a list of unimportant words called stop words, where the system 

checks the documents content and eliminate these unimportant words from it. The system 

also replaces special characters, parentheses, commas, etc., with a space between words 

in the documents.                                                                  
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Figure 3.2 The IIMA Process Architecture 

 

Apply  the modified GARW algorithm on the 
indexed documents to generate all keyword 
sets whose support is greater the user 
specified minimum support (min support) 
 

KNOWLEDGE DISTILATION PHASE 

Generate all Association Rules 
that satisfied a user 
minimum confidence (min 
confidence) 
 

DATA 
PREPROCESSING 

PROXEM ANTELOPE-
WORDNET STOP WORD 

VISUALIZE ASSOCIATION RULES IN TEXTUAL FORMAT 

FILTRATION         STEMMING 

Index textual document by 
using weighing scheme for 
keywords in all documents 

Semantic clustering of 
XML data 

Incoming textual 
documents 

Selection and  integration 
of structured data based 
on the extracted 
unstructured data 
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3.4.2.2 Stemming  

After the filtration process the system does word stemming, a process that removes a 

word’s prefixes and suffixes (such as unifying both infection and infections to infection). 

Stemming is done by unifying word based on their dictionary meaning using the 

WordNet lexical database. WordNet is referenced through Proxem Antelope 

(http://www.proxem.com/Default.aspx?tabid=55), which is a framework that makes the 

development of Natural Language Processing software easy to use. Proxem Antelope is 

designed to load WordNet files into the memory so as to make searches amazingly fast. 

The Antelope is fully object-oriented. It supports an interface-based programming model. 

Each module (lexicon, tagger, parser, etc.) defines standard interfaces and many 

components can implement these interfaces. Antelope is designed for the Microsoft .NET 

framework (version 2.0 and above). Therefore, you can use it with C#, Visual 

Basic.NET, Delphi.NET and many other .NET compliant languages (even 

COBOL.NET!). Antelope consists in the following assemblies (stored in the bin 

subdirectory). This diagram shows the dependencies between them. 
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Figure 3.3 An Overview of the Proxem Antelope 

(http://www.proxem.com/Default.aspx?tabid=55) 

 

3.4.2.3    Clustering of XML document 

 In this stage, the weighting scheme TF-IDF (Term Frequency, Inverse Document 

Frequency) is combined with semantic relevance weight to give a combined relevance 

weight as stated below. 
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The TF-IDF is used to assign higher weights to syntactically distinguished terms in a 

document, and it is the most widely used weighting scheme which is defined as (Feldman 

et al., 1996; Hany et al., 2007; Teng-Kai  et al., 2010; Fang-Yie et al., 2010). 
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• w(i,j) is known as the weighting scheme and  could be greater than 0. 

• Ndi,tj is the number of times the term tj occurs in the document di. 

• Ntj is the number of documents in the collection C in which the term tj occurs at 

least once. 

• |C| is the number of documents in the collection C. 

In general, this weighting scheme includes the intuitive presumption that the more often a 

term occurs in a document, the more it is representative of the document (term frequency) 

and the more the documents the term occurs in, the less discriminating it is (inverse 

document frequency). The system sorts the keywords based on their scores and selects 

them based on the given weight chosen as threshold. 

The semantic relevance is gotten by exploiting the degree of polysemy of terms i.e. we 

want to weigh the semantic  relevance of a term with respect to a notion of semantic 

rarity, in such a way that the higher the number of meanings of the term, the lower its 

rarity, thus, its relevance. Since we assume that the terms in the XML data have been 
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reduced to their stems, then, the semantic relevance is calculated based on the polysemy 

of its variant terms that originally appear in the text (Andrea et al., 2010). 
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T -  collection of XML tree tuples i.e.  a set of transactions 

w  -  index term i.e we pick each term one by one 

o-terms(w) -  set of original terms in T having w as the common stem 

| o-terms(w)| - absolute number of terms in T that their stem is w i.e. the particular term 

in question.  

| senses(wj)| - absolute number of meanings of wj 

MAX-POLYSEMY - a constant denoting the number of meanings of the most 

polysenous term in the reference lexical knowledge base.  

Note: the MAX-POLYSEMY depends on the part of speech of the selected terms e.g. its 

32 for nouns in WordNet 2.0 (Andrea et al., 2010). 

 

Combination of syntactic and semantic relevance to get the relevance weight of each term 

i.e. wj (Andrea et al., 2010). 
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relevance (wj , ui) - stores the reference value of term wj in TCU  

s-rarity(wj) - gotten from semantic relevance  

)/,(.
)(

τ
τ∑

iueT ij uwitfttf  -the TF-IDF weight  

T(ui ) - total number of TCUs or transactions. 

The content similarity of the XML documents is then measured by calculating   sim(ui,uj) 

where  ui and uj are vectors which represents xml documents. 

Content similarity between any two tree tuple items is measured by comparing their respective 

TCUs. Given a collection of XML tree tuples T, any TCU, ui , is modeled with a vector,  ui , 

whose j -th component corresponds to an index term, wj , and contains the value relevance (wj , 

ui). The size of each TCU vector is equal to the size of the collection vocabulary: the set of index 

terms extracted from all TCUs in T. The well-known cosine similarity is then used to measure 

the similarity between TCU vectors (Andrea et al., 2010).  

Let ei and ej be tree tuple items, and _ui and _uj their respective TCU vectors. The content 

similarity between ei and ej is defined as: 

ji

ji
ji uu
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uusim

×

•
=),(        Eq. 3.4 

Since the combination of structure and content information characterizes an XML tree tuple 

item, there is need to take tolerance on computing similarity between XML tree tuple items. 

For this purpose, a similarity threshold is introduced to represent the minimum similarity 

value for considering two XML tree tuple items as similar (Andrea et al., 2010).  
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3.4.2.4 Data Integration  

In the integration process, the structured component is selected based on the resulting 

keywords from the unstructured text preprocessing process, and association rules is generated 

based on the modified GARW (Generating Association Rules Based on Weighting Scheme) 

Algorithm. The main contribution of this technique is that the unstructured component of the 

integration is based on Information retrieval technique which is based on content similarity of 

XML (Extensible Markup Language) document.  This similarity is based on the combination 

of syntactic and semantic relevance. 

3.4.3 Knowledge Distillation Phase. 

Knowledge is distilled using the GARW (Generating Association Rules based on Weighting 

scheme) algorithm described below (Hany et al., 2007): In this  phase, association rules are 

generated based on the (GARW) Algorithm, which has been modified to accommodate 

content similarity of XML document based on the combination of syntactic and semantic 

relevance.            

3.4.3.1  Generating Association Rules Based on Weighting Scheme (GARW) Algorithm 

Given a set of terms  

A = {w1, w2, ………….wn}          Eq. 3.5 

 

A set of indexed documents                         D ={d1,d2,……………..dn}                     Eq. 3.6 

• d1……dn are indexed documents that contains keywords. 

• Those keywords are also members of A i.e. the general database of keywords. 

 

 

80 
 



Association Rule  

 Association rule is one of the most important techniques in Data Mining. The 

problem of association rule mining deals with how to discover association rules that have 

support and confidence greater than the user-specified minimum support and minimum 

confidence. It is intended to capture dependency among items in the database.  

 

The support of an item set is the fraction of transactions in the database that contain all the 

items in the database 

 

tionsrOfTransacTotalNumbe
WWntSupportCou

WWSupport ji
ji

)(
)( =                                      Eq. 3.7 

The confidence of rule a (association rule) Wi → Wj can be defined as the proportion of those 

transactions containing Wi that also contain Wj.  

