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ABSTRACT 

Malaria is one of the world’s most common and serious diseases causing death up to about three million 

people each year. Its most severe occurrence is caused by the protozoan Plasmodium falciparum. Reports 

have shown that the resistance of the parasite to existing drugs is increasing. Therefore, there is a huge 

and urgent need to discover and validate new drug or vaccine targets to enable the development of new 

treatments for malaria. The ability to discover these drug or vaccine targets can only be enhanced from 

our deep understanding of the detailed biology of the parasite, for example, how cells function and how 

proteins organize into modules such as metabolic, regulatory and signal transduction pathways. The 

formally effective and popular anti-malaria drug chloroquine inhibits multiple sites in metabolic 

pathways, leading to neutrophil superoxide release. It has therefore been noted that the knowledge of 

metabolic pathways and recently signalling transduction pathways in Plasmodium are fundamental to aid 

the design of new strategies against malaria. In the first part of this work, a linear-time algorithm for 

finding paths in a protein-protein interactions network under modified biologically motivated constraints 

was used. Several important signalling transduction pathways in Plasmodium falciparum were predicted. 

A viable signalling pathway characterized in terms of the genes responsible that may be the PfPKB 

pathway recently elucidated in Plasmodium falciparum was predicted. We obtained from the FIKK 

family, a signal transduction pathway that ends upon a chloroquine resistance marker protein, which 

indicates that interference with FIKK proteins might reverse Plasmodium falciparum from resistant to 

sensitive phenotype. We also propose a hypothesis that showed the FIKK proteins in this pathway as 

enabling the resistance parasite to have a mechanism for releasing chloroquine(via an efflux process). 

Furthermore, a signalling pathway that may have been responsible for signalling the start of the invasion 

process of Red Blood Cell(RBC) by the merozoites was also predicted. It has been noted that the 

understanding of this pathway will give insight into the parasite virulence and will facilitate rational 

vaccine design against merozoites invasion. And we have a host of other predicted pathways, some of 

which have been used in this work to predict the functionality of some proteins. In another work, we 

adapted and extended a method (used in the first work for extracting signalling pathways) to extract linear 

metabolic pathways from the malaria parasite, Plasmodium falciparum metabolic weighted graphs 

(networks). The weights are calculated using the metabolite degrees. Adopting the representation of the 

biochemical metabolic network as we have in Koenig et al., 2006, we are able to make our algorithm 

tenable to accept metabolic network from other source apart from KEGG. This gives us opportunity for 

the first time, to compare the metabolic pathways extracted from different metabolic networks. We run 

our algorithm (for four selected pathways: Pyruvate, Glutamate, Glycolysis and Mitochondrial TCA) on 

graph from KEGG and compare our results with the results obtained from recent algorithms: ReTrace and 
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atommetanet. Our results compare favourably with these two algorithms. Considering the results with 

genes classified into these pathways from Plasmodb, resulted into a lot of false positiveness. Furthermore, 

we compared the runs of our algorithm on graphs from KEGG and PlasmoCyc (from BioCyc). The 

results are remarkably different and the results from PlasmoCyc produced less false positiveness when 

compared to the results from Plasmodb. We identify 2, 1, 2, 4 gene(s) in addition to belong to these 

pathways respectively. Some of the genes have not been classified earlier to any known metabolic 

pathways. 



CHAPTER ONE 

 

INTRODUCTION 

1.1 Background Information 

The most fatal and prevalent form of malaria is caused by the blood borne pathogen Plasmodium 

falciparum. Annually, approximately up to three million people die of malaria. Also, hundreds of 

millions of people in a year become clinically ill (Bozdech et al., 2003a). The negative influence 

of these results is huge and its socioeconomic impact is beyond measure. This influence is 

particularly prominent in the African continent, where an estimated US$12 billion is being lost 

yearly (Breman et al., 2004, Gallup and Sachs, 2001). Reports have shown that the resistance of 

the parasite to existing drugs is increasing. The formerly popular anti-malaria drug chloroquine, 

which inhibits multiple sites in metabolic pathways leading to neurophil superoxide release is 

largely now ineffective and the currently popular one, artemisinin’s biologically mode of action is 

controversial. Therefore, there is a huge and urgent need to discover and validate new drug or 

vaccine targets to enable the development of new treatments for malaria (Ben et al., 2001). The 

ability to discover these drug or vaccine targets can only be enhanced from our deep understanding 

of the detailed biology of the parasite, for example, how cells function and how proteins organize 

into modules such as metabolic, regulatory and signal transduction pathways. Biologically, a 

signal transduction pathway is the chain of processes by which a cell converts an extra cellular 

signal into a response, while metabolic pathways are processes (series of chemical reactions) by 

which the parasite produces the energy and component it needs to function. In most unicellular 

organisms, the number of signal transduction and series of chemical reactions influences the 

number of ways the cell can react and respond to the environment. It has been noted that the 
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knowledge of signalling transduction and metabolic pathways in Plasmodium are fundamental to 

aid the design of new strategies against malaria (Doering, 1997; Koyama et al., 2009). 

 

For the malaria parasites, one of the most commonly used computational method for analyzing 

microarray gene expression data is clustering. This has been used by LeRoch et al (LeRoch et al., 

2003) and Bozdech et al (Bozdech et al., 2003a). The results obtained have been used to classify 

and support genes classification into functional modules, namely metabolisms and metabolic 

pathways. The results obtained have left us with many putative functional genes. The Malaria 

Parasite Metabolic Pathways (http://sites.huji.ac.il/malaria, 2011), also accessible from plasmoDB 

(http://www.plasmodb.org, 2011), provides limited information about this. Recent works like 

Gangman et al (Gangman et al., 2007) and Zhou et al (Zhou et al., 2005) introduce the use of 

Gene Ontology [GO] but the results are also still very limited in their application to P. falciparum 

(Oyelade et al., 2008). This is because only a minority of P. falciparum proteins is annotated by 

GO terms.  

 

An extensive analysis of the available protein-protein interaction (LaCount et al., 2005) for P. 

falciparum is not available. And none of the main chains of signal transduction pathways in P. 

falciparum is presently known. The available knowledge about protein interactions and gene co-

regulation in a single specie can be represented as a weighted graph of protein interactions, whose 

vertices represent proteins and whose edges represent interactions; each edge is assigned a weight 

from available experimental data (using the transcriptomic and protein interaction data), indicating 

the strength of evidence for the existence of the corresponding interaction. A class of protein 

signalling cascades (or signal transduction pathways) can be described as chains of interacting 

proteins, in which protein interactions enable each protein in the path to modify its successor so as 
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to transmit biological information. Such structures correspond to simple paths in the protein 

interaction weighted graph (Scott et al., 2006). Identifying biologically meaningful simple paths 

corresponding to signalling pathways is very straightforward since in most of the signalling 

cascades the proteins would transmit the signal from the membrane, where the signal is initiated, 

towards the nucleus by activation of transcription factors, which in turn lead to transcription of the 

final effectors. 

 

For the first time, to mine out chains of signal transduction pathways in P. falciparum, in this 

research work, we implemented and applied the techniques developed and deployed to the yeast 

protein network by Scott et al (Scott et al., 2006).  We consider a new modified biologically 

motivated extension of the basic path-finding problem. This is essential for application to 

organisms where not many experimentally validated protein interactions are known, such as P. 

falciparum. Recent work by Bebek G. et al (Bebek and Yang, 2007) presented alternative 

techniques to solving the path-finding problem, but all of these methods suffer from the problem of 

sparse availability of data. In P. falciparum, 60% of its proteins lack resemblance to any existing 

annotated organism (Gardner et al., 2002), which illustrates the dimension of this problem. 

 

There have been several attempts to automate the reconstruction of metabolic pathways (Kanehisa, 

2002; Ron et al., 2008; Green and Karp, 2007; Pinney et al., 2005 and Pinney et al., 2007). A 

recent review (Health et al., 2010) and comparison with a manual reconstruction of the pathways 

(Ginsburg, 2006) shows how in-appropriate the present tools are and also how very limited the 

manually curated database is. To improve the tools, the review (Health et al., 2010), recommend 

that the available information on the biochemistry of the parasite should always be considered 

when attempting to reconstruct its metabolic pathways or when filtering out erroneous pathways 



4 

 

generated by these tools. In line with these suggestions, a number of computation approaches have 

been developed to find paths in a metabolic network. An overview on these approaches can be 

found in Health et al. (Health et al., 2010) , Pitkaenen et al. (Pitkaenen et al.,2009) and Planes and 

Beasley (Planes and Beasley, 2009). Methods developed so far can be classified into two classes. 

One that view paths from a source reaction to a target reaction, denoted as R-R case and the 

second view paths from a source compound to a target compound, denoted also as the C-C case. It 

is interesting to note that the first work (Croes et al., 2006; Croes et al., 2005) that introduced the 

R-R concept has been the most effective of all paths finding approaches presented to date in 

literature (Planes and Beasley, 2009). Furthermore, metabolic pathways can either be linear or 

nonlinear (such as pentose phosphate pathway). Only two methods presently can extract non-linear 

pathways (Health et al., 2010; Pitkaenen et al.,2009) and none of these methods (either for 

extracting linear or non-linear pathway) has been applied to the analysis of P. falciparum 

biochemical network as available in MPMP (Ginsburg, 2006), KEGG (Kanehisa, 2002) and 

BioCyc (Karp et al., 2005). It is important to note that all the methods developed so far are KEGG 

based and these methods are not flexible for usage with another biochemical network. 

 

Also in this research work, we adapted the algorithm we developed for mining chains of signal 

transduction pathways in the first work to P. falciparum metabolic weighted graphs (networks). 

The weights are calculated using the metabolite degrees (Croes et al., 2006). Such graphs were 

built from BioCyc (easily updated with MPMP) and KEGG. Adopting the representation of the 

biochemical metabolic network as we have in Koenig et al. (Koenig et al., 2006), we are able to 

make our algorithm tenable to accept metabolic network from other sources apart from KEGG. 
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This gives us opportunity for the first time to compare the metabolic pathways extracted from 

different metabolic networks. 

 

 

1.2 Statement of the problem 

A major challenge of post-genomic biology is to understand the complex networks of interacting 

genes, proteins and small molecules that give rise to biological form and function. Protein-protein 

interactions (for example, integrated with transcriptional data) and biochemical metabolic 

networks (overlaid also with transcription data) but processed in alignment over an organism 

reference metabolic maps, resulting into composite graphs, are crucial to the assembly of protein 

machinery and the formation of protein signalling cascades. Hence, the dissection of protein 

interaction and biochemical metabolic networks has great potential to improve the understanding 

of cellular machinery and to assist in deciphering protein function. 

 
 

1.3 Aim and Objectives of the study 

The overall aim of this research work is to investigate the use of graph-based techniques to 

integrate information, express relationships and make inferences or predictions on biological 

processes, motivated by data generation in genomics, transcriptomics, metabolomics and 

proteomics. This aim will be realized through the following objectives: 

• To construct graph-based network structures for the protein-protein interactions and 

biochemical metabolic networks. 

• To use composite, graph-based biologically motivated network structure for the prediction 

of genes into functional modules – Signalling and Metabolic pathways.  
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1.4 Methodology 

In view of the background philosophy and the scope of the research, the following methods would 

be used to accomplish the stated objectives. Essentially, signaling and metabolic interaction 

networks using graph-based techniques are established.  

Protein-protein interaction data is obtained from the work of LaCount et al (LaCount et al., 2005). 

In their result, we have 2846 interactions between 1309 proteins. In addition to the protein-protein 

interaction data, the transcriptional data from LeRoch et al. (LeRoch et al., 2003) and Bozdech et 

al. (Bozdech et al., 2003a) was also used to measure the interaction reliabilities, depicted by the 

edges. To mine signaling pathways from this resulting network, the techniques developed and 

deployed to the yeast protein network by Scott et al (Scott et al., 2006) was applied and then 

consider a new modified biologically motivated extension of the basic path-finding problem to be 

able to deal with organisms of sparsely populated experimentally verified protein interactions such 

as the malaria parasite.  

The metabolic (network) graph representation in Koenig et al. (Koenig et al., 2006) was used. In 

this work, a graph was established by defining neighbours of metabolites. Two metabolites are 

neighbours if and only if an enzymatic reaction exists that needs one of the metabolites as input 

(needed substrate) and produce the other as output (product). We downloaded PlasmoCyc version 

14.6 for P. falciparum 3D7 from Biocyc.org on the 28th July, 2010 and biochemical metabolic 

files for the P. falciparum 3D7 last updated 22nd December, 2010 from KEGG. Based on the 

graph representation depicted in figure 3.4 of chapter three, from PlasmoCyc, we have 608 

compounds and 824 reactions. And from KEGG, we have 3011 compounds and 3524 reactions. 

We found that not all compounds used in the reactions listed for P. falciparum 3D7 in KEGG 

database are listed in the compounds list for P. falciparum 3D7 in KEGG database. Therefore, the 
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file containing all compounds was used and found 6516 compounds and 4126 reactions. Note that 

the reactions that were ignored due to the fact we could not find all compounds listed in their 

definitions are now accounted for.  

 

Note that the graph formation above is bipartite, having two type of nodes, namely compounds and 

reactions. We transformed this graph formation into one with a single type of node, namely 

reaction. This representation leads to Reaction-Reaction (R-R) case way of viewing pathway, that 

is, from a source reaction to a target reaction. Converting the bipartite graphs from PlasmoCyc and 

KEGG (the one with 6516 compounds and 4126 reactions) to our R-R representation, we have a 

dense graph of 824 reaction nodes with 40299 edges and another heavily dense graph of 4126 

reaction nodes with 780560 edges. We assign weights to the edges on our two graphs using 

metabolite degrees (Croes et al., 2006).  

We adapted the algorithm developed for mining signalling pathways to the resulting P. falciparum 

metabolic weighted graphs (networks) above to extract metabolic pathways.  

 

1.5 Significance of the study 

Large-scale interaction detection methods have resulted in a large amount of protein-protein 

interaction data. And biochemical research has elucidated an increasingly complete image of the 

metabolic architecture. Studying the resulting networks can help biologists to understand 

principles of cellular organization and biochemical phenomenon. Functional modules as a critical 

level of biological hierarchy and relatively independent units play a special role in biological 

networks. Since network modules do not occur by chance, identification of modules is likely to 

capture the biologically meaningful interaction. Naturally, revealing modular structures in 
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biological networks is a preliminary step for understanding how cells function and how proteins 

organize into a system. 

Due to growing resistance of the malaria parasite to existing chemotherapy, there is a huge and 

urgent need to discover and validate new drug or vaccine targets to enable the development of new 

treatments. The ability to discover these drug or vaccine targets can only be enhanced from the 

deep understanding of the detailed biology of the parasite, that is, how cells function and how 

proteins organize into modules such as metabolic and signal transduction pathways.  

 

1.6 Contribution to knowledge 

- The study introduced the use of graph-based linear-time algorithm for finding paths in a 

network of Protein-Protein Interactions in Plasmodium falciparum. From this, we predicted 

several important signalling transduction pathways in Plasmodium falciparum. We have predicted a 

viable signalling pathway characterized in terms of the genes responsible that may be the PfPKB 

pathway recently elucidated in Plasmodium falciparum. We obtained from the FIKK family, a 

signal transduction pathway that ends upon a chloroquine resistance marker protein, which 

indicates that interference with FIKK proteins might reverse Plasmodium falciparum from resistant 

to sensitive phenotype. We also proposed a hypothesis that showed the FIKK proteins in this 

pathway as enabling the resistance parasite to have a mechanism for releasing chloroquine(via an 

efflux process). Furthermore, we also predicted a signalling pathway that may have been 

responsible for signalling the start of the invasion process of Red Blood Cell(RBC) by the 

merozoites. It has been noted that the understanding of this pathway will give insight into the 

parasite virulence and will facilitate rational vaccine design against merozoites invasion. And we 
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have a host of other predicted pathways, some of which have been used in this work to predict the 

functionality of some proteins. 

 

- And lastly, our graph-based linear time algorithm for finding paths was extended to find 

application in biochemical metabolic network to extract metabolic pathways. Doing this, 

this gives us opportunity for the first time to compare the metabolic pathways extracted 

from different metabolic networks. We run our algorithm (for four selected pathways: 

Pyruvate, Glutamate, Glycolysis and Mitochondrial Tricarboxylic Acid Cycle (TCA)) on 

graph from KEGG and compare our results with the results obtained from recent 

algorithms: ReTrace and atommetanet. Our results compare favourably with these two 

algorithms. Considering the results with genes classified into these pathways from 

Plasmodb, resulted into a lot of false positiveness. Furthermore, we compare the runs of 

our algorithm on graphs from KEGG and PlasmoCyc (from BioCyc). The results are 

remarkably different and the results from PlasmoCyc produce less false positiveness when 

compared to the results from Plasmodb. We identify 2, 1, 2, 4 gene(s) in addition to belong 

to these four pathways respectively. Some of the genes have not been classified earlier to 

any known metabolic pathways. 

 

1.7 Limitation of the scope of the study 

Our present work has given lead to several future studies. To further address the problem of data 

scarcity (in particular with regard to the protein–protein interaction information available for the 

malaria parasite), we need to develop techniques to deal with missing edges, i.e. protein–protein 

interaction that have never been observed but exist in reality. One way to do this is to integrate 

transcription factors into the derived network, resulting into what has been called an integrated 
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cellular weighted network of transcription–regulation and protein–protein interaction (Yerger-

Lotem et al., 2004). For the malaria parasite P. falciparum, only about a third of the number of 

transcription-associated proteins (TAPs) usually found in the genome of a free-living eukaryote is 

presently known (Coulson et al., 2004). 

  

Presently (at the time of this work), from plasmodb, for P. falciparum, we have 137 metabolic 

pathways covering 2521 genes. This is just about half of the annotated genes of P. falciparum. 

Therefore, there is a need to deploy our techniques at a large scale for all known pathways. This, 

we know from findings, will help to both reconfirm existing classifications and classify genes of 

unknown functions into functional modules - metabolic pathways. We also need to find paths in 

attempts to engineer the finding of unknown metabolic pathways in P. falciparum. 

 

1.8 Arrangement of the Thesis 

The rest of the thesis is organized as follows; Chapter 2 describes the literature review; the 

overview of the malaria parasite, review of the clustering tools, the system biology and network 

modelling on the properties of biological networks. Chapter 3 describes the research methodology 

and chapter 4 explains the various results generated from both signalling and metabolic networks. 

Chapter 5 gives the conclusion of the study and discusses future research directions in this area. 
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CHAPTER TWO 

 

LITERATURE REVIEW 

2.1. Overview of the Malaria Parasites 

Approximately 300 million people worldwide are affected by malaria and between 1 and 1.5 

million people die from it every year. Previously extremely widespread, the malaria is now mainly 

dominant in Africa, Asia and Latin America. The problems of controlling malaria in these 

countries are aggravated by inadequate health structures and poor socio economic conditions. The 

situation has become even more complex over the last few years with the increase in resistance to 

the drugs normally used to combat the parasite that causes the disease.  