   
)(

)(
)(

i

ji
ji WSupport

WWSupport
WWConfidence =      Eq. 3.8 

The algorithm for generating association rules based on the weighting scheme is given as 

follows: 

1. Scan  the file that contains all the keywords that satisfy the threshold weight value 

and their frequency in each document. 

2. Let N denote the number of top keywords that satisfy the threshold weight value. 

3. Store the top N keywords in index file  along with their frequencies in all 

documents, their weight values relevanceWeight and documents ID in the 

following format: <doc-id><keyword>< keyword frequency>< relevanceWeight 

> 
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4. Scan the indexed file and find all keywords that satisfy the threshold minimum 

support. These keywords are called large frequency1-keywordSet L1.   

5. When K is greater than 2, (Note K is a keyword set having k-keywords sets). The 

candidate keywords Ck of size K are generated from large frequent (k-1) 

keywords sets, Lk-1 that is generated in the last step. 

6. Scan the index file, and compute the frequency of candidate keyword sets Ck that 

is generated in step 4. 

7. Compare the frequencies of candidate keywords sets with minimum support.  

8. Large frequent keyword sets Lk, which satisfy the minimum in support, is found 

from step 7 above. 

9. For each frequent keyword set, find all the association that satisfies the threshold 

minimum confidence. 

 

3.4.3.2 Rule Post Processing 

The generated rules are refined by using parameters such as the support and confidence 

which in this case we already been included in the GARW algorithms above. One particular 

aspect of rule mining in text is that often a high support means the rule is too obvious and 

thus less interesting.  Another technique that was used to remove unwanted rules is to specify 

stop rules i.e. rules that are common and can be removed automatically. Association rules are 

easy to understand and to interpret for an analyst or a normal user. However, it should be 

mentioned that the association rule extraction is of exponential growth and a very large 

number of rules can be produced. 
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3.4.3.3 Rule Visualization Phase 

Even though association rules extracted from the above phases can be reviewed in textual 

format or tables, or in graphical format, in this work the system is designed to visualize the 

extracted association rules in textual format or tables. 

 

3.5 TOOL FOR SUPPORT OF IIMA 

The following are the essential tool-support for implementing the IIMA approach: 

• Proxem Antelope (http://www.proxem.com/Default.aspx?tabid=55), which is a 

framework that makes the development of Natural Language Processing software 

easy to use. 

• WordNet lexical database (http://wordnet.princeton.edu/wordnet/download/). 

WordNet is a large lexical database of English. Nouns, verbs, adjectives and adverbs 

are grouped into sets of cognitive synonyms (synsets), each expressing a distinct 

concept. Synsets are interlinked by means of conceptual-semantic and lexical 

relations. 

• Software design: UML-based tools (Microsoft Visio, Rational Rose, ArgoUML etc.), 

 

 

3.6. APPLICATION SCENARIOS 

• Financial services: This scenario is for a financial services company which subscribes 

to several commercial research publications. These publications come with RIXML 

(Research Information Markup Language) formatted data. RIXML is an XML 
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vocabulary that combines investment research with a standard format to describe the 

report’s meta-data. 

A received report, which is archived in its native XML format, and the audio and 

visual clips in form of meta-data, such as company name, stock price, and earnings 

estimates, are extracted from the document and stored in relational tables. This 

information is used to detect and recommend changes in buy/sell/hold positions to 

equity and bond traders and key customers. Mining applications more thoroughly 

analyze the original document and its extracted metadata, looking for such keywords 

as “merger,” “acquisition,” or “bankruptcy” to categorize and summarize the content. 

The summarized information is combined with historical information and this made 

available to the company’s market research and investment banking departments. 

After this, these departments combine the summarized information with financial 

information stored in spreadsheets and other documents. This is used to perform trend 

forecasting and identify merger and acquisition opportunities (Roth et al., 2002). 

• Another scenario is that of an auto manufacturer employing an enterprise customer 

relationship management (CRM) application. This application is used to track and 

manage service requests across its worldwide dealer operations. Using the CRM 

application, the individual dealers file “customer service reports”. The report includes 

both structured and unstructured part. The structured part consist of  attributes such as 

“day”, “customer ID”, “make”, “model”, “dealer name”, “vehicle identification 

number (VIN)”, etc. The unstructured part consists of  “comments” field where the 

personnel in charge of handling a service request can record additional information 

about the precise nature of the problem and how the issue was addressed. The Figure 
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3.4 below shows a simplified version of a “service reports” table and also highlights 

the text associated with one of the reports. Integrated mining based on the result of 

the query based on the available structured attributes combined with the appropriate 

text-index can be constructed (Zhu et. al, 2005). 

 

Figure 3.4 Integrated data storage (Zhu et. al, 2005). 
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3.7 VALIDATION APPROACH 

In order to validate the plausibility of the proposed solution approach, a case study of 

evolving rules to form the bases of customer relationship management decisions making will 

be reported in chapter 4 to show the practical real-life application scenario of the IIMA 

approach. This is done to validate the hypothesis that: The IIMA approach provides a 

seamlessly analysis across structured and unstructured data. This is particularly interesting 

because, presently, there exist a problem in analytic CRM which has to do with having a 

holistic view to the structured and unstructured CRM data (Cody et al., 2000). 

 

3.8 SUMMARY & DISCUSSION 

In this chapter the concept of Improved Integrated Mining of Architecture (IIMA) approach 

has been presented as an integrated solution model for the two research questions posed in 

this thesis. The practical application of IIMA will be discussed in the subsequent chapters. 
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CHAPTER FOUR 

APPLICATION OF IIMA TO CRM 

4.1 INTRODUCTION 

This chapter presents details of a case study of Customer Relationship Management scenario 

where the IIMA approach has been applied. The core motivation of this case study is that, 

presently, there exists a problem in analytic CRM which has to do with having an holistic 

view to the structured and unstructured CRM data which this thesis plans to address. This 

chapter therefore reports the practical application of the Improved Integrated Mining 

Architecture in solving the above described problem. 

 

4.2  IMPLEMENTATION COMPONENTS AND TOOLS 

1. Microsoft Visual Studio is an integrated development environment (IDE) from 

Microsoft. It can be used to develop console and graphical user interface applications 

along with Windows Forms applications, web sites, web applications, and web 

services in both native code together with managed code for all platforms supported 

by Microsoft Windows. Visual Studio supports different programming languages by 

means of language services, these languages include  C/C++ (via Visual C++), 

VB.NET (via Visual Basic .NET), C# (via Visual C#), and F# . Support for other 

languages such as M, Python, and Ruby among others is available via language 

services installed separately. It also supports XML/XSLT, HTML/XHTML, 

JavaScript and CSS.  

2. C# is a multi-paradigm programming language encompassing imperative, declarative, 

functional, generic, object-oriented (class-based), and component-oriented 
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programming disciplines. It was developed by Microsoft within the .NET initiative 

and later approved as a standard by Ecma (ECMA-334) and ISO (ISO/IEC 23270). 

C# is one of the programming languages designed for the Common Language 

Infrastructure. C# is a simple, modern, general-purpose, object-oriented programming 

language. The language, and implementations provide support for software 

engineering principles such as strong type checking, array bounds checking, detection 

of attempts to use uninitialized variables, and automatic garbage collection. For C#, 

software robustness, durability, and programmer productivity are important.  C#  is 

used in developing software components suitable for deployment in distributed 

environments. It supports  internationalization  and is  suitable for writing 

applications for both hosted and embedded systems, ranging from the very large that 

use sophisticated operating systems, down to the very small having dedicated 

functions.  

3. Microsoft® SQL Server™ is a database management and analysis system for e-

commerce, line-of-business, and data warehousing solutions.  SQL Server 2008, the 

latest version is enhanced with XML support, integration of .NET Framework objects 

in databases, improved integration with Microsoft Visual Studio and the Microsoft 

Office System. It also consists of an improved analysis, reporting, and data 

integration services. 

4. Extensible Markup Language (XML) is a simple, very flexible text format derived 

from SGML (ISO 8879). Originally designed to meet the challenges of large-scale 

electronic publishing, XML is also playing an increasingly important role in the 

exchange of a wide variety of data on the Web and elsewhere. Extensible Markup 
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Language (XML) is a set of rules for encoding documents in machine-readable form. 

It is defined in the XML 1.0 Specification produced by the W3C, and several other 

related specifications, all gratis open standards. XML's design goals emphasize 

simplicity, generality, and usability over the Internet. It is a textual data format with 

strong support via Unicode for the languages of the world. Although the design of 

XML focuses on documents, it is widely used for the representation of arbitrary data 

structures, for example in web services. 

 

4.3 IMPROVING CUSTOMER RELATIONSHIP MANAGEMENT THROUGH 

INTEGRATED MINING OF HETEROGENEOUS DATA 

4.3.1 Problem definition 

No business is an island. For a business to succeed, it will need to deal with customers, 

suppliers, employees, and others. In almost all cases, there will also be other organizations 

that offer the same or similar products to similar customers. These organizations are known 

as the competitors. Not so long ago, the mobile phone was an amazing invention, which 

revolutionized communication between humans. It has now become a piece of technology, 

which is deeply ingrained in modern life. In less than twenty years, mobile phones have gone 

from being rare and expensive pieces of equipment used by businesses to a pervasive low-

cost personal item. In Nigeria today, mobile phones outnumber land line telephones, with 

most adults and many children now owning mobile phones (Ayo et.al., 2007). Each new 

handset provides new exciting designs with MP3 players, cameras and other interactive 

goodies all of which fit into a pocket sized package, which with each evolution becomes 

lighter and thinner. With all the focus on the technology and the desire to squeeze more and 
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more exciting software on to mobile phones, the key function of the phone as a 

communication device seems to have been overlooked in some cases. The experiences of 

many mobile phone users are being overshadowed by the evolving technology, which in 

essence, might not be solving the problem of telephone industries, that is, the need to be 

bigger and brighter than the competitor.  

 

4.3.2 Improving Organizational Profit of Mobile Phone Industry 

To apply the system to the case study which has to do with improving organizational profit of 

manufacturing and production companies, the problem we aim to solve is as follows: to 

reveal which of the mobile phone technology help to improve the competitive advantage of  

mobile phone industry through analytical customer relationship management. This will also 

reveal if any, the weaknesses of various mobile phones in Nigeria. 

 

4.3.3 Data requirements 

The primary means of gathering data in our field of application, which is CRM is through the 

use of questionnaires. A questionnaire was therefore designed and administered to 2,215 

respondents out of which 1,518 were returned valid. These questionnaires were designed 

with the goal of retrieving CRM information from mobile phone users towards effective 

customer relationship management in the mobile phone manufacturing industry. This 

questionnaire was justified through a pilot study and meeting with experts in CRM field. The 

questionnaire contained both structured and unstructured part. The sample of the 

questionnaire can be gotten in appendix A. 
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4.3.4 Expected outputs  

It is expected that the study will reveal: 

• Actionable rules that reveal strengths and weaknesses of specific mobile phones.   

• Rules for decision making based on underlying data collection. 

•  The rules that are unexpected but yet if acted upon can give a mobile phones 

industries a competitive edge over its competitors. 

• Rules that will solve mobile phone related problems in the society. 

• Rules that can also give mobiles phone consumers the recommendations as to what 

type of phone to buy or what functionalities to look out for specific mobile phone 

brands. 

• Customer recommended improvements on mobile phones so as to improve the 

customer relationship management of these mobile phone industries. 

• Recommendations which competitors of mobile phone industry can use to make more 

profit. 

 

4.3.5 Scope 

The research is based on analyzing customer data through data mining and does not include 

issues as regarding implementing the inferences gotten form the system. In order wards, even 

though CRM includes acquisition, analysis and the use of knowledge about customers in 

order to sell more goods or services and to do it more efficiently, this research is focused on 

the only the analytical CRM aspect of it. 
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Each of the following systems described below is applied to the above described problem 

definition. This is done to be able to compare the results of structured mining, existing text 

mining approach, and existing integrated mining approach and IIMA approach.   

• Structured mining: This is an implementation of association rule mining algorithm on 

structured data. 

• Text mining (Unstructured mining): This is an implementation of the existing text 

mining technique described in (Hany et al., 2007). 

• Existing Integrated Mining approach: This is based on the existing integrated mining 

approach proposed by (Sukumaran, S. and Sureka, 2007). 

• Improved Integrated Mining Architecture (IIMA): This is the implementation of the 

architecture described in chapter 3 of this thesis. 

 

4.4 STRUCTURED MINING  

4.4.1 Data Input to the Structured Mining System 

The data input to the structured mining system is the structured part of the questionnaire 

which includes the respondents’ answers to questions such as; 

• What Brand of mobile phone are you using now? 

(      ) Nokia (      ) Motorola (      ) Ericsson    (      ) Samsung      (      ) LG (      ) 

Philips (      ) Sagem (      ) Arcatel             (      ) Sony  (      ) Siemens   

Nokia Others……………………. 

• Gender:              (      ) Male           (      )     Female 
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• What is your age range?15-20 (  ) 21-30 (  ) 31-40 (  ) 41-50 (  ) 51-60 (  ) Above    

60(  ) 

• Is your Education IT related?  YES (     )         NO (    ) 

• What is the general assessment of your mobile phone user friendliness?  

   (     ) Excellent        (     ) Good        (      ) Satisfactory      (      ) Unsatisfactory     (     ) Poor  

• What is the reason for changing your phone?  Phone got spoilt (   ) Stolen       (    ) Gave it out 

(    ) Misplaced it               Others specify………………………………………… 

 

The data gotten from the above questions are structured because they require a one word 

answer which is selected from the available options given. 

For more of these questions, check the appendix A. 
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Table 4.1 distributions of users by mobile phone brand 

TECNO 70 

VodaPhone 14 

STARCOMS 30 

DORADO 4 

SENDO 9 

VisaPhone 4 

Sony Ericson 83 

Motorola 117 

SAGEM 88 

SAMSUNG 90 

PANASONIC 9 

LG 20 

Nokia 965 

Empty 15 

 

Figure 4.1 represents the interface to the system that mines from purely structured data. It 

implements association rule algorithm and receives two thresholds which is minimum 

support and minimum confidence. The data to be mined is received from SQL database and 

converted to an XML database on which the association rule acts upon. The result generated 

by the system is displayed in the figure 4.2. Each rule is displayed against its respective 

support and confidence. 
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Figure 4.1 Structured Mining Interface 

The Table 4.2 shows the number of rules generated for different support thresholds while 

keeping the confidence constant at 80%. These results were gotten by applying the structured 

system on the structured part of the data gotten from the application of the questionnaire. 