Malaria is caused by protozoan parasites of the genus Plasmodium. Four species of Plasmodium 

can produce the disease in its various forms:  

• Plasmodium falciparum  
• Plasmodium vivax  
• Plasmodium ovale  
• Plasmodium malaria  

Currently, Plasmodium vivax and Plasmodium falciparum are “the most commonly encountered 

malarial parasites” (Carter and Kamini, 2002). P. vivax is found in nearly all areas where malaria 

is endemic and is the only one of the four species whose range expands into the temperate regions 

(John and William, 2006). P. falciparum, on the other hand, is found only in the tropic and 

subtropic regions, though its prevalence in the tropics is high (Carter and Kamini, 2002). P. 

malariae is seen less frequently than either P. vivax or P. falciparum, but it is found in the same 

regions where P. vivax or P. falciparum are found. Lastly, P. ovale is prominent throughout 

tropical Africa and on the West African coast; however, its distribution is the most limited of the 
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four human malarial parasites (John and William, 2006; Carter and Kamini, 2002). P. vivax, P. 

malariae, and P.ovale are associated with a low risk of death, whereas P. falciparum carries a high 

risk of fatality. 

P. falciparum is the most widespread and dangerous of the four: untreated it can lead to fatal 

cerebral malaria. Malaria parasites are transmitted from one person to another by the female 

anopheline mosquito. The males do not transmit the disease as they feed only on plant juices. 

There are about 380 species of anopheline mosquito, but only 60 or so are able to transmit the 

parasite. Like all other mosquitos, the anophelines breed in water, each species having its preferred 

breeding grounds, feeding patterns and resting place. Their sensitivity to insecticides is also highly 

variable. Plasmodium develops in the gut of the mosquito and is passed on in the saliva of an 

infected insect each time it takes a new blood meal. The parasites are then carried by the blood into 

the victim's liver where they invade the cells and multiply. After 9-16 days they return to the blood 

and penetrate the red cells, where they multiply again, progressively breaking down the red cells. 

This induces bouts of fever and anaemia in the infected individual. In cerebral malaria, the infected 

red cells obstruct the blood vessels in the brain. Other vital organs can also be damaged, leading 

rapidly to the death of the patient. 

 

2.1.1 Plasmodium falciparum Life Cycle 

The life cycle of Plasmodium (John and William, 2006; Carter and Kamini, 2002) can be divided 

into two distinct phases: the asexual cycle in humans and the sexual cycle in mosquitoes. To 

begin the asexual cycle in humans, an infected female Anopheles mosquito injects sporozoites into 

the new human host during a blood meal. Sporozoites injected into the bloodstream leave the 

blood vascular system within 30 to 40 minutes and enter the liver. This begins the exo-erythrocytic 
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stage of the life cycle during which asexual multiplication occurs. Within hepatocytes, the 

sporozoites undergo many nuclear divisions to become schizonts. This occurs over a period of 6 to 

15 days, after which the schizonts burst and release thousands of merozoites into the circulation. 

This marks the end of the exoerythrocytic cycle. 

Upon release, the merozoites invade the red blood cells where they undergo another asexual cycle 

called erythrocytic schizogony. This is also known as the erythrocytic cycle. During this stage the 

merozoites develop to form immature or ring stage trophozoites which then progress to mature 

trophozoites. The mature trophozoites develop into schizonts. The erythrocytic cycle results in the 

formation of 4 to 36 new parasites in each infected cell within a 44 to 72 hour period. At the end of 

the cycle, the infected red blood cells burst, releasing the merozoites. At this stage, merozoites can 

either infect new red blood cells to begin the erythrocytic cycle again, or, through the action of 

some unknown factor, the merozoites can develop into gametocytes. It is of note that blood stage 

parasites are responsible for the clinical symptoms of malaria. For example, lysis of the red blood 

cells is an important cause of malaria-associated anemia. In addition, if a significant number of 

infected cells rupture simultaneously, the resulting material in the bloodstream is thought to induce 

a malarial paroxysm. 

 

In the case of the sexual cycle in mosquitoes, when a female Anopheles mosquito takes a blood 

meal from an infected person, both male (microgametocytes) and female (macrogametocytes) may 

be ingested. The microgametocytes and macrogametocytes mature to become microgametes and 

macrogametes, respectively. In the midgut of the mosquito, the microgametes fertilize the 

macrogametes, forming a zygote. The zygote becomes elongated and motile, and is then called an 

ookinete. The ookinetes invade the midgut wall of the mosquito where they develop into oocytes. 
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The oocytes grow and develop and finally rupture to release sporozoites as depicted in figure2.1a. 

The sporozoites make their way to the salivary glands of the mosquito so that they can be 

inoculated in to the new human host during the mosquito’s next blood meal, thus perpetuating the 

Plasmodium life cycle as shown in figure 2.1b. 

 

In summary, malaria parasites undergo three distinct asexual replicative stages (exoerythrocytic 

schizogony, blood stage schizogony, and sporogony) resulting in the production of invasive forms 

(merozoites and sporozoites). A sexual reproduction occurs with the switch from vertebrate to 

invertebrate host and leads to the formation of the invasive ookinete. All invasive stages are 

characterized by the apical organelles typical of apicomplexan species. 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1a: The asexual cycle in humans and the sexual cycle in mosquitoes (Adebiyi, 2006) 

Fig. 2.1b: Life cycle of the parasite P. falciparum (http://www.dpd.ede.gov, 2011) 
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2.1.2 Malaria Parasite-Host Protein-Protein Interactions  
 
Protein-protein interactions (PPIs) are of interest when applying molecular methods to combat P. 

falciparum infection, due to the fact that these connections are utilised by the malaria parasite during 

vital periods of its life cycle. It has been predicted that 516 PPIs occur between Homo sapiens and P. 

falciparum (Dyer et al., 2007). If some of these fundamental interactions could be disrupted, the 

parasite would not be able to complete specific stages of development and would perish, thereby 

alleviating malaria infections in the human population. PPIs within the erythrocytic stage of the P. 

falciparum life cycle are vital, as all the pathogenesis associated with malaria occurs during this time. 

The invasion of and growth within host red blood cells is therefore an important factor in the disease 

which, if disrupted, could prevent infection. 

 

2.1.2.1 Protein-Protein Interactions during invasion  

 
The erythrocytic stage is initiated when merozoites come into contact with the red blood cell 

membrane and specialised secretory organelles – micronemes and rhoptries – release parasitic 

proteins that facilitate invasion of the host cells. These two types of organelles are located in the 

apical end of invasive merozoites as shown in figure 2.2. 
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Fig. 2.2: 3D Structure of the Merozoite from the asexual cycle of P. falciparum (Bannister et al., 2000). 
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2.1.2.2 Protein Kinases (PKs)  
 
PKs are enzymes that catalyse the phosphorylation of proteins within eukaryotic cells. This regulates 

protein function – activating, modulating or deactivating the molecules – and thereby controls cell 

behaviour. Of the proteins expressed in an average eukaryotic cell, almost 33 percent contain 

covalently bound phosphate molecules (Hubbard and Cohen, 1993). Approximately 3 percent of all 

eukaryotic genes code for PKs and these are classified according to structural similarity, as well as 

parallel substrate specificity and mode of regulation (Hanks and Hunter, 1995).  

The reaction catalysed by PKs is:  

������� + 	
� ��
� �ℎ���ℎ�������� + 	�� 

Eukaryotic PKs are divided into seven established groups, with the two main sub-divisions being the 

protein-serine/threonine kinases and the protein-tyrosine kinases (Hanks and Hunter, 1995). The entire 

complement of PKs encoded in a genome is termed the kinome.  

 

2.1.2.3  Plasmodium falciparum protein kinases  
 

Phosphorylation and dephosphorylation processes play an important role in the life cycle of the 

malaria parasite (Suetterlin et al., 1991). This is especially true for the intraerythrocytic stage 

which is accompanied by a distorted phosphorylation pattern of the host RBC membrane (Chishi et 

al., 1994). This vital stage of the parasite lifecycle is prevented by PK inhibitors (Ward et al., 

2004;  Anamika et al., 2005).  

According to Ward et al (Ward et al., 2004) – who identified 65 malaria PK sequences – and 

Anamika et al (Anamika et al., 2005), who identified 99 PKs in the P. falciparum genome using 

various amino acid sequence profile matching algorithms, several of the parasite sequences did not 

cluster within any of the known eukaryotic PK groups. Furthermore, the highest number of 

malarial sequences were those involved in the control of cell proliferation, namely the cyclin-
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dependent- (CDK), mitogen-activated- (MAPK), glycogen-synthase- (GSK) and CDK-like 

kinases, along with a kinase family that includes PKs A, G and C (AGC). Interestingly, no malarial 

PK clustered with the tyrosine kinase group; homologues of MEK (MAPK kinase), MEKK 

(MAPK kinase kinase) and PKC-like kinases were also lacking in the P. falciparum genome. A 

splinter group of 20 PK-related sequences formed a novel family called FIKK, which seems to be 

restricted to the Apicomplexa (Ward et al., 2004). According to Schneider and Mercereau-Puijalon 

(Schneider and Mercereau-Puijalon, 2005), even though kinase activity has not been demonstrated 

in this group, the presence of most of the amino acids necessary for phosphor transfer indicates an 

enzymatic role. Nunes et al (Nunes et al., 2007) provided experimental evidence of kinase activity 

and transport of some FIKKs to the erythrocyte. 

The large divergence in the kinome of P. falciparum compared to that of humans (Nunes et al., 

2007) suggests that exclusive targeting of parasite enzymes is possible. This is promising as PKs 

play crucial roles in most cellular processes and thus their targeted inhibition could incapacitate the 

parasite and prevent disease progression. 

2.2 The Clustering Tools 

For the malaria parasites, one of the most commonly used computational method for analyzing 

microarray gene expression data is clustering. This has been used by Bozdech et al (Bozdech et 

al., 2003a) and LeRoch et al (LeRoch et al.,2003). The results obtained have been used to classify 

and support genes classification into functional modules, namely metabolisms and metabolic 

pathways. A gene expression data set from microarray experiment can be represented by a real-

valued expression matrix � =	 ����		|	1 ≤ 	�	 ≤ �, 1	 ≤ �	 ≤ � , where the rows ("	 =

	{ ngg ,...,1 }) form the expression patterns of genes, the columns (
	 = 	 { mtt ,...,1 }) represent the 
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expression profiles of timepoints, and each cell ��� is the measured expression level of gene & in 

timepont '. 

2.2.1 Challenges of gene clustering 

Due to the special characteristics of gene expression data, and the particular requirements from the 

biological domain, gene-based clustering presents several new challenges and is still an open 

problem. 

• Cluster analysis is typically the first step in data mining and knowledge discovery. The purpose 

of clustering gene expression data is to reveal the natural data structures and obtain some initial 

insights regarding data distribution. Therefore, a good clustering algorithm should depend as 

little as possible on prior knowledge, which is usually not available before cluster analysis. 

• Second, due to the complex procedures of microarray experiments, gene expression data often 

contain a huge amount of noise. Therefore, clustering algorithms for gene expression data 

should be capable of extracting useful information from a high level of background noise. 

• Third, an empirical study has demonstrated that gene expression data are often “highly 

connected” (Jiang et al., 2003a), and clusters may be highly embedded in one another (Jiang et 

al., 2003a). Therefore, algorithms for gene-based clustering should be able to effectively 

handle this situation. 

Finally, users of microarray data may not only be interested in the clusters of genes, but also be 

interested in the relationship between the clusters and the relationship between the genes within the 

same cluster. A clustering algorithm, which can partition the data set but also provide some 

graphical representations of the cluster structure (intra- and inter- relationship wise) would be 

more favoured by the biologists. 
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2.2.2 Review of existing works 

There are several approaches proposed in literature, dealing with identification of clusters of 

functionally related genes in genomes (Bozdeck et al., 2003a; LeRoch  et al.,2003). According to 

these approaches, gene-based clustering technique, using microarray data where rows represent the 

various genes and columns represent the various timepoints employed in the experiments, were 

able to capture gene expressions that are correlated into the same cluster. However, they could not 

partition genes of the same biological pathways into the same cluster.  

Also, in another work by Gangman et al. (Gangman et al., 2007), C-Hunter clustering algorithm 

was applied to the genomes of Escherichia coli and S. cerevisiae of eukaryotic species. In this 

work, they showed that clusters identified with this algorithm corresponded to well-documented 

metabolic pathway clusters. But this algorithm is very ineffective and could not classify genes of 

plasmodium species into their various metabolic (biological) pathways. 

Different methods based on modelling with a graph have been developed for analyzing the 

network structures of PPI networks. Hierarchical clustering methods have been proven to be a 

good strategy for metabolic and PPI networks. Ravasz et al. (Ravasz et al., 2002) analyzed the 

hierarchical organization of modularity in metabolic networks, and authors of (Brun et al., 2003; 

Rives A. and Galiitski, 2003 and Lu et al., 2004) applied three different clustering methods 

respectively, based on different metrics induced by shortest distance, graphical distances, and 

probabilistic functions, to analyze the module structure of the yeast protein interaction networks on 

a clustering tree. Several papers (Spirin and Mirny, 2003; Bader and Hogue, 2003 and Bu et al., 

2003) have also shown that network modules which are densely connected within themselves but 

sparsely connected with the rest of network generally correspond to meaningful biological units 
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such as protein complexes and functional modules. Bu et al (Bu et al., 2003) found 48 functional 

modules in budding yeast by applying a spectral analysis method. Prediction methods of protein 

complexes which generally correspond to dense subgraphs in the network have been proposed by 

(Spirin and Mirny, 2003; Bader and Hogue, 2003 and Bu et al., 2003). Several approaches to 

network clustering that have been used for the analysis of PPI networks, including edge-

betweenness clustering (Dun et al., 2005), identification of k-scores (Bader and Hogue, 2003), 

restricted neighborhood search clustering (RNSC) (King et al., 2004) and Markov clustering 

algorithm (MCL) (Pereira-Leal et al., 2004). Spirin and Mirny (Spirin and Mirny, 2003) detected 

about 50 network modules by using a combination of three methods and most of which have been 

proven to be protein complexes or functional modules. 

 

Recently, a novel network clustering method (clique Percolation Method CPM) based on clique 

percolation has been developed (Palla et al., 2005). It can reveal overlapping module structure of 

complex networks. But a distinct shortcoming of its application in PPI networks lies in that the 

method may be restrictive since the basal element of the method is a 3-clique structure. For 

example, the spoken-like module can not be detected and when the method is applied to large 

sparse PPI networks, only a few modules can be detected.  Stuffen et al (Stuffen et al., 2002) 

studied the problem of identifying pathways in a protein network. They applied an exhaustive 

search procedure to an unweighted interaction graph, considering all interactions equally reliable. 

The approach was successful in detecting known signalling pathways in yeast. Also Scott et al 

(Scott et al., 2006) extended the work of Stuffen et al by applying color coding technique to an 

interaction graph of yeast protein network. 
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2.3 System Biology (Network Biology) 

Systems Biology can be defined as an approach to biology where organisms and biological 

processes should be analyzed and described in terms of their components and their interactions 

in a framework of mathematical models (Per, 2003).  

In functional genomics, one often uses statements such as 'gene or protein X performs function Y', 

for example 'the leptin protein regulates the amount of body fat'. But when one looks at this 

statement, it is clear that it is fundamentally misleading. In the given example, it is clear that the 

leptin protein is not a machine in itself that computes and performs the regulatory action. Rather, 

the leptin molecule is a component in a larger system, and it is that system that performs the 

regulatory function.  

Systems Biology begins in the insight that biological processes must be understood in terms of the 

components that participate in the processes, and that the complexity of biological systems make it 

difficult, if not impossible, to understand the workings of the system by simple qualitative 

arguments. Mathematically strict models must be formulated. This is required both in order to be 

able to capture the actual behaviour of the system with acceptable precision, but also to be able to 

analyze the fundamental behaviour of the system. The mathematical models may be very simple 

(Boolean on/off), or very complex (including detailed descriptions of interactions at a molecular 

level). The important issue is that it should be possible to analyze the model, either by some 

mathematical approach, or to simulate it, in order to evaluate its correspondence with the observed 

facts (Per, 2003).  

Paradoxically, the complexity of biology is the basis for the development of Systems Biology, at 

the same time as it is the main reason why computational approaches to biological processes have 
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not been particularly successful in the past. However, the appearance of bioinformatics and 

functional genomics, and their results (complete genomes, microarray expression analysis, etc) has 

had a great impact. It now appears possible to obtain data that can be used to build sensible 

models, and to test them. This is probably the main reason why Systems Biology has become so 

popular in the last few years.  

So far, only very limited results have been obtained. There are only few, well-studied systems on 

which any deep analysis has been done. However, there are already some insights that may prove 

to be generally true. For instance, it seems clear that robustness is a very important factor in 

biological systems. This is the property that allows a system to absorb fairly large perturbations, 

and still function reasonably well. The functionally important behaviour of a system has a certain 

degree of resilience to damage. Some studies have pointed to different ways in which evolution 

have favoured systems that are robust in different ways (Per, 2003).  

One important goal of Systems Biology is to understand life processes in sufficient detail to make 

predictions about their behaviour. If we want to make a particular system behave in a certain way, 

how should we change the system, or what type of perturbation should we apply? If we want to 

make a bacterium produce propanol instead of ethanol, then how should we change the metabolic 

network of the bacterium? Or, if we want to produce a pharmaceutical drug that can help with 

deficiencies of the insulin regulatory system that is the basis for diabetes type II (obesity-related 

diabetes), what components should we focus on? Which are the best drug targets? (Per, 2003)  

Network biology is a general term for an emerging field that concerns the study of interactions 

between biological elements (Alm and Arkin, 2003). The term molecular interaction networks 

may designate several types of networks depending on the kind of molecules involved. Classically, 
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one distinguishes between gene regulatory networks, signal transduction networks and metabolic 

networks. Protein-protein interaction networks represent yet another type of network. One of the 

declared objectives of network biology (or systems biology in general) is whole cell simulation 

(Kitano, 2002). However, studying the dynamics of a network requires knowledge on reaction 

mechanisms. 

 Besides the fact that such knowledge is often unavailable or unreliable, the study of the static set 

of reactions that constitute a biochemical network is equally important, both as a first step towards 

introducing dynamics, and in itself. Indeed, such static set represents not what is happening at a 

given time in a given cell but instead the capabilities of the cell, including capabilities the cell does 

not use. A careful analysis of this set of reactions for a given organism, alone or in comparison 

with the set of other organisms, may also help to arrive at a better understanding of how 

metabolism evolves. More precisely, the term “metabolism” should be understood as the static set 

of reactions involved in the synthesis and degradation of small molecules. A major issue 

concerning the study of biochemical networks is the problem of their organization. Several 

attempts have been made to decompose complex networks into parts. These “parts” have been 

called modules or motifs, but no definition of such terms seems to be completely satisfying. 

Modules have first been mentioned by Hartwell et al. (Hartwell et al., 1999) who outline the 

general features a module should have but provide no clear definition for it. In the context of 

metabolic networks, a natural definition of modules could be based on the decomposition of a 

metabolic network into the metabolic pathways one can find in databases: modules would thus be 

the pathways as those have been established. The advantage of this definition of a module is that it 

reflects the way metabolism has been discovered experimentally (starting from key metabolites 

and studying the ability of an organism to synthesize or degrade them). The drawback is that it is 
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not based on objective criteria and therefore is not universal (indeed, the number of metabolic 

pathways and the frontiers between them vary from one database to the other). Several attempts to 

give systematic and practical definitions have been made using graph formalisms (Guiner and 

Nunes, 2005; Ma et al., 2004; and Schuster et al., 2002) and constraint-based approaches (Papin et 

al., 2004). Graph based methods ranges from a simple study of the local connectivity of 

metabolites in the network (Schuster et al., 2002) to the maximization of a criterion expressing 

modularity (number of links within modules) (Guiner and Nunes, 2005). The only information 

used in these methods is the topology of the network. In the case of constraint-based approaches, 

the idea is quite different. First, a decomposition of the network into functional sets of reactions is 

performed by analysis of the stoichiometric matrix (Papin et al., 2004) and then modules are 

defined from the analysis of these functional states. The result is not a partition in the sense that a 

single reaction might belong to several modules. Unlike the definition of module, the notion of 

motif has not been studied in the context of metabolic networks. In general, depending on what 

definition is adopted for modules and motifs, there is no clear limit between the two notions 

besides the difference in size. In the context of regulatory networks, motifs have been defined as 

small, repeated and perhaps evolutionary conserved subnetworks. 