Table 4.2 Support and Confidence for Structured Mining   

Support  Confidence Number of Rules 

Generated 

50% 80% 42 

40% 80% 90 

30% 80% 156 

25% 80% 186 

20% 80% 210 
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Figure 4.2 Output of structured Mining 

4.4.2 Discussion 

Some of the association rules that describe the relations between attributes in the database   

and are interpreted for competitive intelligence as follows; 

• The rule Nokia,SatisfactUserFriendly=>Above1year: gives a clear inference that the 

users of Nokia products find it to be user friendly and most of them have for this 

reason been using it for over one year and are therefore, not disposed to change their 

phone often. 

Companies that produce other brands such as Samsung and Panasonic should 

therefore improve on their user-friendliness. 

• The rule Nokia,SatisfactUserFriendly=>21-30 years: reveals a high population of 

Nigerian between the age of 21 and 30 who use Nokia phones because they find it to 
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be user friendly. Therefore marketing could be targeted towards this sector of the 

population.  

• The rule Nokia, SatisfactUserFriendly=>Available Purchase Good: reveals that Nokia 

phones are easily and readily available to purchase. 

• The rule Nokia,Stolen=>Durable: reveals that even though Nokia phones are 

durable, they are often changed by the user because they are stolen very often. Nokia 

company can therefore look for means of improving on security features. Also, 

because of the fascinating features (radio, TV etc) it is the target of most customers and 

thieves alike. 

• The rule GoodServices,Durable=>Nokia implies that Nokia phone users were 

interested in buying it because they find it durable and easy to navigate through the 

services that are present on the phone. 

• The rule DifficultComposeRingTone,Satisfact UserFriendly=>Nokia reveals that 

even though users of Nokia phones are satisfied with its user friendliness, they 

however have difficulty in a particular service that it offers which is “Composing 

ringing tones”. Both the Nokia company and other companies competing with it such 

as Sony Ericson and so on, can therefore improve on this service so as to be able to 

win more customers. 

 

The support (which is 50%) is chosen to be a little lower than the confidence (which is 80%) 

so as to have a fair representation of the important attributes which might not be included in 

the rule generation. Confidence was fixed at 80% so as to reduce the number of rules 

generated. 
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The rules described above are extracted rules at the support threshold of 50% and they give 

information on some interesting patterns that can be used for competitive business 

intelligence in the Nigerian mobile phone industry.  

 

4.5 TEXT MINING (UNSTRUCTURED MINING) 

The text mining system is such that automatically extract association rules from collections 

of textual documents. It discovers association rules from keyword features extracted from the 

documents. This implemented existing text mining (Hany et al., 2007) technique integrates 

XML technology, Information Retrieval Scheme, with machine readable dictionary 

(WordNet) for keyword/feature selection that automatically selects the most discriminative 

keywords for use in association rules generation. 

4.5.1 Data Input to the Unstructured Mining System 

The data input to the unstructured mining system is the unstructured part of the questionnaire 

which includes the respondents’ answers to questions such as: 

• What do you like most about your mobile phone?....................................................... 

………………………………………………………………………………………….. 

•  What do you dislike most about WAP?....................................................................... 

………………………………………………………………………………………….. 

• Share your best mobile phones experience…………………………………………….. 

………………………………………………………………………………………….. 

• Why did you decide to purchase that particular brand of mobile phone?..................... 

………………………………………………………………………………………….. 

• What improvements would you like to see, if any on your mobile phone?..................... 
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………………………………………………………………………………………….. 

• What type of problem do you usually encounter while using your mobile phone? 

………………………………………………………………………………………….. 

The above response allows the respondents to freely express themselves and therefore 

provide useful information which might not have been previously known or thought about by 

the mobile phones manufacturing industry. This form of reply is largely unstructured because 

it is not a one word answer. 

4.5.2   Argumentation of the thresholds 

 In text mining in general, a very large number of association rules are found. So the 

measures like support and confidence are important when creating keyword sets and 

selecting the final rules. However, the problem is that we may find the important keywords 

which have frequently appeared recently but not discovered because of the height of support 

and confidence threshold values. In order to have a fair representation of the important 

keywords in the corpus to be mined, we selected a TF-IDF threshold of 30%. This helped us 

to find informative keywords to extract rules from. Furthermore, a low threshold support of 

5% was used so as to extract important keywords (such as durability, brand) that would not 

have appeared if we chose high support value, and these keywords happen to be very 

informative regarding customer relationship management as regards mobile phones. Lastly, 

we chose higher threshold confidence value 50% to make sure that the final rules gotten from 

the system are the most interesting ones. 
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Figure 4.3 Unstructured Mining Interface 

 

4.5.3 Discussion 

Figure 4.3 is the interface to the unstructured data mining system. Some of the association 

rules that describe the relations between keywords in the documents are presented below. 

The rules give information on some interesting patterns that can be used for customer 

relationship management in the Nigerian mobile phone industry.   

Samples of the generated rules are interpreted for customer relationship management as 

follows: 

• The rule internet, screen -> problem shows that there is a problem with the screen 

of mobile phones while browsing the internet. 
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• The rule Nokia, camera -> durability gives the inference that there is a strong 

correspondence between Nokia phones, the fact that it is durable and users find it user 

friendly. Companies that produce this particular brand can improve on such features 

and competing companies should therefore improve on such qualities. 

• The rule camera, best->portable reveals that what mobile phone user like best about 

their mobile phone is the fact that it is portable and also have a camera facility. 

• The rule long, battery->time can also help to infer that the mobile phone users like 

the battery time of their phones to be long. 

The proposed approach is domain-independent, so it is flexible and can be applied on 

different domains without having to build a domain specific stemming dictionary.  Also, 

since identifying user requirements and understanding the user is a major part of contributing 

to the profit of the organization and this can be achieved through an effective customer 

relationship management. The generated rules therefore, give pointers to various 

characteristics of customers of mobile phone manufacturing industry which will help in 

identifying, attracting, developing and maintaining successful customer relationships over 

time in order to increase retention of profitable customers.   

 

4.6 EXISTING INTEGRATED MINING APPROACH 

This is based on the existing integrated mining approach proposed by (Sukumaran, S. and 

Sureka, 2007). This architecture uses natural language processing techniques (text tagging 

and annotation) as a preprocessing step toward integrating structured and unstructured data.  

For the unstructured data sources, the tagging and annotation platform extracts information 
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based on the integration of XML technology, Information Retrieval Scheme and with 

machine readable dictionary (WordNet) for keyword/feature selection that is automatically 

integrated with structured data.   

4.6.1 Data input format for Existing Integrated Mining System 

The data input to the existing integrated mining system contains both the structured and 

unstructured part of the questionnaire which includes the respondents’ answers to questions 

such as: 

• What Brand of mobile phone are you using now? 

(      ) Nokia (      ) Motorola (      ) Ericsson    (      ) Samsung      (      ) LG (      ) 

Philips (      ) Sagem (      ) Arcatel             (      ) Sony  (      ) Siemens   

Nokia Others……………………. 

• Gender:              (      ) Male           (      )     Female 

• What is your age range?15-20 (  ) 21-30 (  ) 31-40 (  ) 41-50 (  ) 51-60 (  ) Above    

60(  ) 

• Is your Education IT related?  YES (     )         NO (    ) 

• What is the general assessment of your mobile phone user friendliness?  

   (     )Excellent        (     ) Good        (      )Satisfactory      (      )Unsatisfactory     (     )Poor  

• What is the reason for changing your phone?  Phone got spoilt (   )Stolen       (    )Gave it  out 

(    )Misplaced it                

• What do you like most about your mobile phone?....................................................... 

………………………………………………………………………………………….. 

•  What do you dislike most about WAP?....................................................................... 

………………………………………………………………………………………….. 

• Share your best mobile phones experience…………………………………………….. 
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………………………………………………………………………………………….. 

• Why did you decide to purchase that particular brand of mobile phone?..................... 

………………………………………………………………………………………….. 

• What improvements would you like to see, if any on your mobile phone?..................... 

………………………………………………………………………………………….. 

• What type of problem do you usually encounter while using your mobile phone? 

………………………………………………………………………………………….. 

The response to the above is both structured (one word answer chosen from available 

options) and unstructured (answers that contain sentences). 

See appendix A for more. 

 

Figure 4.4 Existing Integrated Mining Interface 
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The existing integrated mining system interface in Figure 4.4, takes in three thresholds which 

includes: TFIDF Weight, minimum support and minimum confidence. It is fed in both 

structured and unstructured data gathered from the questionnaire into an XML database. The 

unstructured component is preprocessed and the result of this preprocessing is used to extract 

from structured data and seamlessly integrated together, ready to be used as input to the 

association rule mining system. 

4.6.2 Discussion  

Samples from the existing integrated mining system are listed against their  confidence in the 

association rules text visualization interface in Figure 4.5. It was observed that the rules 

generated were too many. Though important ones were there, but have been overcrowded by 

a lot of redundant rules. Redundant in the sense that the keywords that come from the 

unstructured part are mostly not related to the problem at hand which is managing customer 

relationship of mobile phones. Also due to the nature of the questionnaire (some respondents 

did not really take time to fill in the unstructured part in detail) which was the primary means 

of data collection, the rules generated were mostly made up of structured data and not a fair 

representation of structured and unstructured data. This still defeats the purpose of integrated 

mining. 
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Figure 4.5 Existing Integrated Mining Rule Visualization Interface  
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4.7 IMPROVED INTEGRATED MINING ARCHITECHURE (IIMA) 

4.7.1 Data input to the IIMA 

The data input to the IIMA system is the same as that of the existing system described in 

section 4.6.1.  This is, the answer to the questions require both one-word (eg. YES or NO) 

and also sentences (e.g I would like my mobile phone to have more memory and very high 

speed). This is to ensure an effective comparism so as to distinctly bring out the efficiency of 

the existing systems. 

4.7.2 Input interface 

The interface to the IIMA system is displayed in Figure 4.6. It receives three thresholds 

namely, relevance threshold, minimum support and minimum confidence. While the system 

is clustering the preprocessed data based on the relevance threshold, it receives a threshold 

range with which it groups documents. The result of this clustering is what is used for the 

association rule mining. 
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 Figure 4.6 Snapshot of the integrated data in XML format. 
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Figure 4.7: Selected Integrated data 

The snapshot in Figure 4.7 represents the integrated data gotten from the resulting 

combination of the semantically clustered XML documents and their corresponding 

structured data. Each document is uniquely identified by their document ID. Figure 4.7 above 

therefore represents semantically related documents to be used for the association rule 

mining. 
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Figure 4.8 IIMA Rule Visualization Interface 

4.7.3 Discussion 

In order to have a fair representation of structured and unstructured data, a low relevance 

threshold of 20% was chosen, support of 5% and a higher threshold confidence value of 70% 

to make sure that the final rules gotten from the system are the most interesting ones. The 

following are samples of the resulting rules from the improved integrated mining system and 

they have been interpreted for effective customer relationship management. 

• Nokia -> ssce, durable 

In the above rule nokia and ssce comes from the structured part of the data and 

durable comes from the unstructured part. The above rule can be interpreted to mean 

the users of nokia phones who also have an ssce certificate as their highest 
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qualification believe that durability is one of the qualities of mobile phones; this in 

turn can inform mobile phones producers who are targeting this kind of audience to 

make this as a key point of their marketing campaign. 

• c1 -> portable, nokia 

C1 and nokia is the structured part while portable originated from the unstructured 

part. This rule gives the inference that customers have noticed the portability of the 

particular model of nokia mobile phone named c1.  

• 15-20Years -> wireless , expensive 

15-20Years is the structured part while wireless and expensive comes from the 

unstructured part. This rule gives the inference that people with the age bracket of 15-

20 yeears find the wireless facility on mobile phones quite expensive to use. 

• nokia -> love, football 

Nokia is the structured part while football and love is the unstructured part. This rule 

gives the inference that nokia users love football game and so to market to this 

audience or retain them as customers of nokia phone a form of football facility could 

be included on mobile phones, this could be in form of game or a special facility that 

motivates watching live football matches.  

• poor-> picture, quality 

This rule gives the inference that mobile phones users are experiencing a poor picture 

quality which even though is not particularly associated with any brand of mobile 

phone can be used for competitive advantage such that any mobile phone producers 

who is willing to improve on pictures quality will gain more customers. 
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• ssce ->boredom, interact 

ssce comes from structured while boredom and interact comes from unstructured. It 

reveals that fact that ssce holders are always bored and probably want to interact, 

therefore facilities that can be used for interaction can be used to market to this kind 

of audiences. 

• nokia, gift -> 15-20Years 

nokia and 15-20Years come from the structured part while gift comes from 

unstructured. This rule gives the inference that for this particular age bracket, nokia 

phones is usually used as a gift, this can inform mobile industry to position such 

products in gift shop and not only in the main phone market. 

• smallsize, problem -> message 

smallsize comes from the unstructured part while problem and message comes from 

the unstructured part. This rule gives the inference that there is a problem sending 

messages with phones with small sizes. This inference is quite useful in order to 

improve on the quality of sending messages in small size phone. 

• 2023 -> keypad, problem 

2023 comes from the structured part while keypad and problem comes from the 

unstructured part. This inference gives pointers to the fact that with this particular 

brand of mobile phones, users do have a keypad problem. 

• nokia -> increase, memory 

nokia comes from the structured part while increase and problem comes from the 

unstructured part. This rule gives the inference that nokia phone users want an 
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increase in memory for their phones. As marketing strategy, such facility can be used 

to attract customers. 

• phd -> increase, memory 

phd comes from structured part while increase and memeory comes from 

unstructured part, this rule gives pointers to the fact that PhD holders advocate for 

increase in memory such facility will definitely help in marketing to such audience. 

• c1 -> volume, low 

c1 comes from structured while volume and low comes from unstructured. This rule 

clearly reveals the fault associated to c1 model which is that its volume is quite low. 

• love-> smallSize , black 

love comes from the unstructured part while small size and black comes from the 

structured part. This rule gives the inference that mobile phone consumers love to 

purchase their phones because its black and also because it have a small size, smart 

producers of such phones will therefore gain more customers if they can combine this 

two unique features into one. 

• ssce, battery -> problem 

From this rule, ssce holders are complaining about battery problem of their phones a 

smart marketing strategy will be such that will capitalize on the improvement of the 

battery life of their product. 

• nokia -> surf, slow 

Nokia comes from the structured part while surf and slow comes from the 

unstructured part. This rule gives the inference that surfing (browsing) on nokia 
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phones is slow as experienced by the consumer. This can be working upon towards 

customer satisfaction. 

• ease -> browse, nokia 

Though, according to the rule above that browsing is slow on nokia mobile phone, it 

is quite easy to browse on this type of phones. 

4.8 SUMMARY AND DISCUSSION 

In this chapter the full scope of the application of the IIMA has been discussed using a 

practical case study of Customer relationship Management.  The components such of IIMA 

such as Data preprocessing, knowledge distillation and rule visualization were developed. 