 

In contrast with modules, motifs do not function in isolation. Furthermore, they may be nested and 

overlapping (Wolf and Arkin, 2003). This definition refers to general features that regulatory 

motifs are believed to share but it provides no practical way to find them. A more practical 

definition has been proposed, still in the context of gene regulatory networks (and other types of 

non-biological networks such as the web or social networks). These are “network motifs” and 

represent patterns of interconnections that recur in many different parts of a network at frequencies 
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much higher than those found in randomized networks (Shen-Orr et al., 2002). This definition is 

purely topological and disregards the nature of the components in a motif. It assumes that the local 

topology of the network is sufficient to model function (which is understood here as the dynamic 

behaviour of the motif). This assumption seems acceptable when studying the topology of the 

internet and may also hold when analyzing gene regulatory networks, but it appears not adapted to 

metabolic networks. 

The complexity of biological systems, and the vast amount of information now available at the 

level of genes, proteins, cells, tissues and organs, requires the development of mathematical 

models that can define the relationship between structure and function at all levels of biological 

organization (Hunter and Borg, 2003). 

Modules encourage hierarchical thinking with regard to networks and facilitate the analysis 

genotype-phenotype relationships. The genotype of an organism can be defined by sequencing 

methods. The individual genes are transcribed to mRNA and then translated to generate a set of 

protein products whose individual functions can be characterized. Small-scale modules can be 

mathematically described from the interaction of these protein components. Large-scale modules 

might arise from the interaction of several small-scale modules as depicted in the figure 2.3 below. 
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Fig 2.3: Hierarchy in Biological Network. The individual genes are transcribed to mRNA and then       

to generate a set of protein products whose individual functions can be characterized. Small-scale 

modules can be mathematically described from the interaction of these protein components. Large-

scale modules might arise from the interaction of several small-scale modules. The interaction of such 

large-scale modules leads to the physiology (phenotype) of an organism (Kitano, 2002). 
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2.4 Network modelling 

Traditionally, the study of complex networks has been the territory of mathematics, especially the 

graph theory. Initially the graph theory focused on regular graphs, with no apparent design 

principles were described as random graphs, proposed as the simplest and most straightforward 

realisation of a complex network. The pioneer of the theory was Leonhard Euler, who studied first 

regular graphs in 18th century. In the 20th century the theory became much more statistically and 

algorithmically oriented (Porekar, 2002). 

 

Later in 1950’s, graph theory was used to describe large networks, with no particular distributions 

of nodes and link, whose organization principles were not easily definable. These networks were 

first studied by Paul Erdӧs and Alfred Rényi and were called “random graphs”, due to their 

generating method: we start with N nodes and connect every pair of them with probability p. The 

resulting graph has on average p (N(N- 1))/2 edges distributed randomly. The degree distribution 

of such graph is Poisson with peak at P( k ) . This model has guided our thinking for decades after 

it has been presented (Porekar, 2002). 

 

The topology of real large networks (i.e. Internet, WWW, telephone networks, ecological 

networks) substantially differs from the topology of random graphs produced by the simple 

Erdӧs-Rényi (ER) model, therefore new methods tools and models needed to be developed. 

In past years, we witnessed dramatic advances in this direction. The computerization of data 

acquisition has led to the emergence of large databases on the topology of various real networks. 

Wide availability of computer power allows to investigate networks containing millions of nodes, 

exploring questions that could not be answered before as well as the slow but noticeable 
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breakdown between different science disciplines allows scientists to access different databases, 

allowing to uncover the generic properties of large networks. Networks found in nature show 

degree distribution that greatly differs from the Poisson degree distribution of random graphs. 

Because of existence of a few vertices with high degree, the distribution of real networks has a 

power-law tail P(k).k , which indicates scale free properties (Porekar, 2002). 

 

2.4.1 Random network 

The Erdös–Rényi (ER) model of a random network (figure2.4-A) starts with N nodes and connects 

each pair of nodes with probability p, which creates a graph with approximately p (N(N- 1))/2 

randomly placed links (figure 2.4-Aa) (Barabasil and Oltvai, 2004). The node degrees follow a 

Poisson distribution (figure 2.4- Ab), which indicates that most nodes have approximately the 

same number of links (close to the average degree <k>). The tail (high k region) of the degree 

distribution P(k) decreases exponentially, which indicates that nodes that significantly deviate 

from the average are extremely rare. The clustering coefficient is independent of a node's degree, 

so C(k) appears as a horizontal line if plotted as a function of k (figure 2.4-Ac). The mean path 

length l is proportional to the logarithm of the network size, l ≈ log N, which indicates that, it is 

characterized by the small-world property (Barabasil and Oltvai, 2004). 

2.4.2 Scale free network 

Scale-free networks (figure 2.4-B) are characterized by a power-law degree distribution; the 

probability that a node has k links follows P(k) ≈ ()*, where + is the degree exponent (Barabasil 

and Oltvai, 2004). The probability that a node is highly connected is statistically more significant 

than in a random graph, the network's properties often being determined by a relatively small 

number of highly connected nodes that are known as hubs (figure 2.4-Ba; blue nodes). In the 
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Barabási–Albert model of a scale-free network, at each time point a node with � links is added to 

the network, which connects to an already existing node , with probability -. =	 /0	
12/2

	 where kI is 

the degree of node , (figure 2.4-Ba) and 3 is the index denoting the sum over network nodes. The 

network that is generated by this growth process has a power-law degree distribution that is 

characterized by the degree exponent + = 3. Such distributions are seen as a straight line on a 

5�6– 5�6 plot (figure 2.4-Bb). The network that is created by the Barabási–Albert model does not 

have an inherent modularity, so 8(() is independent of k (figure 2.4-Bc). Scale-free networks with 

degree exponents 2<	+ <3, a range that is observed in most biological and non-biological 

networks, are ultra-small, with the average path length following ℓ	 ≈ 	5�6	5�6	;, which is 

significantly shorter than 5�6	; that characterizes random small-world networks (Barabasil and 

Oltvai, 2004). 

The origin of the scale-free topology in complex networks can be reduced to two basic 

mechanisms: Growth and Preferential attachment. Growth means that the network emerges 

through the subsequent addition of new nodes, such as the new red node that is added to the 

network that is shown in part a. Preferential attachment means that new nodes prefer to link to 

more connected nodes. For example, the probability that the red node will connect to node 1 is 

twice as large as connecting to node 2, as the degree of node 1 (k1=4) is twice the degree of node 2 

(k2=2). Growth and preferential attachment generate hubs through a 'rich-gets-richer' mechanism: 

the more connected a node is, the more likely it is that new nodes will link to it, which allows the 

highly connected nodes to acquire new links faster than their less connected peers. In protein 

interaction networks, scale-free topology seems to have its origin in gene duplication. Part b shows 

a small protein interaction network (blue) and the genes that encode the proteins (green). When 
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cells divide, occasionally one or several genes are copied twice into the offspring's genome 

(illustrated by the green and red circles). This induces growth in the protein interaction network 

because now we have an extra gene that encodes a new protein (red circle). The new protein has 

the same structure as the old one, so they both interact with the same proteins. Ultimately, the 

proteins that interacted with the original duplicated protein will each gain a new interaction to the 

new protein. Therefore proteins with a large number of interactions tend to gain links more often, 

as it is more likely that they interact with the protein that has been duplicated. This is a mechanism 

that generates preferential attachment in cellular networks. Indeed, in the example that is shown in 

part b it does not matter which gene is duplicated, the most connected central protein (hub) gains 

one interaction. In contrast, the square, which has only one link, gains a new link only if the hub is 

duplicated (Barabasil and Oltvai, 2004). 

2.4.3 Hierarchical network 

To account for the coexistence of modularity, local clustering and scale-free topology in many real 

systems it has to be assumed that clusters combine in an iterative manner, generating a hierarchical 

network (figure 2.4-C). The starting point of this construction is a small cluster of four densely 

linked nodes (see the four central nodes in figure 2.4-Ca). Next, three replicas of this module are 

generated and the three external nodes of the replicated clusters connected to the central node of 

the old cluster, which produces a large 16-node module. Three replicas of this 16-node module are 

then generated and the 16 peripheral nodes connected to the central node of the old module, which 

produces a new module of 64 nodes. The hierarchical network model seamlessly integrates a scale-

free topology with an inherent modular structure by generating a network that has a power-law 

degree distribution with degree exponent = 1 + ℓn4/ℓn3 = 2.26 (figure 2.4-Cb) and a large, 

system-size independent average clustering coefficient <C> ≈ 0.6. The most important signature of 
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hierarchical modularity is the scaling of the clustering coefficient, which follows C(k) ≈ k
-1 a 

straight line of slope -1 on a 5�6– 5�6 plot (figure2.4-Cc). A hierarchical architecture implies that 

sparsely connected nodes are part of highly clustered areas, with communication between the 

different highly clustered neighbourhoods being maintained by a few hubs (figure2.4-Ca) 

(Barabasil and Oltvai, 2004). 
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Fig.  2.4.:  (A) Random network. In Ab above, the nodes degree follows a Poisson distribution which indicates that most nodes are 

well represented by the average node with degree <k> and also the C(k) as depicted in Ac appears as a horizontal line if plotted as 

a function of k. This shows that the clustering coefficient is independent of a node’s degree.  (B) Scale free network. Ba 

characterizes a typical nodes degree distribution, the resulting network generated has a power-law distribution as seen as straight 

line on log-log plot in Bb above. The C(k) is also independent of k as depicted in Bc.  (C)  Hierarchical network. The hierarchical 

network model integrates a scale-free topology with an inherent modular structure by generating a network that has a power-law 

degree distribution in Cb. The most important signature of hierarchical modularity is the scaling of the clustering coefficient, 

which follows C(k) ≈ k-1 a straight line of slope -1 on a <=>– <=> plot as depicted in fig. Cc (Barabasil and Oltvai, 2004). 
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2.4.4 Graph Generation Models 

A biological network such as a protein-protein interaction or a synthetic lethal interaction network 

can be represented as an undirected graph "	 = 	 (?, @), where ? is the set of vertices and @ is the 

set of edges. Vertices in such a graph represent proteins while edges represent interactions between  

the proteins. Let " have � vertices and � edges. Let ;A be the set of neighbours of a vertex B. Let 

CA 	= 	 |;A| be the degree of vertex B. Researchers have observed that networks such as the 

Internet, citation patterns in scientific papers and some biological networks are scale free (Barabasi 

and Albert, 1999). A network is scale-free, if its degree distribution follows a power law i.e., the 

probability �(() that a vertex in the network has degree ( is proportional to (D )* for some 

+		 > 	0. A graph generation model is an algorithm or certain steps to follow, so that we may 

generate graphs with certain properties.  

 

2.4.4.1 Erdös–Rényi Model 

Although the Erdös–Rényi model was not initially proposed to explain the evolution or structure of 

biological networks, we include it since it is a well studied model for the generation of random 

graphs. An Erdös–Rényi graph "(�, �) is a graph with � vertices such that the probability of 

having an edge (G, B) in " is � for any vertices G and B in " (Erdos and Renyi, 1960). 

Although the Erdös–Rényi model is a well studied model, it does not fully capture the features 

exhibited by biological networks. The presence of many highly connected hubs is a feature that is 

observed in biological networks. An Erdös–Rényi graph is unlikely to have such a property, since 

the probability of occurrence of every edge is the same. 
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2.4.4.2 Barabási Albert Model 

Barabási and Albert (Barabasi and Albert, 1999) conjecture that the scale free property of complex 

networks arises because: 

1. the network grows with the addition of more vertices and 

2. a new vertex preferentially attaches itself to vertices with high degree. 

 

The proposed of a growth based model (Barabasi and Albert, 1999) in which a new vertex is 

created at each time step and the newly arrived vertex preferentially attaches itself to existing 

vertices with higher degree. Therefore in this case vertices with higher degree have a higher 

probability of connecting to the new vertex. The probability �A  of creating an edge between an 

existing vertex B and the newly added vertex is 

�A 	=	 (CB	 + 	1)
(|@| + |?|) 																																																																																											2.1	

where |@|and |?| are, respectively, the number of edges and vertices currently in the network 

(counting neither the new vertex nor the other edges that it is incident on). 

Due to preferential attachment, a vertex with a higher degree will continue to increase its 

connectivity at a higher rate; this does explain the presence of hubs in such networks. 

 
 
2.4.4.3 Watts Strogatz Small World Model 

The small world model is a graph generating model proposed by Watts and Strogatz (Watts and 

Strogatz, 1998). Graphs which have the small world property have low characteristic path lengths 

i.e., the average distance between any two vertices in the graph is small and also high clustering 

coefficient. The algorithm to generate a graph takes as input a regular graph with � vertices with ( 

edges incident on each vertex and a probability �. The algorithm chooses an edge at random with 
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probability �, and then one of the end points of the edge is changed to another vertex, again chosen 

at random. 

 
 

2.4.4.4 Eppstein Wang Model 

Eppstein and Wang (Eppstein and Wang, 2002) proposed a steady state method for generating 

scale-free networks of web graphs. A steady state model is not a growth based model i.e., the 

model does not involve the addition of new vertices or edges. The input to the algorithm is the 

number of edges �, the number of vertices � and a model parameter �. The model starts by 

generating a graph with � vertices and � edges, by randomly adding edges between the vertices 

until there are � edges. The algorithm then modifies the initial graph by executing the following 

sequence of steps � times: 

1. Pick a vertex B at random. Repeat this step until CA 	> 	0. 

2. Pick an edge (G, B) ∈ " at random. 

3. Pick a vertex K at random. 

4. Pick a vertex L proportional to degree of L. 

5. If (K, L) is not an edge and if K is not L, then add edge (K, L) to " and remove edge 

(G, B) from  ". 

 

This is a simple model for generating scale-free networks, because it produces a power-law graph 

without the addition of extra vertices and edges, by evolving the existing graph while maintaining 

the same number of edges and vertices. Eppstein and Wang simulated the model on graphs with 

different sizes and different densities, where C�����L	 = 	�/�. Each simulation was performed 

five times and the model parameter � was chosen to be 10N. The degree distribution was observed 
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to converge to a power law distribution as the value of � increased, for many sizes and densities of 

the graph. 

 

2.4.5 Types of Networks 

The following definitions taken from (Daaron and Asu, 2009) are useful for our discussion. 

Social and economic networks: A set of people or groups of people with some pattern of contacts 

or interactions between them. For examples, Facebook, friendship networks, business relations 

between companies, intermarriages between families, labor markets.  

Information networks: Connections of “information” objects. For examples, Network of citations 

between academic papers, World Wide Web (network of Web pages containing information with 

links from one page to other), semantic (how words or concepts link to each other)  

Technological networks: Designed typically for distribution of a commodity or service.  

Infrastructure networks: e.g., Internet (connections of routers or administrative domains), power 

grid, transportation networks (road, rail, airline, mail)  

Temporary networks: e.g., ad hoc communication networks, sensor networks, autonomous 

vehicles.  

Biological networks: A number of biological systems can also be represented as networks. For 

examples, Food web, protein interaction network, network of metabolic pathways. 

 

We represent a network by a graph (;, 6	), which consists of a set of nodes ;	 = {1, . . . , �}				 and 

an �K� matrix 6	 = O6��	P 	�, � ∈ ; (referred to as an adjacency matrix), where 6�� ∈ {0,1} 
 

represents the availability of an edge from node � to node �.  
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The edge weight 6�� 	> 	0 can also take on non-binary values, representing the intensity of the 

interaction, in which case we refer to (;, 6) as a weighted graph.  

We refer to a graph as a directed graph (or digraph) if 6�� 	≠ 	6�� and an undirected graph if 

6�� 	= 	6�� for all �, � ∈ ; as shown in figure 2.5a.  

We consider “sequences of edges” to capture indirect interactions. For an undirected graph (;, 6	), 

we have the following definitions: 

 

• A walk is a sequence of edges {�R, �S}, {�S, �T}, . . . , {�S/)R, �S/} . 

• A path between nodes � and � is a sequence of edges {�R, �S}, {�S, �T}, . . . , {�S/)R, �S/} 
 
such 

that �R 	= 	� and �/ 	= 	�, and each node in the sequence �R, . . . , �/ is distinct. 

• A cycle is a path with a final edge to the initial node.  

• A geodesic between nodes � and � is a “shortest path” (i.e., with minimum number of 

edges) between these nodes. A path is a walk where there are no repeated nodes. The 

length of a walk (or a path) is the number of edges on that walk (or path).  

The diagrams that illustrate these are depicted in figure 2.5b (the red colour display the interested 

paths). 
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Fig. 2.5a:  A Simple directed and undirected graphs (Daaron. and Asu., 2009)  

Fig. 2.5b:  A graph that denotes walk, path, cycle and shortest path (Daaron and Asu, 2009) 
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2.4.6 Neighborhood and Degree of a Node  

 

The neighborhood of node � is the set of nodes that � is connected to.  While the degree of a node 

in a network (sometimes referred to as the connectivity) is the number of connections or edges the 

node has to other nodes. If a network is directed, meaning that edges point in one direction from 

one node to another node, then nodes have two different degrees, the in-degree, which is the 

number of incoming edges, and the out-degree, which is the number of outgoing edges (Daaron. 

and Asu, 2009). 

The degree distribution U(V) of a network is then defined to be the fraction of nodes in the 

network with degree (. Thus if there are � nodes in total in a network and �/ of them have degree 

(, we have �(() = �//�. 

For undirected graphs:  
 

The degree of node � is the number of edges that involve � (i.e., cardinality of his neighborhood).  
 
For directed graphs:  

 Node �’� in-degree is  ∑ 6��� .  

 Node �’� out-degree is   ∑ 6���  .  

 
 
 
 
 
 
 
 
 
For example, in the graph above, the node 1 has in-degree 1 and out-degree 2. 
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2.4.7 Some properties of networks 

• Small world effect:  A network has the small-world effect if most pairs of vertices are 

connected by a short path through the network.  It is the small average shortest path 

between two nodes scaling logarithmically with network size. If the number of vertices 

within a distance � of a typical central vertex grows exponentially with � and this is true of 

many networks, including the random graph, then the value of 5 will increase as 5�6	� 

increases. 

• Transitivity/clustering:  If vertex A is connected to vertex B and vertex B to vertex C, 

then likely vertex A will also be connected to vertex C. 

• Scale free effect:  This is based on connectivity distribution �((). 

• Network resilience and robustness: network robustness or resilience is a measure of the 

network’s response to perturbations or challenges (such as failures or external attacks) 

imposed on the network. A computable measure for network robustness allows us to (a) 

compare different networks and (b) improve a network to achieve a desirable level of 

robustness. 

 

• Betweenness centrality of vertices: Betweenness is a centrality measure of a vertex 

within a graph. Vertices that occur on many shortest paths between other vertices have 

higher betweenness than those that do not. 