The developed modules were applied on a mobile phone industry case study and inferences 

were generated towards obtaining competitive advantage through effective customer 

relationship management. 

The experience and observations gained from the application of these three aspects of IIMA 

in a practical real-life scenario, demonstrates the potential viability of the IIMA approach. 
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CHAPTER FIVE 

EVALUATION OF THE IIMA APPROACH 

5.1 INTRODUCTION 

This chapter reports evaluation of the IIMA approach. It reports the detailed evaluation using 

both the objective and subjective means of evaluating association rules gotten from data 

mining systems. It also presents a comparative evaluation of the scenario of integrated 

mining system with or without improvement proposed in this thesis. 

 

5.2 EVALUATION OVERVIEW 

To discover hidden correlations, association rule mining methods use two important 

constraints known as support and confidence. However, mining methods are often unable to 

find the best value for these constraints: large number of rules when these thresholds are low; 

very few rules when these thresholds are high. In addition, regardless of these above 

thresholds, mining methods produce many rules that have identical meaning or redundant 

rules. Indeed, such redundant rules seem as a main impediment to efficient utilization of 

discovered rules and should be removed.   

Basically in evaluating rules generated from data mining systems could be either objective or 

subjective. Objective measures, rely on the characteristics (surface features) of the patterns 

and the underlying data collection. In addition to the above, the subjective measure also 

considers users knowledge and interest (Xin & Yi-Fangm, 2006). 

 5.2.1 Objective Evaluation 

In this research objective evaluation is used to assay the performance of the IIMA system. 

This comparism is directed towards the execution time and extracted rules in order to reveal 
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the performance of both system depending on the number of keywordsets.   It is also aimed at 

examining which of the system (existing integrated mining system or IIMA) generates 

frequent keywordsets from the most important keywords rather than both the important and 

unimportant keywords. Consequently, this leads to extract interesting and uninteresting rules. 

The result of this evaluation helps to determine which system extracts the more interesting 

rules at short time. 

In order to carry out the above, another system (existing integrated mining system) was 

designed without including the semantic XML clustering module for the extraction of 

keywords from the unstructured data. It was only based on information exaction technique 

which uses the TFIDF weight, and we call this the Existing system. This system corresponds 

to IIMA in the following processes: 

- Transformation of documents into XML format 

- Filtration and stemming of the transformed documents 

- Reduction of keywords using the TF-IDF weighing scheme. 

In order to have a fair representation of structured and unstructured data, a low TFIDF weight 

of 20% was chosen for the existing system. The same 20% relevance threshold was chosen 

for the IIMA system.   

 

To measure the performance of the existing system to IIMA, we compared the large itemsets 

(first step of the association rule mining phase) generated from our system for different 

support thresholds with that of the one generated by the Existing System. The experiment was 

performed on the same corpus. 
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        Figure 5.1 Improved Integrated Mining system Vs Existing system  

  

The experimental results displayed in Figure 5.1 above reveals a reduction in the large 

itemset size generated from our system compared to the Existing system. Also, the execution 

time of our system was compared with the Existing system, to reveal the results displayed in 

Figure 5.2 below. 
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Figure 5.2 Graph of execution time against support. 

The above shows that the IIMA system always outperforms the Existing system for all values 

of minimum support.  

5.2.2 Motivation for Novelty Evaluation  

A data mining system may discover a larger body of rules. However, relatively few of these 

may convey useful new knowledge to the user. Several metrics for evaluating the 

interestingness of mined rules have been proposed. These metrics can be used to filter out a 

larger percentage of automatically extracted less interesting rules, thus yielding a more 

manageable number of higher quality rules to be presented to the user. An important but less 

explored aspect of interestingness is novelty. Novelty refers to a rule representing an 

association that is currently unknown. If for example we discover rules from a computer 

science announcement posted to a news group such as SQL-> database. This kind of rule 

might be said to be uninteresting because it represents knowledge that is currently known. 

Evaluating the novelty of a rule requires comparing it to an existing body of knowledge the 

117 
 



user is assumed to already possess. For the purpose of this integrated mining which rules 

consists mostly of words in natural language, a relevant body of common knowledge is basic 

lexical semantics, i.e. the meanings of words and the semantic relationships between them. In 

this research, we have employed a method for measuring novelty of integrated-mined rules 

using wordNet. 

 

5.2.3 Novelty Evaluation  

The novelty evaluation used in this research is based on the work of (Basu et al., 2001).  It 

falls under the subjective means of evaluating association rules.  

This method is based on two basic steps; 

1. Semantic Distance Measure 

2. Rule Scoring algorithm 

 

5.2.3.1 Semantic Distance Measure 

We can define the semantic distance between two words wi and wj as: 

          ))(()),((),( , jijiji wwPDirKwwPDistwwd ×+=                                      Eq. 5.1 1  

Where P(wi,wj) is a path between wi and wj, Dist(p) is the distance along path p according to 

our weighting scheme, Dir(p) is the number of direction changes of relations along path p, 

and K is a suitably chosen constant. The second part of the formula is derived from the (Hirst 

et. al., 1998), where the relations of WordNet are divided three direction classes-"up", 

"down" and "horizontal", depending on how the two words in the relation are lexically 

related. 
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Table 5.1 summarizes the direction information for the relation types used. The more the 

change in direction in the path from one word to another, the greater the semantic distance 

between the words. Changes of direction along the path reflect large changes in semantic 

context. 

The path distance it is based on the semantic distance definition of sussna (1993). In this 

definition, the path distance is defined as the shortest weighted path between wi and wj. Every 

edge in the path is weighted according to the weight of the wordNet relation corresponding to 

that edge, and is normalized by the depth in the WordNet tree where edge occurs. There are 

15 different relations between words in wordNet and these relations have been assigned 

different weights.  The weight chosen for different relations are given in the table 5.1; 

Table 5.1 Relation table (Basu et al., 2001) 

Relation Direction Weight 

Synonym. Attribute, Pertainym, 

Similar 

Horizontal 0.5 

Antonym Horizontal 2.5 

Hypernym,(Member/Part/Substance)

Meronym 

Up 1.5 

Hyponym,(Member/Part/Substance) 

Holonym, Cause, Entailment 

Down 1.5 
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5.2.3.2 Rule scoring Algorithm 

The scoring algorithm of rules according to novelty is outlined in the algorithm below 

 For each rule in a rule file 

 Let   A =  set of antecedent words, 

         C = set of consequent words 

           For each word wi ϵ A  and wj ϵ C 

                  If  wi and wj are not a valid words in WordNet 

  Score (wi, wj) <- PathViaRoot (davg,davg) 

       Elseif wj is not a valid word in WordNet 

  Score (wi, wj) <- PathViaRoot(wi,davg) 

           Elseif wi is not a valid word in WordNet 

  Score (wi, wj) <- PathViaRoot(davg,wj) 

       Elseif path not found between wi and wj (in user-specified   

time- limit) 

  Score (wi, wj) <- PathViaRoot(wi,wj) 

                  Else 

  Score (wi,wj)<- d(wi,wj) 

       Score of rule = Average of all (wi,wj) scores 

          Sort scored rule in descending order 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Rule Scoring Algorithm (Basu et al., 2001) 

The noun hierarchy of the WordNet is disconnected, there are 11 trees with distinct root 

nodes. The verb hierarchy is also disconnected with 15 distinct root nodes. After introducing 

Rnouns, Rverbs and Rtop, all words in the Wordnet are connected to each other. So in this 

composite hierarchy, any two words are connected by a path. The function PathViaRoot 

computes the distance of the default path. For nouns and verbs the ePathViaRoot function 
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calculates the distance of the path between the words as the sum of the path distances of each 

word to its root.  

 If one of the words is an adjective or an adverb, and the shortest path method does not 

terminate within the specified time-limit, then the algorithm finds the path from the adjective 

or adverb to the nearest noun, through relations like "pertainym", "attribute", etc. It then finds 

the default path up the noun hierarchy, and the PathViaRoot function incorporates the 

distance of the path into the path distance measurement. 

If some of the words extracted from the rules are not valid in Wordnet e.g. abbreviations, 

names like Philip, domain specific terms like booknews, etc., they are assigned the average 

depth of a word in the wordNet hierarchy, which was estimated by sampling techniques to be 

about 6, and then estimated its path distance to the root of the combined hierarchy by using 

the PathViaRoot function. 
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5.3 SUBJECTIVE EVALUATION RESULTS 

 

Figure 5.4 Evaluation rules in XML format for IIMA system 

Each XML <Rule> </Rule> node in figure 5.4 represents each rule and its corresponding 

novelty value as calculated by the novelty methodology described above. This snapshot was 

taking before eliminating the rule termed uninteresting.  
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5.3.1 Discussion 

The above evaluation algorithm was applied on the existing system and the IIMA system. In 

order to compare the percentage of rules that are novel for the existing system and the IIMA 

system, we evaluated rules gotten at the following thresholds for both systems. 

Table 5.2 Result (1) displayed 

Existing System IIMA System 

TFIDF Weight = 20% Relevance weight = 20% 

Support =5% Support = 5% 

Confidence=70% Confidence= 70% 

 

For each of the system, 50% of the highest evaluation result was taken as the medium 

evaluation score and the rules having their evaluation score below this value for each system 

was eliminated.  Using the following formula, we calculated the percentage of the rules that 

are novel for each system to reveal the following. 

100
     generated rules ofnumber  Total

  rules novel ofnumber  Total% ×=novelty  Eq. 5.2 

 

Table 5.3 Result (2) displayed 

Existing System IIMA System 

Percentage novelty= 54% Percentage novelty= 71% 
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5.4 POSSIBILITIES FOR GENERALIZATION OF RESULT 

Having shown that IIMA produced a 17% increase in novel rules generated, in this case 

study in which it is applied, we therefore postulate that IIMA can indeed be applied to 

generate 71% novel rules in other domain of application due to the fact that the developed 

system is not domain dependent. IIMA is particularly applicable to domain whose 

terminologies are largely represented in a lexical database such as wordNet which was used 

for this experiment. 

 

5.5 SUMMARY AND DISCUSSION  

In this chapter a report of the procedure adopted for the evaluation of the IIMA approach  

and its results were clearly stated.  It is shown that there was indeed an improvement in the 

IIMA system over the existing system variant. Furthermore, the case study scenario has 

demonstrated the applicability of IIMA in a real-life context and proved the viability of the 

IIMA approach. 

This is because IIMA produced measurable reduction in time and numbers of rules 

generated, demonstrated the potential to improve customer relationship management decision 

based on highly reliable and novel rules. The case study therefore, successfully validates 

IIMA as platform for generating dependable rules to populated decision support systems. 
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CHAPTER SIX  

SUMMARY OF FINDINGS, CONCLUSION AND FUTURE WORK 

This Chapter summarizes and discusses the contributions of the thesis, and presents an 

outlook of the opportunities for future research work. The thesis has presented a platform to 

mine from integrated data. 

 

6.1 SUMMARY OF FINDINGS 

The thesis has shown that integrating structured and unstructured data is a critical component 

for the success of the modern enterprise because of its ability to take advantage of all 

available information in a holistic perspective. 

However, the existing few integrated mining systems need to reduce the level of uncertainty 

in decision making based on the quality of rules on which these decisions are based.  Also, 

there is a need to apply such discoveries to improve the field of customer relationship 

management. 

The thesis intervened by introducing an approach which is a solution to the above concerns. 

This system coined IIMA (Improved Integrated Mining architecture) is a hybrid of 

Association Rule Mining and Information Extraction technique based on content similarity of 

XML (Extensible Markup Language) document. 

 IIMA approach consists of three main phases; 1) Extraction and Integration phase. This 

phase is aimed at optimizing the performance of the knowledge mining phase. 2) knowledge 

distillation phase which is concerned with generating association rules based on the result of 

the extraction and integration phase 3). The rules visualization phase whereby the generated 

rules are interpreted for making efficient business decisions.   
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IIMA is based on a set of assumptions which defines the condition for its optimal 

applicability. These are: 

• That the domain knowledge is fairly represented in a lexical database or an ontology. 

• High threshold value for confidence and low threshold value for support have to 

chosen to ensure a fair representation of the important variables for the rule 

generation. 

The thesis provided a validation of the IIMA approach by using a case study of creating a 

competitive advantage for mobile phones industry through effective customer relationship 

management. This has demonstrated the applicability and viability of IIMA in a real-life 

context. 

Based on the results obtained from mining customer relationship management integrated data 

in mobile phone industry, the thesis made some significant contributions. Firstly, in the world 

of business decision support system (business intelligence), the task of integrating various 

data types which has been the burden of the enterprise application developer (Roth et al., 

2002; Garcia-Molina et al., 1995; Tomasic et al., 1997; Adali et al., 1996; Levy et al., 1996; 

http://www.infoshark.com), has been addressed. By applying IIMA on CRM data gathered 

for the purpose of experimental validation in this research, the result revealed novel CRM 

inferences which are an advantage of our modified market decision support system. 

According to (Frieder et al., 2000; Roth et al., 2000; Dean & Alexandra, 2004; Aravindan, 

2005; Robert, 2006; Prem, 2007; Sukumaran & Sureka, 2007; An Oracle White paper, 2007) 

data integration has not been approached from the semantic analysis and those that have been 

relies on domain specific ontologies making it limited in flexibility. The second contribution 

therefore is to address the novel problem of classifying semantically related XML 
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documents. Applying IIMA on mobile phone industry case study generated inferences 

towards competitive advantage through effective customer relationship management. This is 

due to the fact that semantically related keywords extracted from the combination of 

structured   and unstructured component of the data mostly generated the novel rules.  

 

6.2 CONCLUSION 

This research has proposed a more efficient approach of integrating structure and 

unstructured data for integrated mining in decision support system by minimizing the 

practice of handling structured and unstructured data as distinct information entities, which 

often results in decision management failure.  The research has provided a domain 

independent, flexible and efficient solution to discovering decision making rules. It has 

succeeded in   extracting association rules which contain important features which form a 

worthy platform for making effective decisions as regards customer relationship management 

in the mobile phones manufacturing industry. This was made possible due to the efficient 

refinement of the data selected for mining from both the structured and unstructured 

platform. This refinement was brought about by the semantic clustering of unstructured data.  

Also, identifying user requirements and understanding the user is a major part of 

contributing to the profit of the organization and this can be achieved through competitive 

intelligence.  This research has helped to reduce the uncertainty and inaccuracy of rules from 

which decisions are based towards the competitive advantage of an organization.   The 

generated rules therefore, give pointers to various characteristics of customers of mobile 

phone manufacturing industry which will help in identifying, attracting, developing and 
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maintaining successful customer relationships over time in order to increase retention of 

profitable customers.  