For a graph " = (?, @) with � vertices, the betweenness 8Y(B) for vertex B is computed as 

follows: 

1. For each pair of vertices (�, �), compute all shortest paths between them. 

2. For each pair of vertices (�, �), determine the fraction of shortest paths that  

    passes through the  vertex in question (here, vertex v). 
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3. Sum this fraction over all pairs of vertices (�, �). 

This can be express mathematically as (Shivaram, 2005): 

   8Y(B) = ∑ 1Z[(A)
1Z[\]A]^∈_ 																																																																				2.2   

where \̀^ is the number of shortest paths from s to t, and \̀^(B) is the number of shortest paths 

from � to � that pass through a vertex B. This may be normalised by dividing through the 

number of pairs of vertices not including v, which is (�	 − 	1)(�	 − 	2)/2 for directed graphs 

and (�	 − 	1)(�	 − 	2) for undirected graphs. For example, in an undirected star graph, the 

center vertex (which is contained in every possible shortest path) would have a betweenness of 

(�	 − 	1)(�	 − 	2)  while the leaves (which are contained in no shortest paths) would have a 

betweenness of 0. 

• Closeness centrality of vertices 

In graph theory (http://en.wikipedia.org., 2011), closeness is a centrality measure of a vertex 

within a graph. Vertices that are 'shallow' to other vertices (that is, those that tend to have short 

geodesic distances to other vertices within the graph) have higher closeness. Closeness is 

preferred in network analysis to mean shortest-path length, as it gives higher values to more 

central vertices, and so is usually positively associated with other measures such as degree. 

In the network theory, closeness is a sophisticated measure of centrality. It is defined as the 

mean geodesic distance (i.e., the shortest path) between a vertex v and all other vertices 

reachable from it:   
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∑ bc(A,^)[∈d\f

g)R 																																																																																				2.3											

  where n ≥ 2	 is the size of the network's 'connectivity component' ? reachable from B.  

Closeness can be regarded as a measure of how long it will take information to spread from a 

given vertex to other reachable vertices in the network. 

The closeness 8j(B) for a vertex v can also be defined to be the reciprocal of the sum of geodesic 

distances to all other vertices of ? (Sabidussi, 1966). 

     8j(B) = R
∑ bc(A,^)[∈d\f

																																																								2.4 
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2.5 Biochemical networks 

Biochemical networks are the central processing units of life. They can perform a variety of 

computational tasks. In a biochemical network, computations are performed by molecules that 

chemically and physically interact with each other (Othmer, 2006). 

The three types of networks treated here are defined as follows. 

• Signal transduction networks: The pathways and the molecular components, such as 

kinases, G-proteins, second messengers, etc., involved in transducing a signal from one 

location to another. It is frequently used in the context of transduction of extracellular into 

intracellular signals. 

• Metabolic networks: The pathways and the molecular components (metabolites, enzymes, 

control factors) involved in the biosynthesis of new components, the conversion of 

molecular ‘foodstuffs’ into energy, etc. One of the most important examples is the 

glycolytic pathway, which converts sugars into energy-storing molecules such as ATP. 

• Protein-Protein Interaction networks: Protein–Protein Interactions occur when two or 

more proteins bind together, often to carry out their biological function. Many of the most 

important molecular processes in the cell such as DNA replication are carried out by large 

molecular machines that are built from a large number of protein components organised by 

their protein–protein interactions (Othmer, 2006). 

 

2.5.1 Protein-Protein Interaction networks 

Protein–Protein Interactions (PPIs) are when two or more proteins bind together, often to carry 

out their biological function. Many of the most important molecular processes in the cell such as 
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DNA replication are carried out by large molecular machines that are built from a large number of 

protein components organized by their protein-protein interactions. Protein interactions have been 

studied from the perspectives of biochemistry, quantum chemistry, molecular dynamics, signal 

transduction and other metabolic or genetic/epigenetic networks. Indeed, protein–protein 

interactions are at the core of the entire interactomics system of any living cell 

(http://en.wikipedia.org, 2011). 

The interactions between proteins are important for the majority of biological functions. For 

example, signals from the exterior of a cell are mediated to the inside of that cell by protein–

protein interactions of the signaling molecules. This process, called signal transduction, plays a 

fundamental role in many biological processes and in many diseases (e.g. cancers). Proteins might 

interact for a long time to form part of a protein complex, a protein may be carrying another 

protein (for example, from cytoplasm to nucleus or vice versa in the case of the nuclear pore 

importins), or a protein may interact briefly with another protein just to modify it (for example, a 

protein kinase will add a phosphate to a target protein). This modification of proteins can itself 

change protein–protein interactions. For example, some proteins with SH2 domains only bind to 

other proteins when they are phosphorylated on the amino acid tyrosine while bromodomains 

specifically recognize acetylated lysines. In conclusion, protein–protein interactions are of central 

importance for virtually every process in a living cell. Information about these interactions 

improves our understanding of diseases and can provide the basis for new therapeutic approaches 

(http://en.wikipedia.org, 2011). 

The main structures of PPI are that, it relate network structure to biological function and also have 

common properties of biological networks. 
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2.5.2 Signalling transduction networks 

Signal transduction has historically been viewed in terms of linear signaling pathways that lead 

from a specific input to a particular outcome (Othmer, 2006). However, experiments show that 

while individual cells may receive multiple simultaneous inputs, they are able to rapidly integrate 

these signals so as to produce the appropriate response; thus the information conveyed by the 

signal transduction machinery is often distributed among numerous pathways, and the same 

stimulus can generate different responses depending on the setting. Binding of a ligand to a 

signaling receptor can initiate transcription of many genes, and the same signaling molecule may 

trigger very different responses, depending on the cell type, its internal state, and the state of its 

local environment (e.g. neighboring cells). Therefore, a signal transduction pathway is the chain of 

processes by which a cell converts an extra cellular signal into a response and the molecular 

components, such as kinases, G-proteins, second messengers, etc are key molecules involved in 

transducing a signal from one location to another. It is frequently used in the context of 

transduction of extracellular into intracellular signals (Othmer, 2006). 

 

Since most organisms maintain a clear distinction between inside and outside, many primary 

environmental signals do not penetrate very far into the organism. Instead there are mechanisms 

for transducing an external signal into an internal signal, and where appropriate, an internal 

response. For example, at the cellular level extracellular hydrophilic first messenger signals elicit a 

response through a transduction system in the cell membrane that translates the signal into an 

intracellular second messenger signal. Similarly, in the sensory systems of higher organisms, light 

or mechanical stimuli are transduced by a multi-step cascade into an electrical signal that is 

processed at a higher level. 
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Therefore, when we speak of signal transduction we invariably refer to the molecular network 

involved in transducing extracellular signals into intracellular signals. Lipid-soluble molecules can 

pass through the cell membrane, but most signals are proteins or peptides and these require 

specialized machinery. Figure 2.6(a) shows a canonical type of signal transduction system, while 

Figure 2.6(b) shows an abstract version of the steps involved. 
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- Transcriptional Regulatory network 

 

 

 

Fig. 2.6:  (a) A signal transduction pathway and (b) an abstract rendition of it(Othmer, 2006) 
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2.5.3 Metabolic networks 

Metabolism is the cellular process by which organic molecules are synthesized or degraded, 

usually via enzyme-catalyzed reactions, and the interconnected components and reactions form a 

network, called the metabolic network (Othmer, 2006). A highly schematized form that shows the 

major subdivisions of glycolysis, the Kreb’s or citric acid cycle, and electron transport, is given in 

Figure 2.7. An intermediate level of detail is shown in Figure 2.8. Metabolic reactions are 

characterized as either catabolic or anabolic, depending on their function. Catabolic reactions are 

used for breakdown foodstuffs for the production of energy in the form of ATP, production of 

reducing power in the form of NADPH, and regeneration of small molecules for anabolism. 

Anabolic reactions typically involve production of small molecules and building blocks that are 

not sufficiently available in the food, and synthesis of macromolecules such as proteins and 

nucleic acids. All cells process glucose initially by glycolysis, in which each molecule of glucose 

is broken down into two molecules of pyruvate and yields a net of two ATP molecules. Glycolysis 

by itself is anaerobic, i. e., it doesn’t required oxygen. Cells that are capable of aerobic metabolism 

pass the product of glycolysis into the aerobic pathway. Glycolysis takes place in the cytoplasm of 

cells. 

 

There are two ways in which one can think of the set of reactions in Figure 2.8, firstly as a set of 

individual enzyme-catalyzed steps, as in Figure 2.9(a), or as a network of connected steps, as in 

Figure 2.9(b). Experimentalist who studies individual steps would adopt the viewpoint in (a), but 

to understand how the connected set of reactions functions, it is obviously necessary to adopt the 

viewpoint in (b). In the approach developed later, the individual molecules or combinations of 
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them will be represented by the nodes in a graph, and the reactions between them will be 

represented by the edges in that graph. This then suggests that the topology of the graph by itself 

may play a role, and also leads to an easier understanding of how changes in various parts of the 

pathway affect the fluxes between a chosen pair of nodes. 
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 Figure 2.7. A schematic of the metabolic pathways for cellular respiration (Albert et al., 1994). 
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Figure 2.8:  A stripped-down version of the glycolytic pathway and the Kreb’s cycle (Palmer, 2006). 
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Figure 2.9:  (a) A set of reactions viewed as individual steps, or (b) as a connected set (Othmer, 2006). 
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2.5.4 Transcription Regulatory Networks 

 

Recent progress in molecular biology has led to a complete map of the genome of a number of 

organisms, and the challenge now is to discover the regulatory networks that govern the 

interactions between genes, the messenger RNAs and proteins they encode, and other cellular 

components (Othmer G., 2006) (Figure 2.10(a)). Signal transduction and gene regulatory networks 

control transduction of extracellular signals into patterns of gene expression via a few common 

modes  

(Figure 2.10(b)), and understanding how these networks integrate different signals in the presence 

of fluctuations in the amounts of signaling molecules is a major problem that will undoubtedly 

require new mathematical approaches for its resolution. The crucial role of inter-regulation 

amongst genes is especially evident during the development of a multicellular adult from a 

unicellular egg, for what a cell becomes depends on where it is in a developing aggregate of cells. 

Pattern formation in development refers to the spatially- and temporally-organized expression of 

genes in a multicellular array, and this is controlled by the inputs and outputs of the gene control 

networks.  

Gene regulatory networks can be viewed as directed graphs, in which nodes represent transcription 

factors, and in which edges represent the regulatory interactions. 

 

2.5.5 Network Utilization 

Despite their impressive successes, purely topologic approaches have important intrinsic 

limitations. For example, the activity of the various metabolic reactions or regulatory interactions 

differs widely, some being highly active under most growth conditions while others are switched 



56 

 

on only for some rare environmental circumstances. Therefore, an ultimate description of cellular 

networks requires us to consider the intensity (i.e., strength), the direction (when applicable) and 

the temporal aspects of the interactions. While we know little about the temporal aspects of the 

various cellular interactions, recent results have shed light on how the strength of the interactions 

is organized in metabolic and genetic regulatory networks (Almaas, et al., 2004; Kutznetsov et al., 

2002; and Farkas, et al., 2002) and how the local network structure is correlated with these link 

strengths. 

 
 

2.5.6  Flux Utilization 

In metabolic networks, the flux of a given metabolic reaction, representing the amount of substrate 

being converted to a product within unit time, offers the best measure of interaction strength. 

Recent advances in metabolic flux-balance approaches (FBA) (Edwards J. and Palson, 2000; 

Edwards, et al., 2001; Ibara et al., 2002; Segre, et al., 2002; and Emmerling et al., 2002) allow us 

to calculate the flux for each reaction, and they have significantly improved the ability to generate 

quantitative predictions on the relative importance of the various reactions, thus leading to 

experimentally testable hypotheses. The FBA approaches can be described as follows: Starting 

from a stoichiometric matrix model of an organism, for example. one for E. coli contains 537 

metabolites and 739 reactions (Edwards and Palson, 2000; Edwards, et al., 2001; and Ibara et al., 

2002), the steady state concentrations of all metabolites must satisfy 

 

    
b
b^ (	�) = 	∑ l��� ?� = 0																																																																						2.5  

 

where l��  is the stoichiometric coefficient of metabolite 	� in reaction j and ?� is the flux of 

reaction j. We use the convention that if metabolite 	� is a substrate (product) in reaction j, l��< 0  
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(l�� > 0), and we constrain all fluxes to be positive by dividing each reversible reaction into two 

“forward” reactions with positive fluxes. Any vector of positive fluxes {?�} which satisfies Eq. 

(2.1) corresponds to a state of the metabolic network, and hence, a potential state of operation of 

the cell. Assuming that the cellular metabolism is in a steady state and optimized for the maximal 

growth rate (Edwards, et al., 2001; and Ibara et al., 2002), FBA allows us to calculate the flux for 

each reaction using linear optimization, providing a measure of each reaction’s relative activity 

(Almaas et al., 2004). A striking feature of the resulting flux distribution from such modeling of 

both H. pylori, E. coli and S. cerevisiae is its overall in homogeneity: reactions with fluxes 

spanning several orders of magnitude coexist under the same conditions (Fig. 5a). This is captured 

by the flux distribution for E. coli, which follows a power law where the probability that a reaction 

has flux ? is given by �(?) ≈ (? + ?n))o. This flux exponent is predicted to be p =1.5 by FBA 

methods (Almaas et al., 2004). In a recent experiment (Emmerling et al., 2002) the strength of the 

various fluxes of the E. coli central metabolism was measured, revealing (Almaas et al., 2004) the 

power-law flux dependence �(?) ≈ ?)o  with p	 ≅ 1. This power law behavior indicates that the 

vast majority of reactions have quite small fluxes, while coexisting with a few reactions with 

extremely large flux values. 

 

The observed flux distribution is compatible with two quite different potential local flux structures 

(Almaas et al., 2004). A homogeneous local organization would imply that all reactions producing 

(consuming) a given metabolite has comparable fluxes. On the other hand, a more delocalized “hot 

backbone” is expected if the local flux organization is heterogeneous, such that each metabolite 

has a dominant source (consuming) reaction. 
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To distinguish between these two scenarios for each metabolite I produced (consumed) by k 

reactions. A measure  r((, �)	(Barthelemy, et al., 2003; and Derrida and Flyvbjerg, 1987) has been 

defined as 

 

 r((, �) = ∑ ( Ast2
∑ Astuvuwx

)S/�yR 																																																																																																						2.6 

where B̅�� is the mass carried by reaction j which produces (consumes) metabolite i. If all reactions 

producing (consuming) metabolite i have comparable B̅�� values, Y(k,i) scales as 1/ k . If, however, 

a single reaction’s activity dominates Eq. (2.2), we expect Y(k,i) ~ 1, i.e., Y(k,i) is independent of k. 

For the E. coli metabolism optimized for succinate and glucose uptake we find that both the in and 

out degrees follow the power law Y(k,i) ~ k0.27 , representing an intermediate behavior between the 

two extreme cases (Almaas et al., 2004). This suggests that the large-scale inhomogeneity 

observed in the overall flux distribution is increasingly valid at the level of the individual 

metabolites as well: for most metabolites, a single reaction carries the majority of the flux. Hence, 

the majority of the metabolic flux is carried along linear pathways – the metabolic high flux 

backbone (HFB) (Almaas et al., 2004). 

 

2.5.7.    Gene Interactions 

One can also investigate the strength of the various genetic regulatory interactions provided by 

microarray datasets. Assigning each pair of genes a correlation coefficient which captures the 

degree to which they are co-expressed, one finds that the distribution of these pair-wise correlation 

coefficients follows a power law (Kutznetsov et al., 2002; and Farkas et al., 2003). That is, while 

the majority of gene pairs have only weak correlations, a few gene pairs display a significant 

correlation coefficient. These highly correlated pairs likely correspond to direct regulatory and 
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protein interactions. This hypothesis is supported by the finding that the correlations are larger 

along the links of the protein interaction network and between proteins occurring in the same 

complex than for pairs of proteins that are not known to interact directly (Dezso, et al., 2003; 

Grogoriev, 2001; Jansen et al., 2002; and Ge et al., 2001). 

 

Taken together, these results indicate that the biochemical activity in both the metabolic and 

genetic networks is dominated by several ‘hot links’ that represent a few high activity interactions 

embedded into a web of less active interactions. This attribute does not seem to be a unique feature 

of biological systems: hot links appear in a wide range of non-biological networks where the 

activity of the links follows a wide distribution (Goh et al., 2002; deMenezes and Barabasi, 2004). 

The origin of this seemingly universal property is, again, likely rooted in the network topology. 

Indeed, it seems that the metabolic fluxes and the weights of the links in some non-biological 

system (Goh et al., 2002; deMenezes and Barabasi, 2004) are uniquely determined by the scale-

free nature of the network. A more general principle that could explain the correlation distribution 

data as well is currently lacking. 
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Figure 2.10:  (a) A schematic of gene regulation showing the steps in transducing an extracellular signal to a change in gene 

expression. (b) The common modes of gene regulation (Othmer, 2006). 
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2.6. Graph-based methods for interaction network in system biology 

Protein-Protein Interactions (PPIs) networks are modelled by undirected graphs, where the nodes 

are proteins and two nodes are connected by an undirected edge if the corresponding proteins 

physically bind. While the transcriptional regulatory networks can be modelled as directed 

weighted graphs, where the weights of directed edges capture the degree of the regulatory effect of 

the transcription factors (i.e. source nodes) to their regulated genes (sink nodes).  Metabolic 

networks generally require more complex representations, such as hypergraphs, as reactions in 

metabolic networks generally convert multiple reaction inputs into multiple outputs with the help 

of other components. An alternative, reduced representation for a metabolic network, is a weighted 

bipartite graph, where two types of nodes are used to represent reactions and compounds, 

respectively, and the edges connect nodes of different types, representing either substrate or 

product relationships (Aittokallio and Benno, 2006). 

The representation of complex cellular networks as graphs has made it possible to systematically 

investigate the topology and function of these networks using well-understood graph-theoretical 

concepts that can be used to predict the structural and dynamical properties of the underlying 

network. Such prediction can suggest new biological hypotheses regarding the unexplored new 

interactions of the global network or the function of individual cellular components that are 

testable subsequent experimentation. Mathematical modelling also enables an iterative process of 

network reconstruction, where model simulations and predictions are closely coupled with new 

experiments chosen systematically to maximize their information content for subsequent model 

adjustments, providing increasingly more accurate descriptions of the network properties (Papin et 

al., 2005). The topological relations underlying graph-based methods can also convey structure of 

putative pathways. This helps avoiding approaches that test many known sets of molecules without 
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causal interactions (Curtisa et al., 2005). Furthermore, graph formalisms may provide powerful 

tools for omics data integration to address fundamental biological questions at the systems level 

(Joyce and Palsson, 2006). 

A substantial effort has been devoted to develop graph-based methods for a wide range of 

computational and biological tasks. The selected methods are presented in the broader context of 

network analysis, summarizing some of the basic concepts and themes such as scale-free networks, 

pathways and modules as depicted in table 2.1. The order of sections roughly reflects the 

increasing demands placed for the type and amount of data the methods require and their 

applicability to address more targeted problems in cell biology. 