 

6.3 FUTURE WORK 

The thesis provides several opportunities for further research in the immediate future. The 

IIMA approach as implemented in this thesis has some limitations which has created some 

research possibilities to enhance the concept in the following areas: 

1) Ontological knowledge 

In future research, the role of automatically generated ontological knowledge in supporting the 

detection of semantic relatedness among XML data is very viable. Of particular interest is WSD 

(Word Sense Disambiguation). The WSD algorithm is based on a context-free grammar, to 

find structural semantic interconnections: structural specifications of the possible senses for 

each word in a context; the graph representation of word senses can be automatically built 

from several sources, including WordNet, annotated corpora, and glossaries. (Navigli & 

Velardi, 2005). 

There are also other approaches such as direct approaches that require a preliminary 

qualitative/quantitative analysis of the characteristics of the data; a different approach may be 

devised by mapping the problem at hand to a problem of clustering ensembles (Strehl & 

Ghosh, 2002). In this way, multiple clustering solutions would be generated, each one 

according to a different setting of the f -γ parameter field (and other specific parameters of 

the clustering algorithm(s) being used), in order to form a clustering ensemble; then, from 

this ensemble, the consensus partition would be selected by employing a clustering 

ensembles method. 
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2) Increase in the unstructured components 

In future studies, the algorithms can be improved by taking the attachments of the e-mails 

(pictures, text files, etc.) into consideration and extending the proposed system to 

multilingual context. 

     3) Interpretation of association rules 

The integrated mining system can be extended to use the concept features to represent text 

and to extract the more useful association rules that have more meaning. Moreover, the 

system can be improved by visualizing the extracted association rules in graphical 

representation in two or three-dimension association networks. 
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APPENDICES 

 

A.1 QUESTIONNAIRE  

 

An Empirical Analysis of Mobile Phone users for Customer Relationship Management 

Introduction 

This questionnaire aims at eliciting information from you in order to measure the analyze mobile 

phone user for the purpose of Customer Relationship management. Please answer the questions 

honestly by ticking or writing the answer that best express your view. We would like to assure you of 

the confidentiality of the information you provide.    Thank you. 

Statistical information 

1. Gender:              (      ) Male           (      )     Female 

2. What is your age range?15-20 (  ) 21-30 (  ) 31-40 (  ) 41-50 (  ) 51-60 (  ) Above    60(  ) 

3. What is your profession?  ……………………………………………………………… 

4. What is your highest Academic qualification?  …………………………………………… 

5. Are you a Nigerian?    YES (     )         NO (    ) 

6. What State of Nigeria do you live in  ……………………………………………………… 

7. Is your Education IT related?  YES (     )         NO (    ) 

 

Core Product (CP) Questions 

1. Your mobile phone is used for the following: 

 Strongly 

Agree 

Agree Neutral Disagree Strongly 

Disagree 

Voice calls      
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Data (as modem):      

Answering machine:      

SMS:        

WAP (Internet ):      

Address book      

Calendar:      

Use GPRS function:      

Other (specify usage apart from above):  ………………………………………………………… 

 

2. If you use WAP (internet), for what do you use it? 

     (      ) News    (     ) Sports     (     ) Shopping    (     ) Travel service     (    ) Local information 

     (      ) Cinema                                          Other: ……………………………………………… 

 

3. What network service do you have on your mobile phone……………………………………… 

Basic Product (BP) Questions  

1. How much does a cell phone’s name matter to you? 

(     )   Does not matter at all           (     ) Not Much    (     ) Very Much 

2. How much do you spend on your mobile phone each month? 

(    ) less than N1,000  (    ) N1,000 -   N5,000    (    ) N5,000 -   N10,000  

(    ) N10,000 -   N20,000  (    ) N20,000 -   N50,000       (    ) Above N50 000 

3. What Brand of mobile phone are you using now? 

(      ) Nokia (      ) Motorola (      ) Ericsson    (      ) Samsung      (      ) LG (      ) Philips (      ) 

Sagem (      ) Arcatel             (      ) Sony  (      ) Siemens   Nokia 

Others……………………. 
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4. Please write your model of phone ……………………………………………………………… 

5. In what color do you prefer your mobile phone?.............................................................................. 

 

6. Select the average size that you prefer for your mobile phones. 

       (      ) Very small (      ) Small  (     ) Big  (      )Very big  

 

 

Expected Product (EP) Questions  

1. Rate the customer service of your Cell Phone Carrier; 

(      ) Good      (      ) Satisfactory         (      ) Unsatisfactory      (     ) Poor  

2. For how long have you been using this particular phone?.............................................................. 

3. How often do you change phone in a year?..................................................................................... 

4. What is the reason for changing your phone?  Phone got spoilt (   )Stolen    (    )Gave it  out (    ) 

Misplaced it  (    )             Others specify………………………………………… 

5. What is the general assessment of your mobile phone user friendliness?  

   (     ) Excellent        (     ) Good        (      ) Satisfactory      (      ) Unsatisfactory     (     ) Poor  

6. Rate how easy it is to navigate through the services you have on your mobile phone. 

   (      ) Excellent       (     ) Good         (      ) Satisfactory        (       ) Unsatisfactory      (     ) Poor  

 

Augmented Product (AP) Questions  

1. What do you like most about your mobile phone? ……………………………………………… 

…………………………………………………………………………………………………………

…………………………………………………………………………………………………………

……………………. 

2. What do you dislike most about WAP?............................................................................................ 
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…………………………………………………………………………………………………………

…………………………………………………………………………………………………………

…………………… 

3. Do you consider health hazard in the purchase of mobile phones? 

  (   )Yes      (   )No    (    )No Comment (       )    

4. If yes, how do you think you can avoid it when buying your phone? 

…………………………………………………………………………………………………………

…………………………………………………………………………………………………………

……………………. 

 

 

Potential Product (PP) Questions 

1. Based on why you use your cell phone, do you feel you have a need for 4G higher-speed wireless 

(i.e. for faster video) rather than 3G wireless?  (   ) Yes   (   ) No   (    ) No comment      

2. Share your best mobile phones experience....................................................................................... 

…...............................................................................................................................................................

...................................................................................................................................................................

.................... 

3. How satisfied are you with the overall performance your mobile phone provider? 

    (    ) Excellent     (  ) Good       (   ) Satisfactory      (    ) Unsatisfactory      (     ) Poor  

4. What phone accessories do you have (you can choose more than one option(s) 

    (     ) Shell      (     ) Hand free       (     ) MP3 plug-in        (     ) Computer ringing tone editor  

     Others (please specify)…………………………………………………………………………… 

6.  How would you rate the availability of purchasing your mobile phone? 

     (     ) Excellent       (     ) Good      (     ) Satisfactory     (     ) Unsatisfactory       (     ) Poor  
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7. Why did you decide to purchase that particular brand of mobile phone…………………………. 

    …………………………………………………………………………………………. … …….. 

8.  What improvements would you like to see, if any on your mobile phone……………………… 

      …………………………………………………………………………………………………… 

       ………………………………………………………………………………………………….. 

9. What type of problem do you usually encounter while using your mobile phone?....................... 

      …………………………………………………………………………………………………… 

      …………………………………………………………………………………………………… 

10. Are there any other comment you would like to make regarding your   mobile phone.    

………………………………………………………………………………………………………

………………………………………………………………………………………………… 

11. Which of the following is a priority when buying a mobile phone? 

       (   ) Maintenance       (     ) Repairs      (      ) Warranty       (     ) All of the above 
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