 

2.6.1 The characterization of network topology 

The most general level of network analysis comes from global network measures that allow us to 

characterize and compare the given network topologies (i.e. the configuration of the nodes and 

their connecting edges). Global measures such as the degree distribution (i.e. the degree of a node 

is the number of edges it participate in) and the clustering coefficient (the number of edges 

connecting the neighbours of the node divided by the maximum number of such edges) have 

recently reviewed in the context of cellular networks (Barabasi and Olttvai, 2004) and in 

proteomics (Grindrod and Kibble, 2004). Several types of surveyed biological networks, such as 

PPI, gene regulation and metabolic networks are thought to display scale-free topologies (i.e. most 

nodes have only a few connections whereas some nodes are highly connected), characterized by a 

power-law degree distribution that decays slower than exponential.  This type of network topology 

is frequently observed in numerous non-biological networks and it can be generated by simple and 
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elegant evolutionary models, where new nodes attach preferentially to sites that are already highly 

connected.  Numerous improvements to this generic model include, for instance, iterative network 

duplication and integration to its original core, leading to hierarchical network topologies, which 

are characterized by non-constant clustering coefficient distribution (Barabasi and Olttvai, 2004; 

and Albert, 2005). 

It is however observed that, in practice, the architecture of large-scale biological networks is 

determined with sampling methods, resulting in subnets of the true network, and only these partial 

networks can be applied to characterize the topology of the underlying, hidden network (Lappe, 

2004). It has recently been recognized that it is possible to extrapolate from subnets to the 

properties of the whole network only if the degree distributions of the whole network and 

randomly sampled subnets share the same family of probability distributions (Stumpf et al., 2005).  

While this is the case in specific classes of network graph models, including classical Erdӧs-Rényi 

and exponential random graphs, the condition is not satisfied for scale-free degree distributions. 

The recent studies in interactome networks have revealed that the commonly accepted scale-free 

model for PPI networks may fail to fit the data (Przulj et al., 2004). Moreover, limited sampling 

alone may as well give rise to apparent scale-free topologies, irrespective of the original network 

topology (Han et al., 2005). These results suggest that interpretation of the global properties of the 

complete network structure based on the current-still-limited-accuracy and coverage of the 

observed networks should be made with caution. Moreover, while the scale-free and hierarchical 

graph properties can efficiently characterize some large-scale attributes of networks, the local 

modularity and network clustering is likely to be the key concepts in understanding most cellular 

mechanisms and functions. 
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2.6.2 The Graph Analysis of Interaction Patterns 

As an alternative to the study of global graph characteristics, elementary graph algorithms have 

been used to characterize local interconnectivity and more detailed relationships between nodes. 

Such graph methods can facilitate addressing fundamental biological concepts, such as essentiality 

and pathways, especially when additional biological information is incorporated into the analysis 

in addition to the primary data. For example, while gene expression clustering traditionally makes 

the assumption that genes with similar expression profiles have similar functions in cells, a more 

targeted approach could aim at identifying the genes participating in a particular cellular pathway 

where not every components has a similar transcriptional profile (Zhou et al., 2002).  Once the 

network of interest had been represented as a graph, the conventional graph-driven analysis work-

flow involves the following two steps:- 

- Applying suitable graph algorithms to compute the local graph properties, such as the 

number and complexity of given subgraph, the shortest path length of indirectly connected 

nodes or the presence of central nodes of the network and  

- Evaluating the sensitivity and specificity of the model predictions using curated databases 

of known positive examples or random models of synthetic negative examples, 

respectively.   

 

2.6.3 The Subgraphs and Centrality Statistics 

A subgraph represents a subset of nodes with a specific set of edges connecting them. As the 

number of distinct subgraphs grows exponentially with the number of nodes, efficient and scalable 
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heuristics have been developed and applied for detecting the given subgraphs and their frequencies 

in large networks. Under the random graph model, it is also possible to calculate analytically the 

estimated distribution of different subgraphs with given number of nodes, edges and their specific 

global properties like degree distribution and clustering coefficient (Vazques et al., 2004). 

Centrality is a local quantitative measure of the position of a node relative to the other nodes, and 

can be used to estimate its relative importance or role in global network organization. Different 

flavours of centrality are based on the node’s connectivity (degree centrality), its shortest paths to 

other nodes (closeness centrality) or the number of shortest paths going through the node 

(betweenness centrality). Estrada (Estrada, 2006) recently showed that centrality measures based 

on graph spectral properties can distinguish essential proteins in PPI network of yeast 

Sacharonyces cereviae (essential genes are those upon which the cell depends for viability). In 

particular, the best performance in identifying essential proteins was obtained with a novel 

measure introduced to account for the participation of a given node in all subgraphs of the network 

(subgraph centrality), which gives more weight to smaller subgraphs. It was proposed that ranking 

proteins according to their centrality measures could offer a means to selecting possible targets for 

drug discovery (Estrada, 2006). A similar approach to characterize the importance of individual 

nodes, based on trees of shortest paths and concepts of bottleneck nodes, demonstrated that 70% of 

the top 10 most frequent ‘bottleneck’ proteins were unviable and structural proteins that do not 

participate in cellular signalling (Przulj et al., 2004). With degree centrality analysis in the 

metabolic networks of Escherichia coli, S. cerevisae and Staphylococcus aureus, it was 

demonstrated that most reactions identified as essential turned out to be those involving the 

production or consumption of low-degree metabolites (Samal et al., 2006). 
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Table 2.1:   Examples of some Graph-based approaches to cellular network analysis(Tero  

                  and Benno, 2006) 

Network topology Interaction patterns Network decomposition 

Global structural properties Local structural connectivity Hierarchical functional organization 

Scale-free topology Subgraphs Modules 

Degree distribution Centrality Motifs 

Clustering coefficient Pathways Clusters 
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2.6.4 Paths and Pathways  

In the theory of directed graphs, a path is a chain of distinct nodes, connected by directed edges, 

without branches or cycles. Such pathways in cellular network graphs can represent, for instance, a 

transformation path from a nutrient to an end product in a metabolic network, or a chain of post-

translational modifications from the sensing of a signal to its intended target in a signal 

transduction network (Albert, 2005). Pathways redundancy (the presence of multiple paths 

between the same pair of nodes) is an important local property that is thought to be one of the 

reasons for the robustness of many cellular networks. Betweenness centrality can be used to 

measure the effect of node perturbations on pathway redundancy, whereas path lengths 

characterize the response times under perturbations. With shortest paths and centrality-based 

predictions in the S. cerevisiae PPI and metabolic networks, respectively, the existence of alternate 

paths that bypass viable proteins can be demonstrated, whereas lethality corresponds to the lack of 

alternative pathways in the perturbed network (Przulj et al., 2004; and Palumbo et al., 2005). 

Besides the various commercial software packages for pathway analysis there exist also freely 

available tools for some specific graph queries, such as finding shortest paths between two 

specified seed nodes on degree weighted metabolic networks (Croes et al., 2005) or searching for 

linear paths that are similar to query pathways in terms of their composition and interaction 

patterns on a given PPI network (Shlomi et al., 2006).  

 
 
A linear pathway has a well-defined source, a chain of intermediary nodes, and a sink (end) node. 

The clustering coefficient of each node is zero, because there are no edges among first neighbors. 

Both the maximum and average path length increase linearly with the number of nodes and are 
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long for pathways that have many nodes. This type of graph has been widely used as a model of an 

isolated signal transduction pathway (Albert, 2005). 

 
The relatively high degree of noise inherent in the interactions data in current PPI databases can 

make pathway modelling very challenging. Integration of prior biological knowledge, such as 

Gene Ontology (GO), can be used to make the process of inferring models more robust by 

providing complementary information on protein function. GO terms and their relationships are 

encoded in the form of directed acyclic graph (DAG). Guo et al. (Guo et al., 2006) recently 

assessed the capability of both GO graph structure-based and information content-based similarity 

measures on DAG to evaluate the PPIs involved in human regulatory pathways. They also showed 

how the functional similarity of proteins within known pathways decays rapidly as their path 

length increases. While most of the analysis methods designed for PPI networks consider 

unweighted graphs, where each pairwise interaction is considered equally important, Scott J. et al. 

(Scott et al., 2006) recently presented linear-time algorithms for finding paths and more general 

graph structures such as trees that can also consider different reliability scores for PPIs. By 

exploiting a powerful randomized graph-algorithm called color coding, they efficiently recovered 

several known S. cerevisiae signalling pathways such as MAPK, and showed that in general the 

pathways they detected score higher than those found in randomized networks. In addition to 

known pathways, they also predicted novel putative pathways in the PPI network that are 

functionally enriched (i.e. share significant number of common GO annotations) (Scott et al., 

2006). 
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 2.6.5 Network decomposition into functional modules 

The decomposition of large networks into distinct components, or modules, has come to be 

regarded as a major approach to deal with the complexity of large cellular networks (Hartwell et 

al., 1999; Lee et al., 2002; and Milo et al., 2002). In cellular networks, a module refers to a group 

of physically or functionally connected biomolecules (nodes in graphs) that work together to 

achieve the desired cellular function (Barabasil and Oltvai, 2004). To investigate the modularity of 

interaction networks, tools and measures have been developed that can not only identify whether a 

given network is modular or not, but also detect the modules and their relationships in the network. 

By subsequently contrasting the found interaction patterns with other large-scale functional 

genomics data, it is possible to generate concrete hypothesis for the underlying mechanisms 

governing e.g. the signalling and regulatory pathways in a systematic and integrative fashion. For 

instance, interaction data together with mRNA expression data can be used to identify active 

subgraphs, that is, connected regions of the network that show significant changes in expression 

over particular subnets of experimental conditions (Ideke et al., 2002). 

 

2.6.6 Clustering Coefficient 

A measure that gives insight into the local structure of a network is the so-called clustering of a 

node: the degree to which the neighborhood of a node resembles a complete subgraph. 

For a node i with degree (� the clustering is defined as  

 

   8�		 = Sgt	
/t(/t	)R) 																																																																																													2.7 

representing the ratio of the number of actual connections between the neighbors of node i to the 

number of possible connections. For a node which is part of a fully interlinked cluster  8�		= 1, 
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while	8�		 = 0 for a node where none of its neighbors are interconnected. Accordingly, the overall 

clustering coefficient of a network with N nodes is given by 〈8〉 = 	∑ �t
�  quantifying a network’s 

potential modularity. By studying the average clustering of nodes with a given degree k, 

information about the actual modular organization of a network can be extracted (Ravasz et al., 

2002; Ravasz and Barabasi, 2003; Dorogovtsev et al., 2002; and Vazquez et al., 2002). For all 

metabolic networks available, the average clustering follows a power-law form as C(k) ~ k−α [45] 

suggesting the existence of a hierarchy of nodes with different degrees of modularity (as measured 

by the clustering coefficient) overlapping in an iterative manner (Ravasz et al., 2002). In summary, 

we have seen strong evidence that biological networks are both scale-free (Jeong et al., 2000; and 

Jeong et al., 2001) and hierarchical (Ravasz et al., 2002). 

 

 

2.7 Summary  

The large-scale data on biomolecular interactions that is becoming available at an increasing rate 

enables a glimpse into complex cellular networks. Mathematical graphs are a straightforward way 

to represent this information, and graph-based models can exploit global and local characteristics 

of these networks relevant to cell biology. Most current research activities concern the dissection 

of networks into functional modules, a principal approach attempting to bridge the gap between 

our very detailed understanding of network components in isolation and the ‘emergent’ behaviour 

of the network as a whole, which is frequently the phenotype of interest on a cellular level. 

Approaches developed for DNA and protein sequence analysis, such as multiple alignment and 

statistical over-representation of parts, are being carried over to address these problems. Network 

graphs have the advantage that they are very simple to reason about, and correspond by and large 

to the information that is globally available today on the network level. However, while binary 
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relation information does represent a critical aspect of interaction networks, many biological 

processes appear to require more detailed models. Therefore, we expect that one of the main 

directions in the development of graph-based methods will be their extension to other types of 

large-scale data from existing and new experimental technologies. This may eventually prove 

mathematical models of large-scale data sets valuable in medical problems. 

 

The power laws in system biology are abundant in nature, affecting both the construction and the 

utilization of real networks. The power-law degree distribution has become the trademark of scale-

free networks and can be explained by invoking the principles of network growth and preferential 

attachment. However, many biological networks are inherently modular, a fact which at first seems 

to be at odds with the properties of scale-free networks. However, these two concepts can co-exist 

in hierarchical scale-free networks. In the utilization of complex networks, most links represent 

disparate connection strengths or transportation thresholds. For the metabolic network of E. coli, 

we can implement a flux-balance approach and calculate the distribution of link weights (fluxes), 

which (reflecting the scale-free network topology) displays a robust power-law, independent of 

exocellular perturbations. Furthermore, this global in homogeneity in the link strengths is also 

present at the local level, resulting in a connected “hot-spot” backbone of the metabolism. Similar 

features are also observed in the strength of various genetic regulatory interactions. Despite the 

significant advances witnessed the last few years, network biology is still in its infancy, with future 

advances most notably expected from the development of theoretical tools, development of new 

interactive databases and increased insights into the interplay between biological function and 

topology. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

 

3.1  Constructing Protein-Protein Interaction Network for Signalling Pathways   

 Extraction 
 
Protein-Protein Interaction data was obtained from the work of LaCount et al. (LaCount et al., 

2005). Their results comprise 2846 interactions between 1309 proteins. We model all protein-

protein interaction data of a gene using an interaction graph, where vertices are the gene’s 

interacting proteins, and whose edges represent pairwise interactions between distinct proteins. 

 

3.1.1 Estimation of interaction probabilities 

To add weight to the edges, several authors have suggested methods for evaluating the reliabilities 

of protein interactions (Deng et al., 2003; Bader, et al., 2004; and Von et al., 2002). In this work, a 

method developed by Bader et al. (Bader, et al., 2004) was used and assigned confidence values to 

protein interaction networks using a logistic regression model that consists of three parameters 

(�R, �S, �T):. 

o The number of times an interaction between the proteins was experimentally 

observed; 

o The Pearson correlation coefficient of expression measurements for the 

corresponding genes. 

o  The proteins’ small world clustering coefficient (Goldberg and Roth, 2003) which 

is defined as the hypergeometric function for the overlap in the neighborhoods of 

two proteins. 

We describe these parameters in detailed as follows: 
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(a) The number of experimental observations was shown by several authors (Deng et al., 

2003) to be predictive on the reliability of an interaction. For Plasmodium falciparum, we 

used the experimental study of LaCount et al. (LaCount et al., 2005). Here, we defined the 

number of observations as the number of times the interaction was observed in the 

corresponding study. 

(b) Suppose K and L are two level of expression profile for two genes. The Pearson correlation 

coefficient between the two genes is defined as: 

 

� =
1
�∑ K�L� − K̅Ls��yR

`� �̀
,																																																																3.1 

 where K̅	��C	Ls are the sample means and `� and `� are the standard deviations of K 

and L respectively.  The correlation coefficient quantifies the similarity of expression 

between two genes and was shown to be correlated to whether the corresponding proteins 

interact or not (Grigoriev, 2001; and Ge et al., 2001). To estimate this parameter for the 

edges, we used the following Microarray Datasets; Bozdeck-3D7 data (Bozdech et al., 

2003a) over 54 conditions; Bozdeck-HB3 data (Bozdech et al., 2003a) over 49 conditions 

and LeRoch data (LeRoch, 2003) over 16 conditions. 

(c) For proteins v and w, we denote the sets of proteins that interact with them by ;(B) and 

;(�), respectively. Let ; be the total number of proteins in the network. The small-world 

clustering coefficient for B and � is given as: 

 

8A� = −5�6 �
�|�(A)|

� � ��)|�(A)|
|�(�)|)��

� �
|�(�)|�

���	(|�(A)|,|�(�)|)

�y|�(A)∩�(�)|
																										3.2 
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The clustering coefficient was suggested by Goldberg and Roth (Goldberg and Roth, 2003) 

to account for similarity in network connections. 

According to the logistic distribution, the probability of a true interaction 
�A given the 

three input variables, �	 = 	 (�R, �S, �T), is:  

 

Pr(
�A|�) = 1
1 + exp	(−�n − ∑ ����T�yR ) ,																																									3.3 

 

where �n	.		.			.			.			�T are the parameters of the distribution. The snapshot of the resulted edge 

weights generated from our protein-protein interaction network are shown in figure 3.1.  
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Fig. 3.1: Resulted edges weight generated on Plasmodium falciparum PPI network constructed from 

logistic distribution. For example, in the PPI network above, the interaction of the gene 

chr13_1000012.gene_6 in column B with the following genes MA13P1.63, PF13_0235, PFB0935w, 

PFF1220w, PFL0130c and PFE0070w in column C have their corresponding weights(w) 0.997539, 

0.880797, 0.880797, 0.880797, 0.952574 and 0.880797 in column D  respectfully. 
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3.1.2 Weighted Graph Representation of the Protein-Protein Interaction Network 

 

The protein–protein interaction network of Plasmodium falciparum is represented as a weighted 

graph "	 = 	 (?, @; �). The vertices of the graph are the set of unique proteins, and therefore|?| 	=
	1,309. The edges of the graph are the interactions, and therefore|@| 	= 	2,846, while w is the 

weight along the edge between vertices. 

 

Given an undirected weighted graph "	 = 	 (?, @, �) with � vertices, � edges and a set , of start 

vertices, we wish to find, for each vertex B, a minimum-weight simple path of length ( that starts 

within , and ends at B. If no such simple path exists, this should be reported.  

Signalling networks are modelled as directed weighted graphs, where the weights of directed edges 

capture the degree of the regulatory effect of the transcription factors (source nodes)  to their 

regulated genes (sink nodes). 

In general, this problem is NP-hard, as the travelling-salesman problem is reducible to it. A 

standard dynamic programming algorithm exists for this problem, which runs in �((�/) and 

requires also �((�/) memory (Scott et al., 2006). In an attempt to reduce the time and space 

complexity, the color coding idea was introduced by Scott et al. (Scott et al., 2006). “The idea of 

color coding is to assign each vertex a random color between 
 
and  and, instead of searching for 

paths with distinct vertices, search for paths with distinct colors”. The introduction of this, greatly 

reduced the complexity of the dynamic programming algorithm, and the paths extracted are 

necessarily simple. However, a path fails to be discovered if any two of its vertices receive the 

same color, so many random colorings need to be tried to ensure that the desired paths are not 

missed. The running time of the color coding algorithm is exponential in  and linear time in , 
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and the storage requirement is exponential in  and linear time in . This method is much more 

cost-effective when  is much larger than , as is the case in our application. In Scott et al. (Scott 

et al., 2006), the color-coding solutions were extended to several biologically motivated extensions 

of the basic path-finding problem. These include: (1) constraining the set of proteins occurring in a 

path; (2) constraining the order of occurrence of the proteins in a path; and (3) finding pathway 

structures that are more general than simple paths. Due to the scarcely experimental populated 

protein interaction network, like the one we are considering, and due to the fact that little is known 

about the order of proteins in any signalling pathway in P. falciparum, we will consider only 

solving the first but modified version, namely, given a set of proteins, constrain the maximal 

number of proteins occurring in a path. Note that this is slightly different to the first problem 

solved by Scott et al. (Scott et al., 2006). They searched in their first biologically motivated 

problem as indicated above, pathway with a set of proteins, but in P. falciparum, known set of 

proteins that probably formulate signalling pathways are poorly known for a number of reasons 

(Doering, 1997; Koyama et al., 2009; and Ward et al., 2004). The challenge to extract well defined 

sets using other eukaryotes is further complicated by the fact that about 60% of the P. falciparum 

proteins are hypothetical and share little or no sequence similarity with other eukaryotes (Koyama 

et al., 2009; Gardner et al., 2002). Therefore, for each given set that we formulated as shown in 

chapter four; we sought for pathways that contain a maximal number of proteins in that set. That 

means other proteins not in that set may be found in our predicted signalling pathways.  
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3.1.2.1 Constructing the Minimum Paths Algorithm 

Let  be a digraph with edge cost function .  Let extend the cost function 

 to the cost matrix  where  

 

                                           3.4 

 

Normally, the simplest cost function is unit cost where  for all  this can be 

generalize to both positive cost function where  and negative cost function where 

.   The size parameters for complexity considerations are, as usual,  and . 

We usually let . 

 

3.1.2.1.1 Minimum cost (weight) paths: Let  be a weighted directed graph. If 

 we write  for . The cost of a path  is 

 

         3.5 

 
 

The distance from  to , denoted by  is the cost of the minimum cost path from  to . If 

there is no path from  to , then  The single-source shortest path problem is that, 

given a graph  and a source vertex s, determine the shortest path from  to  and hence  

for each vertex . 

 
There are three basic versions: 

1. Single-pair minimum paths: Given an edge-weighted diagraph  

with source and sink , find the minimum path from  to . 

��(G, B) ∈ @ 

��	G = B 

�5�� 
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2. Single-source minimum paths: Given an edge- weighted diagraph  

with source , find minimum paths from  to each . 

3. All-pairs minimum paths: Given an edge- weighted diagraph , find the 

minimum paths between  to  for all . 

 

3.1.2.1.2   Path Length and Link Distance:  If  is the unit weight (cost) then  is just 

the length of the path  , the minimum length (that is, the shortest) of a path from  

to  may be called the link distance from  to . Say  is reachable from  if the links distance from 

 to  is finite. 

 

3.1.2.1.3    Link-bounded minimum paths: Let  be a  integer. We define a path 

to be the exact -link minimum path if it has minimum cost among all -link paths from its source 

to its terminus. Let  denote the cost of an exact -link minimum path from  to  and we 

again have the exact -link minimum cost matrix  We can also consider  links: 

the corresponding matrix is given by 

  

                                     3.6 

We call  the -link minimum cost matrix. 

 

3.1.2.1.4   Minimum path tree ( ): The single-source path algorithms construct a set of minimum 

paths that comes from a node reachable from the root appears in tree . Under unit cost, this tree is 
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just the breadth first search (BFS) tree. If  can reach a negative cycle, then the minimum path tree 

rooted at  is not defined. The following lemma is a characterization of minimum path trees. 

  

 
 

The minimal path algorithm employed for extracting signalling pathways from our PPI network is 

now summarized in the figure 3.2 below. 
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Fig. 3.2: An algorithm for Minimum path problem.  is the source node,  is the    

               weight between  and  and  is the predecessor of the node s. 

 

 

 

 



82 

 

3.1.3 Statistical Evaluation and Scoring Functional Enrichment of the PPI Network 

In order to detect the functional characteristics of the numerically computed modules, we 

compared them with known functional classification. The paths computed are evaluated using two 

measures, namely the weighted p-value and the functional enrichment.  

 

3.1.3.1 Calculating Weighted p-value 

The meaning of a p-value is related to hypothetical replications of the experiment performed. By 

definition, if the null hypothesis is true, no more than a fraction  of the replications of an 

experiment or analysis will yield a p-value smaller than . This property of the p-value is the basis 

of all statistical inference based on it. However, as it is a statement about replications of the 

experiment or analysis, its meaning and interpretation are closely tied to the sampling scheme 

implied in the model (Goeman and Peter, 2006). 

 

Therefore, given a path with weight w, its weight p-value is defined as the percent of top-scoring 

paths in random networks (computed using the same algorithm that is applied to the real network) 

that have weight w or lower, where random networks are constructed by shuffling the edges and 

weights of the original network, preserving vertex degrees.  The p-value for a module  and 

functional category  is defined by the hypergeometric distribution as: 

 

                                          3.7 
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Where module  contains  proteins in  and the PPI networks contains N proteins. The smallest 

p-value over all functional categories is defined as the p-value of a module which also means that 

the module is assigned the corresponding function category. 

 

3.1.3.2 Gene Ontology (GO) Annotation 

GO is a set of associations from biological phrases to specific genes that are either chosen by 

trained curators or generated automatically (Ashburner et al., 2000). GO is designed to rigorously 

encapsulate the known relationships between biological terms and all genes that are instances of 

these terms. The GO associations allow biologists to make inferences about groups of genes 

instead of investigating each one individually. With GO, each gene can be automatically assigned 

its respective attributes. 

GO terms are organized hierarchically such that higher level terms are more general and thus are 

assigned to more genes, and more specific decedent terms are related to parents by either “is a” or 

“part of” relationships. For example, the nucleus is part of a cell, whereas a neuron is a cell. The 

relationships form a directed acyclic graph (DAG), where each term can have one or more parents 

and zero or more children. Users may select the level of generality the terms capture and carry out 

their analysis accordingly. To identify larger patterns within this group is to seek enrichment - to 

assess whether some subset of the group shows significant over-representation of some biological 

characteristic. 

 

Ontology is a structured form of knowledge giving clear definitions of concepts and the 

relationships among them. Ontology encode, in general, shared consensus among a community of 

users. Therefore, one advantage of using ontology is the consistency of concepts definition. 
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Ontologies have become central to biological research, linking literature and biological databases. 

One of the most used biological ontology is the Gene Ontology (GO), which organizes shared 

biological knowledge in a structured form, representing a semantic space with clear biological 

concepts, called GO terms, their definitions and the relations among them (Ashburner et al., 2000). 

 

The three categories of GO 

Biological process refers to a biological objective to which the gene or gene product contributes. 

A process is accomplished via one or more ordered assemblies of molecular functions. Processes 

often involve a chemical or physical transformation, in the sense that something goes into a 

process and something different comes out of it. Examples of broad (high level) biological process 

terms are ‘cell growth and maintenance’ or ‘signal transduction’. Examples of more specific 

(lower level) process terms are ‘translation’, ‘pyrimidine metabolism’ or ‘cAMP biosynthesis’. 

Molecular function is defined as the biochemical activity (including specific binding to ligands or 

structures) of a gene product. This definition also applies to the capability that a gene product (or 

gene product complex) carries as a potential. It describes only what is done without specifying 

where or when the event actually occurs. Examples of broad functional terms are ‘enzyme’, 

‘transporter’ or ‘ligand’. Examples of narrower functional terms are ‘adenylate cyclase’ or ‘Toll 

receptor ligand’. 

Cellular component refers to the place in the cell where a gene product is active. These terms 

reflect our understanding of eukaryotic cell structure. As is true for the other ontologies, not all 

terms are applicable to all organisms; the set of terms is meant to be inclusive. Cellular component 

includes such terms as ‘ribosome’ or ‘proteasome’, specifying where multiple gene products 

would be found. It also includes terms such as ‘nuclear membrane’ or ‘Golgi apparatus’. 
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Biological process, molecular function and cellular component are all attributes of genes, gene 

products or gene-product groups as shown in figures 3(a-c) (Ashburner et al., 2000). 
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Fig. 3.3a: Biological process ontology. This illustrates a portion of the biological process ontology describing 

DNA metabolism, a node may have more than one parents, for example, ‘DNA ligation’ has three parents, 

‘DNA-dependent DNA replication’, ‘DNA repair’ and ‘DNA recombination’(Ashburner et al., 2000) 

Fig. 3.3b: Molecular function ontology. The ontology is not intended to represent a reaction pathway, but instead reflects 

conceptual categories of gene product function. A gene product can be associated with more than one node within an 

ontologies as illustrated by MCM proteins. These proteins have been shown to bind chromatin and to possess ATP-

dependent DNA helicase activity, and are annotated to both nodes (Ashburner et al., 2000). 
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Fig. 3.3c: Cellular component ontology. The ontologies are designed for a genetic eukaryotic cell, and are 

flexible enough to represent the known differences between diverse organisms (Ashburner et al., 2000). 
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Ontologies have long been used in an attempt to describe all entities within an area of reality and 

all relationships between those entities. Ontology comprises a set of well-defined terms with well-

defined relationships. The structure itself reflects the current representation of biological 

knowledge as well as serving as a guide for organizing new data. Data can be annotated to varying 

levels depending on the amount and completeness of available information. This flexibility also 

allows users to narrow or widen the focus of queries. Ultimately, ontology can be a vital tool 

enabling researchers to turn data into knowledge. 

 

The GO project is one of the major efforts in Molecular Biology, for constructing a BioOntology of 

broad scope and wide applicability. A tremendous effort is being made to annotate all the gene 

products from many organisms using GO. Along with the Gene Ontology project, many collaborating 

groups have created organism specific databases, where the organism’s gene products are annotated 

with GO terms. Examples of these dedicated databases include SGD, for Saccharomyces cerevisiae, 

with 6463 annotated gene products (Cherry et al., 1998); FlyBase, for Drosophila melanogaster, with 

11312 annotated gene products (Ashburner and Drysdale, 1994); and WormBase, for Caenorhabditis 

elegans, with 14698 annotated gene products (Harris et al., 2003). Gene products may have, on each of 

the GO perspectives, one or more GO terms associated to them. The characterization of gene products 

through their annotations facilitates their comparison. The annotation of gene products has been an 

effort for standardizing biological knowledge and the way it is disseminated through the scientific 

community. 

 

 

3.1.3.3 Estimating Functional Enrichment 

 
Therefore, to evaluate the functional enrichment of a path P, its proteins are associated with known 

biological processes using Gene Ontology (GO) annotations (Ashburner et al., 2000). It is then 
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straight forward to compute the tendency of the proteins to have a common annotation using a 

method developed in (Sharan et al., 2005). The scoring is done as follows: define a protein to be 

below a GO term t, if it is associated with t or any other term that is a descendant of t in the GO 

hierarchy. For each GO term t with at least one protein assigned to it, we computed a 

hypergeometric p-value based on the following quantities:(1) the number of proteins in P that are 

below t; (2) the total number of proteins below t; (3) the number of proteins in P that are below all 

parents of t; and (4) the total number of proteins below all parents of t. The p-value is then further 

Bonferroni-corrected for multiple testing (Bonferroni, 1936). 

 

 

3.2 Constructing and Extracting Metabolic Pathways from a Biochemical Metabolic 

Network. 

 
A metabolic pathway is series of chemical reactions catalyzed by enzymes and are connected by 

their interactions; that is, the reactants of one reaction, are the products of the previous one, and so 

on (http://www.biology-online.org, 2011). In other words, metabolic pathways are processes by 

which organism produces the energy and components it needs to survive. 

  

A metabolic reaction is a pair   where  are the m input metabolites and 

 are the n product metabolites of the reaction. Each member of  and  belongs 

to the set  of the metabolites of the metabolic system under consideration. Note that by this 

definition, a metabolic reaction is directed and that we omit the stoichiometric coefficients which 

are not relevant for our current study. Bidirectional reactions are modeled by pairs of 

unidirectional reactions  and . Also note that when applying our theory, we want to 
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follow how the atoms are transmitted by the reactions and will therefore omit cofactor metabolites 

from  and .  

A metabolic network is given by listing the metabolic reactions that form the network. Let 

 be a set of k reactions where each  for some subsets  and  of 

. The corresponding metabolic graph which we also call a metabolic network, has nodes  

and arcs as follows: there is a directed arc from  to , and a directed arc 

from  to . We call the nodes of the network that are in M the metabolite 

nodes and the nodes in R the reaction nodes. Figure 3.4 gives an example graph in which the 

reaction nodes are shown as bullets and metabolite nodes contain abbreviated metabolite names. 

A metabolic pathway in a metabolic network is a concept that is used somewhat loosely in 

biochemistry. It seems clear, however, that it is not sufficient to consider only simple paths in a 

metabolic graph. The metabolic interpretation of the network has to be taken into account: a 

reaction can operate only if all its input substrates are present in the system. Respectively, a 

metabolite can become present in a system only if it is produced by at least one reaction. We 

consider some (source) metabolites to be always present in a system, and denote these metabolites 

by . Therefore, our metabolic network is in fact an and-or- graph (Rusel and Norvig, 2003) with 

reactions as and-nodes and metabolites as or-nodes. A similar interpretation of a metabolic 

network has been used in Ebenhoh et al. (Ebenhoh et al., 2004). To properly take into account this 

interpretation, Ebenhoh et al. (Ebenhoh et al., 2004) define distance measures for metabolite pairs 

that relate to the complexity of and-or-graphs connecting the pair. Let us start with reachability 

from source metabolites : 

A reaction  is reachable from  in , if each metabolite in  is reachable from  in . 
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A metabolite  is reachable from  in , if   or some reaction  such that  

is reachable from  in . 
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Fig. 3.4: A metabolic pathway from pyruvate (PYR) to alanine (ALA). In this network, pyruvate and 

glutamate (GLU) are combined to produce alanine. Here, ds(PY R;ALA) = 1. 
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Ebenhoh et al. (Ebenhoh et al., 2004) define metabolic pathways from  as certain minimal sets of 

reactions that are reachable from  and produce the target metabolite. To this end, for any , 

we let  denote the set of the input metabolites and  denote the set of the 

output metabolites of . Moreover, we denoted by  the subset of  that is reachable from 

 in . Hence  is the reactions in  that can be reached from  without going outside . 

A feasible metabolism from  is a set  which satisfies (i) , that is, the entire  

is reachable from  without going outside  itself. Specifically, a feasible metabolism from  to  

is a set  for which it additionally holds that (ii) .  

We then define that a metabolic pathway from  to  is any minimal feasible metabolism  from  

to , that is, removing any reaction from  leads to violation of requirement (i) or (ii). Thus, a 

metabolic pathway is a minimal subnetwork capable of performing the conversion from  to . 

Now, different distance measures can be defined. We define the metabolic distance from  to  to 

be the size of the smallest metabolic pathway from  to . This distance captures the idea that the 

distance equals minimum number of reactions in total needed to produce  from . The production 

distance from  to  is the smallest diameter taken over all metabolic pathways from  to , where 

diameter of a metabolic pathway is taken as the length of the longest simple path in the pathway. 

Hence, production distance is the minimum number of sequential (successive) reactions needed to 

convert  to . In the following, we restrict ourselves to a single source metabolite, that is 

. We then denoted by  denotes the shortest-path distance. 

We use the metabolic (network) graph representation in Koenig et al. (Koenig et al., 2006). In this 

work, a graph was established by defining neighbours of metabolites. Two metabolites are 

neighbours if and only if an enzymatic reaction exists that needs one of the metabolites as input 
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(needed substrate) and produce the other as output (product). Explicitly, in this graph 

representation, we have list of all compounds   list of all reactions,  and list 

of definitions defining the details of all reactions,  For example, for reaction  with 

input and output compounds  and  respectively,  will be 2 (number of input 

compounds)  3 (number of output compounds) . We downloaded PlasmoCyc version 

14.6 for P. falciparum 3D7 from Biocyc.org on the 28th July, 2010 and biochemical metabolic 

files for the P. falciparum 3D7 last updated 22nd December, 2010 from KEGG. Based on the 

graph representation in figure 3.4, from PlasmoCyc, we have 608 compounds and 824 reactions. 

And from KEGG, we have 3011 compounds and 3524 reactions. We found that not all compounds 

used in the reactions listed for P. falciparum 3D7 are listed in the compounds list for P. falciparum 

3D7 in KEGG database. Therefore we used the file containing all compounds and found 6516 

compounds and 4126 reactions. Note that the reactions that were ignored due to the fact we could 

not find all compounds listed in their definitions are now accounted for. This finding is totally 

disturbing based on the heavily negative impact of the organism, P. falciparum, under 

consideration. Another further disturbance here is the level of disparity between the graphs 

extracted from the two databases.  

 

Note that the graph formation above is bipartite, having two type of nodes, namely compounds and 

reactions. We transformed this graph formation into one with a single type of node, namely 

reaction, using the following; An edge is drawn between two reactions,  and  if they exchange 

at least one compound, that is, at least one compound is an output from reaction  and an input 

into reaction . This representation leads to  case way of viewing pathway, that is, from a 

source reaction to a target reaction. We took to this representation based on the fact the first work 



95 

 

(Croes et al., 2006; Croes et al., 2005) that introduced the  concept has been the most 

effective of all paths finding approaches presented to date in literature (Planes And Beasley, 2009). 

Converting the bipartite graphs from PlasmoCyc and KEGG (the one with 6516 compounds and 

4126 reactions) to our  representation, we have a dense graph of 824 reaction nodes with 

40299 edges and another heavily dense graph of 4126 reaction nodes with 780560 edges.  

 

We assign weights to the edges on our two graphs using metabolite degrees (Croes et al., 2006). 

The weight of an edge is the number of metabolites exchanged by the two reactions, that is, given 

as output by the first and taken in as input by the second. This way, we are able to avoid the 

problem of assigning a list of side metabolites or otherwise known elsewhere as pool metabolites. 

And we retain the opportunity to obtain results involving pathways which synthesize for example 

ATP. In a future work, instead of using the weight on the edges to evaluate the significant of a 

metabolic pathway, we will extract relevant pathways using atom mapping extraction (Health et 

al., 2010). 

 
We adapted the minimum path algorithm developed in figure 3.2 to P. falciparum metabolic 

weighted graphs (networks). Such graphs were built from BioCyc (easily updated with MPMP) 

and KEGG. In figure 3.2, we only applied the Scott et al. (Scott et al., 2006) path finding 

technique for extracting linear pathways. In the very near future, we in-addition plan to adapt and 

implement their technique for extracting non-linear pathways.  
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CHAPTER FOUR 

 

EXPERIMENTAL EXPERIENCES 

 

4.1 Prediction of Signalling Pathway 

4.1.1 Introduction 

We applied the methods above to search for minimum pathways in the P. falciparum interaction 

(weighted graph) network. Our findings can be found in Tables 4.2–4.8 in the appendix A. A 

snapshot of these tables is presented in Table 4.1. 

 

From the available literature (Doering, et al., 1997, Koyama, et al., 2009 and Ward, et al., 2004), 

we found the following identified classes of signal transduction pathways: cAMP dependent, 

cGMP dependent, MAP kinase, MAPK, phosphatidylinositol cycle, calcium signalling, protein 

phosphatases, calcium modulated protein kinase, cyclic nucleotide-dependent, CDK-like kinases, 

cell cycle kinases and the novel FIKK kinases. Searching the plasmoDB database using their text 

option using keywords from the above specific identified pathways names, we found 43, 12, 7, 1, 

25, 85, 2, 64, 234, 10, 620, and 36 P. falciparum genes in these classifications, respectively. 

Searching for the existence of these genes in the LaCount et al. (LaCount et al., 2005) protein–

protein interaction data, we found none from cAMP dependent, cGMP dependent, MAP kinase 

and MAPK signalling, but we found 9 from phosphatidylinositol cycle, 32 from calcium 

signalling, none from protein phosphatases, 28 from calcium modulated protein kinase, 55 from 

cyclic nucleotide- dependent, none from CDK-like kinases, 130 from cell cycle kinases and 8 from 

novel FIKK kinases proteins. To ensure we have exhaustively considered all putatively or 
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annotated signal transduction pathways genes in P. falciparum, we further search plasmoDB using 

the keyword “signal transduction”. We found 1183 genes in this category and later filtered out all 

genes found earlier on using the known signalling pathways listed above. We also observed that 

there are many genes in the known pathways; which are not part of the filtered 1183 genes. We are 

then left with 940 genes that are not in any of the known signal transduction pathways. We call 

this group of genes ‘‘unknown’’ signalling pathways. Considering our modified first biological 

motivated problem; we evaluated the weight p-value and hypergeometric p-value (for functional 

enrichment) of each path extracted. Following Scott et al. (Scott et al., 2006); we extracted 

pathways with lengths less than or equal to 10 and considered only pathways whose weight and 

hypergeometric p-values were less than 0.05.We used these criteria; since this is the very first 

time; this kind of analysis is being done on the only existing protein–protein interaction network 

(LaCount et al., 2005) for P. falciparum. We felt; it is important to be able to see explicitly all 

potential signalling pathways. Furthermore; the results obtained with these criteria have been 

biological proven to be reliable when applied to yeast protein–protein interaction network (Scott et 

al., 2006). We found minimum pathways for the genes in the known classifications above as given 

in Tables 4.2–4.7 in the appendix A. For the ‘‘unknown’’; we set  to be each gene in a sequence 

and found also in Table 4.8 in Appendix A; the listed pathways; whose weight and hypergeometric 

p-values are both less than 0.05. To visualize the content of the tables diagrammatically, the 

highlighted (bold) ones in Tables 2–7 can be captured in the usual signalling pathways (Figs. 4.1 

and 4.2). They are also highlighted in bold and tagged in Tables 4.1a–4.1d. 
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4.1.2 Discussion of Results 

 
Since our work is the first attempt to predict the main chains of signal transduction pathways in P. 

falciparum, we adhere strictly to the description of most signal pathways: ‘‘the proteins would 

transmit the signal from the membrane, where the signal is initiated, towards the nucleus by the 

activation of transcription factors, which in turn lead to transcription of the final effectors’’. We 

thus extracted, for example, from the tables of the appendix A, the following signalling pathways, 

namely, calcium modulated, calcium signalling, cell cycle kinases, cyclic nucleotide, 

phosphatidylinositol cycle, FIKK in P. falciparum. They are highlighted (in red) in the tables in 

the appendix A and reproduced here in Tables 4.1a–4.1c. The biological validation of these 

pathways will certainly be useful and attractive for designing new strategies against malaria. 

 

Vaid and Sharma (Vaid and Sharma, 2006) reported the first signalling pathway in P. falciparum, 

which involves activation of protein kinase B-like enzyme (PfPKB) by calcium/Calmodulin(CaM). 

This is depicted in Fig. 4.3(a) as given in Fig.7 of Vaid and Sharma (Vaid and Sharma, 2006), but 

it has not been characterized in term of the genes responsible. In their study, they also noted that 

PfPKB is expressed mainly in the schizont/ merozoite stages of P. falciparum, and the calcium 

necessary for PfPKB  activation by CaM is dependent on the activation of phospholipase C(PLC). 

Therefore, the PfPKB pathway is regulated by CaM and phospholipase C-mediated calcium 

release. The erythrocyte invasion is a multistep process, which involves the interaction between 

the merozoites and the erythrocyte followed by reorientation of the merozoite, which leads to the 

formation of a tight junction between the merozoites apical end and the erythrocyte membrane 

(Soldati et al., 2004). Vaid et al. (Vaid et al., 2008) carried out a further study, which showed that 

the PfPKB pathway is important for erythrocyte invasion. Their study demonstrated that PLC-
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mediated control of calcium release is important for merozoites invasion and that CaM may be 

involved in invasion, due to the localization of CaM at the apical end of the merozoites.  It was 

shown in their previous work that PfPKB is one of the very few CaM targets to be identified in P. 

falciparum, so it then follows that the PfPKB pathway may be important for invasion. Using these 

findings, we search from Tables 4.6 and 4.8 of the appendix A for pathways that contain the 

combination of phospholipase C/CaM/PfPKB( protein kinase B-like enzyme). We found only the 

first entry in Table 4.1d, as depicted in Fig. 4.3(b). We hypothesize this pathway as the Vaid and 

Sharma (Vaid and Sharma, 2006) Ca2+/Calmodulin-PfPKB signalling pathway characterized 

partially in terms of the genes responsible. This partial characterization, we believe, is due to the 

scarcely experimental populated protein interaction network underlining our present computational 

platform. It is important to note that the potential corresponding Ca2+/Calmodulin-PfPKB 

signalling pathway of Vaid and Sharma (Vaid and Sharma, 2006) extracted by us is the only 

pathway that involves a merozoites surface protein among the identified phosphatidylinositol cycle 

proteins. Further experiments using this set of genes could lead to complete characterization of the 

pathway in terms of the genes responsible. We also use the keywords ‘‘merozoite’’ and 

‘‘erythrocyte’’ to search all entries of Tables 4.2–4.7, and to avoid a trivial result, both of them to 

search Table 4.8, we found all the other entries in Table 4.1d. They are highlighted (in blue) in the 

tables of the appendix A. Again, we believe, the biological validation of these pathways will 

certainly be useful and attractive for designing new strategies against malaria. One interesting 

thing about the pathways extracted in Table 4.1d is that the proteins of unknown function in Tables 

4.1a–4.1c are also the proteins of unknown function in Table 4.1d, except for PF11_0277. 

Although this is not the aim of this study, but it is worth to mention that the gene PFA0125c (Table 

4.8 in Appendix A), which encodes the protein ‘‘erythrocyte binding antigen-181’’may be an 
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important ‘‘choke point’’ in P. falciparum. This has not been mentioned in the analysis by 

LaCount et al. (LaCount et al., 2005). Several interesting hypotheses are in particular obtained 

from the FIKK protein family as shown in Figs. 4.1a and 4.1b and 4.2. It has been noted by Ward 

et al. (Ward et al., 2004) and Schneider and Mercereau-Puijalon (Schneider and Mercereau-

Puijalon, 2005) that among all the P. falciparum protein kinases that have been identified, the 

FIKK protein family is particularly noteworthy. Koyama et al. (Koyama et al., 2009) suggested 

that the FIKK kinases may have a role in parasite-induced signalling events because members of 

this family are exported into the erythrocytes where they are found associated with the Maurer’s 

clefts, and one of the paralogs, R45, is transported to the host cell membrane. This hypothesis is 

also reflected in our results as we predicted a signal transduction pathway from the FIKK family 

(see Fig. 4.1a) that ends upon a chloroquine resistance marker protein, PF14_0463, which 

indicates that interference with FIKK proteins might reverse P. falciparum from resistant to 

sensitive phenotype. The Maurer’s clefts are established by the parasite within its host cell and 

play an essential role in directing proteins from the parasite to the erythrocyte surface. Presently, 

they are appreciated as a novel type of secretory organelle. They play an important role in the 

export of protein from the parasite across the cytoplasm of the host cell to the erythrocyte surface. 

This is remarkable since erythrocytes lack secretory organelles found in other eukaryotic cells. As 

a result, the parasite cannot rely on the host cell for its proteins needed and therefore must establish 

a de-novo secretory system in the host cell cytoplasm, in a compartment outside of its own 

confines (Frischknecht and Lanzer, 2008). The signal pathways in Fig. 4.1a assign FIKK proteins 

to this pathway as enabling the resistance of the parasite by excreting chloroquine via an efflux 

process (Krogstad et al., 1987; and Krogstad et al., 1988). With respect to the Red Blood Cell, 

Miller et al. (Miller et al., 2002) noted that what remains completely unknown is which merozoites 
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surface molecules recognize the RBC surface and then signal the start of the invasion process. 

There was a hypothesis that suggested that RBC invasion requires the cleavage of a surface protein 

on the RBC by an unknown parasite serine protease. It has been noted that understanding this 

pathway will give insight into the parasite virulence and will facilitate rational vaccine design 

against merozoites invasion (Miller et al., 2002). The signalling pathway predicted and depicted in 

Fig. 4.1b suggests the transduction pathway of that process. The serine protease protein among the 

proteins involved in this pathway is PFA0130c. From Le Roch et al. (Le Roch et al., 2003) and 

Bozdech et al. (Bozdech et al., 2003a) respectively, it is known that the 48-h P. falciparum 

intraerythrocytic developmental cycle (IDC) initiates with merozoites invasion of RBCs and is 

followed by the formation of the parasitophorous vacuole (PV) during the ring stage. The parasite 

then enters a highly metabolic maturation phase, the trophozoite stage, and prior to parasite 

replication. In the schizont stage, the cell prepares for reinvasion of new RBCs by replicating and 

dividing to form up to 32 new merozoites. The ring stage, immediately after the merozoite 

invasion, happens between the 1st hour to the 24th hour, the trophozoite stage begins from the 8th 

hour to the 33rd hour, while the schizont stage picked up from the 24th hour to the 48th hour. A 

stage specific expression profiled (see Fig. 4.4) for PFA0130c as obtained from plasmoDB shows 

that this serine protease protein is highly expressed at the ring stage for all the different cultures of 

the parasite used in experiments. These hypotheses need of course to be experimentally validated. 

The popular description of most signalling pathways is: ‘‘the proteins would transmit the signal 

from the membrane, where the signal is initiated, towards the nucleus by activation of transcription 

factors, which in turn lead to transcription of the final effectors’’. We applied this to suggest the 

functions of some genes as depicted in the proposed signal transduction pathways of Fig. 4.2. 

From their position in Fig. 4.2(a–e), we hypothesize that PF11_0342 is a putative Merozoite 
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Surface Protein, PFE1605w, PFF022w and PFF1220 are nuclear proteins, and PF07_0056 is a 

transcription factor. For the other proteins in Tables 4.1a–4.1d, we predicted their functions as 

described in the second column of Table 4.1e. In an attempt to corroborate our prediction above, 

we used the DomainSweep software of del Val et al. (del Val et al., 2007) to predict the function 

of these proteins as listed in Tables 4.1(a–d). The result of DomainSweep on these proteins is 

shown in Table 4.1e. From Table 4.1e, two results are conveyed, one, DomainSweep may be able 

to play a vital role in the re-annotation effort on-going for P. falciparum proteins and two, the 

information extracted by our work (apart from providing information about potential signalling 

pathways) can be used to collaborate the results of DomainSweep. For the genes with ‘‘unkown’’ 

classification, the question is, which type of cellular response is transmitted by the predicted signal 

transduction pathways. The answer to this question will give insight into a number of other 

signalling pathways and help us to understand better how the malaria parasite reacts and responds 

to its environments. 
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Table 4.1a. Extracted potential important signalling transduction pathways from calcium modulated and signalling 
proteins. Column one indicates the name of the signalling pathway, the second column shows minimum paths 
extracted, while optimizing the identified number of proteins in the pathway under consideration. The third column 
shows the weight p-value and column four detailed the products (from plasmodb) of the proteins in the identified 
potential signalling pathways.  
 

Name 

 

Minimum path  

 

p-

Value  

 

Gene IDs  

 

Products  

 

Calcium modulated 

 
PFB0540w → PFB0815w → PFF0220w
 → PFF0590c → PF14_0632 

0.044 

PFB0540w 

PFB0815w 
PFF0220w 
PFF0590c 
PF14_0632 

Conserved Plasmodium protein, unknown function 

Calcium-dependent protein kinase 1 
t conserved Plasmodium protein, unknown function 
homologue of human HSPC025 
26S proteasome subunit, putative 

 

PFA0110w → PFB0540w → FB0815w 

→ FD0090c 
FF0220w → PFF0590c 

0.049 

PFA0110w 
PFB0540w 
PFB0815w 

PFD0090c 
PFF0220w 
PFF0590c 

DNAJ protein, putative 
Conserved Plasmodium protein, unknown function 
Calcium-dependent protein kinase 1 

Plasmodium exported protein (PHISTa), unknown function 
conserved Plasmodium protein, unknown function 
homologue of human HSPC025 

 

PFB0540w → PFB0815w → PFE0070w

 → PFF0675c → PF11_0111 
0.044 

PFB0540w 
PFB0815w 
PFE0070w 

PFF0675c 
PF11_0111 

Conserved Plasmodium protein, unknown function 
Calcium-dependent protein kinase 1 
Interspersed repeat antigen, putative 

Myosin E 
asparagine-rich antigen 

 
PFB0540w → PFB0815w → PFD0985
w → PFF0590c → PFF0785w 

0.044 

PFB0540w 
PFB0815w 
PFD0985w 
PFF0590c 

PFF0785w 

Conserved Plasmodium protein, unknown function 
Calcium-dependent protein kinase 1 
Transcription factor with AP2 domain(s), putative 
Homologue of human HSPC025 

Ndc80 homologue, putative 

Calcium Signalling 

 
PF10_0143 → PF11_0142 → PF11_023
9 → MAL13P1.206 

0.033 

PF10_0143 

PF11_0142 
PF11_0239 
MAL13P1.206 

Transcriptional activator ADA2, putative ubiquitin domain containing protein calcium-dependent 
protein kinase, putative Na+-dependent Pi transporter, sodium-dependent phosphate transporter 

 
PF11_0142 → PF11_0239 → PF13_019
7 → MAL13P1.206 

0.038 

PF11_0142 
PF11_0239 
PF13_0197 
MAL13P1.206 

ubiquitin domain containing protein calcium-dependent protein kinase, putative Merozoite 
Surface Protein 7 precursor, MSP7 Na+-dependent Pi transporter, sodium-dependent phosphate 
transporter 

 

PF11_0142 → PF11_0239 → MAL13P

1.206 
0.022 

PF11_0142 

PF11_0239 
MAL13P1.206 

ubiquitin domain containing protein 

Calcium-dependent protein kinase, putative 
Na+-dependent Pi transporter, sodium-dependent phosphate transporter 

 
PF11_0142 → PF11_0239 → MAL13P
1.206 → PF14_0059 

0.046 

PF11_0142 
PF11_0239 
MAL13P1.206 

PF14_0059 

Ubiquitin domain containing protein 
Calcium-dependent protein kinase, putative 
Na+-dependent Pi transporter, sodium-dependent phosphate transporter 

Conserved plasmodium protein, unknown function 

 

PF11_0142 → PF11_0239 → MAL13P

1.206 → PF14_0678 
0.033 

PF11_0142 
PF11_0239 

MAL13P1.206 
PF14_0678 

Ubiquitin domain containing protein 
Calcium-dependent protein kinase, putative 

Na+-dependent Pi transporter, sodium-dependent phosphate transporter 
Exported protein 2 

 
PFD0090c → PFF0670w → PF08_0048
 → PF11_0239 

0.041 

PFD0090c 
PFF0670w 
PF08_0048 
PF11_0239 

Plasmodium exported protein (PHISTa), unknown function 
Transcription factor with AP2 domain(s), putative 
ATP-dependent helicase, putative 
Calcium-dependent protein kinase, putative 
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Table 4.1b. Extracted potential important signalling transduction pathways from cell cycle, cyclic nucleotide and 
phosphatidylinositol cycle proteins. Column one indicates the name of the signalling pathway, the second column 
shows minimum paths extracted, while optimizing the identified number of proteins in the pathway under 
consideration. The third column shows the weight p-value and column four detailed the products (from plasmodb) of 
the proteins in the identified potential signalling pathways.  
 

Name  

 

Minimum paths  

 

p-Value  

 

Gene ID  

 

Products  

 

Cell Cycle 

 
PFE1370w → PF10_0143 → PF10_0272 0.021 

PFE1370w 
PF10_0143 
PF10_0272 

hsp70 interacting protein, putative 
Transcriptional activator ADA2, putative 
60S ribosomal protein L3, putative 

Cyclic nucleotide 

 
PFB0190c → PFC0435w → PFE0660c → PF10_0254 
→ MAL13P1.202 

0.033 

PFB0190c 
PFC0435w 
PFE0660c 
PF10_0254 
MAL13P1.202 

Conserved Plasmodium protein, unknown 
function 
Conserved Plasmodium protein, unknown 
function 
Purine nucleotide phosphorylase, putative 
Conserved Plasmodium protein, unknown 
function 
Conserved Plasmodium protein, unknown 
function 

 
PFC0435w → PFE0660c → PF08_0129 → PF11_011
1 → MAL13P1.202 

0.028 

PFC0435w 
PFE0660c 
PF08_0129 
PF11_0111 
MAL13P1.202 

Conserved Plasmodium protein, unknown 
function 
purine nucleotide phosphorylase, putative 
Serine/threonine protein phosphatase, 
putative 
asparagine-rich antigen 
Conserved Plasmodium protein, unknown 
function 

 
PFC0435w → PFE0660c → PFL2520w → MAL13P1.
202 

0.016 

PFC0435w 
PFE0660c 
PFL2520w 
MAL13P1.202 

Conserved Plasmodium protein, unknown 
function 
Purine nucleotide phosphorylase, putative 
Reticulocyte-binding protein 3 homologue 
Conserved Plasmodium protein, unknown 
function 

Phosphatidylinositol Cycle 

 
PFE0750c → PFL1930w → MAL13P1.256 0.005 

PFE0750c PFL1930w 
MAL13P1.256 

RNA recognition motif, putative 
Conserved Plasmodium protein, unknown 
function 
Phosphatidylinositol transfer protein, 
putative 

 
PFA0110w → PFE0750c → MAL13P1.256 → PF14_
0257 

0.046 

PFA0110w 
PFE0750c 
MAL13P1.256 
PF14_0257 

DNAJ protein, putative 
RNA recognition motif, putative 
phosphatidylinositol transfer protein, 
putative 
conserved protein, unknown function 

 
PFA0110w → PFD0090c → PFE0750c → MAL13P1.
256 

0.029 
PFA0110w PFD0090c 
PFE0750c 
MAL13P1.256 

DNAJ protein, putative 
Plasmodium exported protein (PHISTa), 
unknown function 
RNA recognition motif, putative 
Phosphatidylinositol transfer protein, 
putative 

 
PFE0750c → PFF1050w → PF10_0115 → MAL13P1.
256 

0.043 
PFE0750c PFF1050w 
PF10_0115 
MAL13P1.256 

RNA recognition motif, putative 
Nascent polypeptide associated complex 
alpha chain, putative 
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Table 4.1c. Extracted potential important signalling transduction pathways from the FIKK family proteins. Column 
one indicates the name of the signalling pathway, the second column shows minimum paths extracted, while 
optimizing the identified number of proteins in the pathway under consideration. The third column shows the weight 
p-value and column four detailed the products (from plasmodb) of the proteins in the identified potential signalling 
pathways.  

Name/Figu

re tag  

 

Minimum paths  

 

p-

Value  

 

Gene ID  

 

Products  

 

FIKK 

 
PFA0130c → PFE1590w → MAL8P1.153 → PFA0215w 0.046 

PFA0130c 
PFE1590w 
MAL8P1.153 

PFA0220w 

Serine/Threonine protein kinase, FIKK family, putative 
Early transcribed membrane protein 5, ETRAMP5 
Transcription factor with AP2 domain(s), putative 

Ubiquitin carboxyl-terminal hydrolase, putative 

 
PFA0130c → PFE1590w → MAL8P1.153 → PF10_0075 0.039 

PFA0130c 

PFE1590w 
MAL8P1.153 
PF10_0075 

Serine/Threonine protein kinase, FIKK family, putative 

Early transcribed membrane protein 5, ETRAMP5 
Transcription factor with AP2 domain(s), putative 
Transcription factor with AP2 domain(s), putative 

Fig. 2a PFA0130c → PFE1590w → MAL8P1.153 → PF11_0342 0.036 

PFA0130c 
PFE1590w 
MAL8P1.153 

PF11_0342 

Serine/Threonine protein kinase, FIKK family, 

putative 
Early transcribed membrane protein 5, ETRAMP5 
transcription factor with AP2 domain(s), putative 

conserved Plasmodium protein, unknown function 

 
PFA0130c → PFE1590w → PF10_0232 → PF11_0506 0.036 

PFA0130c 
PFE1590w 
PF10_0232 
PF11_0506 

Serine/Threonine protein kinase, FIKK family, putative 

Early transcribed membrane protein 5, ETRAMP5 
Chromodomain-helicase-DNA-binding protein 1 
homolog, putative 
Antigen 332, DBL-like protein 

Fig. 1b 
PFA0130c → PFE1590w → PFF0590c → MAL8P1.153 → PF

L1385c 
0.046 

PFA0130c 

PFE1590w 
PFF0590c 

MAL8P1.153 
PFL1385c 

Serine/Threonine protein kinase, FIKK family, 

putative 
Early transcribed membrane protein 5, ETRAMP5 

Homologue of human HSPC025 
Transcription factor with AP2 domain(s), putative 
Merozoite Surface Protein 9, MSP-9 

Fig. 1a 
PFA0130c → PFE1590w → MAL8P1.153 → MAL8P1.23 → P

F14_0463 
0.039 

PFA0130c 

PFE1590w 
MAL8P1.153 
MAL8P1.23 
PF14_0463 

Serine/Threonine protein kinase, FIKK family, 

putative 

Early transcribed membrane protein 5, ETRAMP5 

Transcription factor with AP2 domain(s), putative 
Ubiquitin-protein ligase 1, putative 
Chloroquine resistance marker protein 

Fig. 2b PFA0130c → PFE1590w → PFE1605w → MAL8P1.153 0.036 

PFA0130c 

PFE1590w 
PFE1605w 

MAL8P1.153 

Serine/Threonine protein kinase, FIKK family, 

putative 

Early transcribed membrane protein 5, ETRAMP5 
Plasmodium exported protein (PHISTb), unknown 

function 
Transcription factor with AP2 domain(s), putative 

Fig. 2c 
PFA0130c → PFE1590w → PFF0220w → PFF0590c → MAL

8P1.153 
0.046 

PFA0130c 
PFE1590w 

PFF0220w 
PFF0590c 
MAL8P1.153 

Serine/Threonine protein kinase, FIKK family, 

putative 

Early transcribed membrane protein 5, ETRAMP5 
Conserved Plasmodium protein, unknown function 

Homologue of human HSPC025 
Transcription factor with AP2 domain(s), putative 

Fig. 2d PFA0130c → PFE1590w → PFF1220w → MAL8P1.153 0.036 

PFA0130c 
PFE1590w 

PFF1220w 
MAL8P1.153 

Serine/Threonine protein kinase, FIKK family, 

putative 
Early transcribed membrane protein 5, ETRAMP5 

Conserved Plasmodium protein, unknown function 

transcription factor with AP2 domain(s), putative 

Fig. 2e 
PFA0130c → PFE1590w → PF07_0056 → MAL8P1.153 → M

AL8P1.23 
0.036 

PFA0130c 
PFE1590w 
PF07_0056 

MAL8P1.153 
MAL8P1.23 

Serine/Threonine protein kinase, FIKK family, 

putative 
Early transcribed membrane protein 5, ETRAMP5 
Conserved Plasmodium protein, unknown function 

Transcription factor with AP2 domain(s), putative 
Ubiquitin-protein ligase 1, putative 

 
PFA0130c → PFE1590w → MAL8P1.153 0.007 

PFA0130c 
PFE1590w 
MAL8P1.153 

Serine/threonine protein kinase, FIKK family, putative 
Early transcribed membrane protein 5, ETRAMP5 
Transcription factor with AP2 domain(s), putative 

 
PFA0130c → PFE1590w → MAL8P1.153 → PF08_0034 0.041 

PFA0130c 
PFE1590w 
MAL8P1.153 

PF08_0034 

Serine/threonine protein kinase, FIKK family, putative 
Early transcribed membrane protein 5, ETRAMP5 
Transcription factor with AP2 domain(s), putative 

histone acetyltransferase GCN5, putative 

 
PFA0130c → PFE1590w → MAL8P1.153 → MAL8P1.23 0.036 

PFA0130c 
PFE1590w 
MAL8P1.153 
MAL8P1.23 

Serine/threonine protein kinase, FIKK family, putative 
Early transcribed membrane protein 5, ETRAMP5 
Transcription factor with AP2 domain(s), putative 
Ubiquitin-protein ligase 1, putative 



106 

 

Table 4.1d. Vaid and Sharma (2006) and Vaid et al. (2008) motivated extracted potential important signalling 
transduction pathways. Column one indicates the name of the signalling pathway, the second column shows minimum 
paths extracted, while optimizing the identified number of proteins in the pathway under consideration. The third 
column shows the weight p-value and column four detailed the products (from plasmodb) of the proteins in the 
identified potential signalling pathways.  
 

Name/Figur

e tag  

 

Minimum paths  

 

p-

Valu

e  

 

Gene ID  

 

Products  

 

Phosphatidylinositol cycle 

Fig. 3b PFE0750c → PFL1385c → MAL13P1.256 0.005 
PFE0750c PFL1385c 
MAL13P1.256 

RNA recognition motif, putative 

Merozoite Surface Protein 9, MSP-9 
Phosphatidylinositol transfer protein, 

putative 

Calcium modulated 

 

PFB0540w → PFB0815w → PFF0675c → PF10_0345 → PF11_

0111 
0.044 

PFB0540w 
PFB0815w 
PFF0675c 

PF10_0345 
PF11_0111 

Conserved Plasmodium protein, unknown 
function 
Calcium-dependent protein kinase 1 

myosin E 

merozoite surface protein 3 
asparagine-rich antigen 

 

PFB0540w → PFB0815w → PFF0220w → PFF0590c → PFL13

85c 
0.024 

PFB0540w 
PFB0815w 

PFF0220w 

PFF0590c 
PFL1385c 

Conserved Plasmodium protein, unknown 
function 
Calcium-dependent protein kinase 1 

Conserved Plasmodium protein, unknown 

function 
Homologue of human HSPC025 
Merozoite Surface Protein 9, MSP-9 

 
PFB0540w → PFB0815w →  PFF1365c → MAL7P1.12 0.029 

PFB0540w 
PFB0815w 

PFF1365c 
MAL7P1.12 

Conserved Plasmodium protein, unknown 
function 
Calcium-dependent protein kinase 1 

HECT-domain (ubiquitin-transferase), putative 

Erythrocyte membrane-associated antigen 

Cell Cycle 

 
PF10_0254 → PF10_0272 → PFL1385c 0.021 

PF10_0254 
PF10_0272 
PFL1385c 

Conserved plasmodium protein, unknown 
function 
60S ribosomal protein L3, putative 
Merozoite Surface protein 9, MSP-9 

cyclic nucleotide 

 
PFC0435w → PFE0660c → PF10_0281 → PF11_0224 0.016 

PFC0435w 
PFE0660c 

PF10_0281 PF11_0224 

Conserved Plasmodium protein, unknown 
function 
Purine nucleotide phosphorylase, putative 

Merozoite TRAP-like protein, MTRAP 
Circumsporozoite-related antigen 

Unknown signal transduction groups 

 
PFA0125c → PFE0570w → PF11_0277 → PFL1385c 0.027 

PFA0125c PFE0570w 
PF11_0277 
PFL1385c 

Erythrocyte binding antigen-181 
RNA pseudouridylate synthase, putative 
Conserved Plasmodium protein, unknown 
function 
Merozoite Surface Protein 9, MSP-9 
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Table 4.1e: DomainSweep functional prediction for the proteins with unknown function in Tables 4.1a–4.1d above. 
m.p = membrane protein, n.p = nuclear protein, t.f = transcription factor, m.s.p = merozoite surface protein. The third column 
indicates putative hits that do not fulfill the criteria of a significant hit but have a score above a certain threshold. A significant hit 
has at least two hits of domains which are described in two protein family databases AND which are members of the same 
INTERPRO family/domain, or at least two motif hits or two block hits in correct order as described in an individual entry of the 
Prints or the Blocks database. We listed the first two as predicted from DomainSweep. Columns four and five indicate selected hits 
from and name of the specific domains or families, respectively.  
 

Gene ID  

 

Our 

prediction 

from 

predicted 

signalling 

pathways  

 

Putative hits  

 

Selected protein domains and 

families hits  

 

The selected protein 

domains and families  

 

PFB0540w m.p. 
GPCR, family 3, metabotropic glutamate receptor 3 

Involucrin repeat 
Ribosomal protein L35 PFAM A 

PFF0220w n.p. 
Mycobacterial pentapeptide repeat 

Ribosomal protein VAR1 

Anticodon nuclease activator family 

Bipartite nuclear lo 

PFAM A 

PROSITE-PROFILES 

PF14_0059 t.f. 
Protein of unknown function DUF1754, eukaryotic 

Daxx protein 

Transcription factor IIA, alpha/bet 

Transcription elongation factor Elf1 

BLOCKS 

PFAM A 

PFB0190c m.p. Sel1 repeat 

Mitochondrial ribosomal protein 

(VAR1) 
Plasmodium histidine-rich protein 
(HRP) 
Putative stress-responsive nuclear e 

Bipartite nuclear lo 
IF-2: translation initiation factor I 
S8e: ribosomal protein S8.e 

PFAM APROSITE-
PROFILES 
TIGRFAMS 

PFC0435w t.p. Botulinum neurotoxin 

Mitochondrial ribosomal protein 
(VAR1) 
YL1 nuclear protein 
Bipartite nuclear lo 

ETRAMP: early transcribed membrane 

PFAM APROSITE-
PROFILES 
TIGRFAMS 

PF10_0254 n.p. 
Bipartite nuclear lo 
Asparagine-rich regi 

Ribosomal protein S15 

Transcription factor S-II (TFIIS), ce 
Heat shock factor binding protein 1 
Plasmodium histidine-rich protein 
(HRP) 

Ribosomal protein S26e 
rho: transcription termination factor 

PFAM A 
TIGRFAMS 

MAL13P1.202 t.f. 
Clostridium neurotoxin, translocation 
Phosphatidylinositol-4, 5-bisphosphate phosphodiesterase beta, conserved 
site 

phage_rinA: phage transcriptional reg 
rho: transcription termination factor 

TIGRFAMS 

PFL1930w t.f. Uso1/p115 like vesicle tethering protein, head region 

bZIP transcription factor 
Putative stress-responsive nuclear en 
Asparagine-rich regi 

Bipartite nuclear lo 

PFAM APROSITE-
PROFILES 

PF14_0257 t.f. 
Transcription factor IIA, alpha/beta subunit 
Translation initiation factor eIF3 subunit 

P21_Cbot: transcriptional regulator TIGRFAMS 

PFD0090c t.f. 
Exported protein, PHISTa/c, conserved domain, Plasmodium 
Basic helix–loop–helix, Nulp1-type 

Myb-like DNA-binding domain PFAM A 

PF11_0342 m.s.p. 
P60-like 
TAFII55 protein, conserved region 

Merozoite surface protein (SPAM) PFAM A 

PFE1605w n.p. Apoptosis regulator, Bcl-2 relatedANTIGEN SURFACE MALARIA 
Nuclear factor I protein pre-N-termin 
Putative stress-responsive nuclear en 

PFAM APFAM A 

PFF1220w n.p. 
Botulinum neurotoxin 
Asparagine-rich regi 
Lysine-rich region p 

Mitochondrial ribosomal protein 
(VAR1) 

PFAM A 

PF07_0056 t.f. 
Subtilin biosynthesis protein SpaC 
Putative 5-3 exonuclease 

Poxvirus Late Transcription Factor VL PFAM A 

PF11_0277 t.f. 
Autophagy-related protein 6 

Uso1/p115 like vesicle tethering protein, head region 
ribosomal protein L29 TIGRFAMS 
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Fig. 4.1: Potential vital signalling pathways from FIKK family proteins as extracted into table 4.1c. 

(a) Potential chloroquine resistance signalling pathway and (b) Potential signalling pathway that 

may have signal the start of the invasion process of Red Blood Cell (RBC) by the merozoites 
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Fig. 4.2: Hypothetical functional predictions from some predicted signalling pathways from the 

FIKK family proteins as extracted into Table 4.1a. (a) P11_0342 was predicted to be a 

Merozoite Surface Protein. (b) PFE1605w, (c) PFF0220w and (d) PFF1220w as nucleus 

proteins and (e) PF07_0056 as a transcription factor. 

Fig. 4.3: The Ca
2+
/Calmodulin-PfPKB signalling pathway as biologically dissected by Vaid and Sharma 

(2006). (b) The potential corresponding Ca
2+
/Calmodulin-PfPKB signalling pathway of Vaid and Sharma 

(2006) from the protein-protein interaction data of LaCount et al. (LaCount et al., 2005). 
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Fig. 4.4: Stage specific expression profile data for PFA0130c as obtained from plasmoDB shows that this 

serine protease protein is highly expressed at the ring stage for all the different cultures (HB3, 3D7, DD2 in 

Bozdech  et al.,  2003) of the parasite used in experiments. 
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4.2 Prediction of Metabolic Pathways 

In metabolic pathway, we applied the methods in section 3.2.1 to extract metabolic pathways in the 

P. falciparum metabolic weighted graph (network) of section 3.2. PlasmoCyc provided an enzrxn 

flat file that enables us to mine out genes that catalyse each reaction in the network. We found that 

some reactions do not have genes encoding their enzymes, while some have many (up to 10 in 

some cases). This naturally allows us to incorporate measurement data, such as gene or protein 

expression data, into our analysis. This is specifically important in discovering condition-specific 

pathways (Pitkaenen et al.,2009).  

In a pilot exercises, we tested our algorithm (for four selected pathways: Pyruvate, Glutamate, 

Glycolysis and Mitochondrial TCA) on the metabolic graph from KEGG and compare our results 

with the results obtained from ReTrace (Pitkaenen et al.,2009) and atommetanet (Health et al., 

2010). Our results compare favourably with the results from the two algorithms. We however 

compare the results with genes classified into these pathways from Plasmodb and found a lot of 

false positiveness. We however compare the runs of our algorithm on metabolic graphs from 

KEGG and PlasmoCyc (from BioCyc). The results are remarkably different and the results from 

PlasmoCyc produce less false positiveness when compared to the results from Plasmodb. We 

identify 2, 1, 2, 4 gene(s) in addition to belong to Pyruvate, Glutamate, Glucolysis and 

Mitochondrial TCA respectively. Some of the genes have not been classified earlier to any known 

metabolic pathways. 
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CHAPTER FIVE 

 

 

CONCLUSIONS AND FUTURE WORK 

 
 

In this work, we have been able for the first time to mine signal transduction pathways from the 

most deadly malaria parasite, P. falciparum. We have been able to use these results to suggest 

important hypotheses that can help to explain the mechanisms that signal chloroquine resistance 

process by the malaria via an efflux process, and which signals start the invasion process of RBC 

by the merozoites. One of our predicted pathways may also have provided the Vaid and Sharma 

(Vaid A.and Sharma P., 2006) Ca2+/Calmodulin-PfPKB signalling pathway characterized in terms 

of the genes responsible. The PfPKB pathway has been shown to be important to the erythrocyte 

invasion (Vaid et al., 2008). We have also been able to use our results to predict functionality for 

some proteins.  

 

For the metabolic pathways, following our experimental experiences from our pilot run, we have 

been able to identify additional genes to four key pathways and also in the process annotate genes 

of putative hypothetic functions. We plan to build a very accurate and comprehensive metabolic 

network for this important organism, the malaria parasite, P. falciparum. The following findings 

necessitate this lead. Recall that using the graph representation of Koenig et al. (Koenig et al., 

2006), there are two major setbacks observed from the graphs derived from KEGG and PlasmoCyc 

(see pages 93-95). In a separate work, we found about 30 reactions (Adeoye et al., 2010, 

unpublished manuscript) from MPMP that were not listed in PlasmoCyc. Furthermore, the 

compounds in a good number of the 30 reactions definitions were not listed in PlasmoCyc. We 

also found that a number of genes with functional classifications in Plasmodb are without these 
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classifications in PlasmoCyc. Finally we also found out genes with functional classifications in 

KEGG (confirmed by our methods to be correct) that are without these classifications either in 

PlasmoCyc or Plasmodb.  

 

Presently, from plasmodb, for P. falciparum, we have 137 metabolic pathways covering 2521 

genes. This is just about half of the annotated genes of P. falciparum. Therefore, we plan in the 

nearest future to deploy our techniques (section 3.2) at a large scale for all known pathways. This 

we know from the findings, will help to both reconfirm existing classifications and classify genes 

of unknown functions into functional modules - metabolic pathways. We will also find paths in 

attempts to engineer the discovery of unknown metabolic pathways in P. falciparum. 

 

To further address the problem of data scarcity (in particular with regard to the protein–protein 

interaction information available for the malaria parasite), we need to develop techniques to deal 

with missing edges, i.e. protein–protein interaction that have never been observed but exist in 

reality. One way to do this is to integrate transcription factors into the derived network, resulting 

into what has been called an integrated cellular weighted network of transcription–regulation and 

protein–protein interaction (Yerger-Lotem et al., 2004). For the malaria parasite P. falciparum, 

only about a third of the number of transcription-associated proteins (TAPs) usually found in the 

genome of a free-living eukaryote is presently known (Coulson et al., 2004). 
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APPENDIX A 
 
Table 4.2 Predicted minimum pathways (potential signal transduction pathways) for the calcium 

modulated proteins: Column one indicates the name of the signalling pathway, the second column shows 

minimum paths extracted, while optimizing the identified number of proteins in the pathway under 

consideration. The third column shows the weight p-value and column four detailed the products 

(fromplasmodb) of the proteins in the identified potential signalling pathways. 

Name Minimum path p-

value 

Details of genes 

 

Genes IDS 

 

Products 

Calcium 

Modulated 
PFA0110w---> PFB0540w---> FB0815w---> FF0220w---> 

PFF0590c 

 

 

0.029 

 

PFA0110w 

PFB0540w 

PFB0815w 

PFF0220w 

PFF0590c 

DNAJ protein, putative 

conserved Plasmodium protein, unknown function 

Calcium-dependent protein kinase 1 

conserved Plasmodium protein, unknown function 

homologue of human HSPC025 
 

 PFB0540w --->PFB0815w --->PFF0220w--->PFF0590c ---> 

PF10_0194 

 

 

 

 

0.044 PFB0540w 

PFB0815w 

PFF0220w 

PFF0590c 

PF10_0194 

conserved Plasmodium protein, unknown function 

Calcium-dependent protein kinase 1 

conserved Plasmodium protein, unknown function 

homologue of human HSPC025 

NOP12-like protein 

 PFB0540w --->PFB0815w ---> PFF0675c---> PF10_0345---> 

PF11_0111 

0.044 PFB0540w 

PFB0815w 

PFF0675c 

PF10_0345 

PF11_0111 

conserved Plasmodium protein, unknown function 

Calcium-dependent protein kinase 1 

myosin E 

merozoite surface protein 3 

asparagine-rich antigen 

 PFB0540w --->PFB0815w ---> PF11_0111 0.013 PFB0540w 

PFB0815w 

PF11_0111 

conserved Plasmodium protein, unknown function 

Calcium-dependent protein kinase 1 

asparagine-rich antigen 

 PFB0540w --->PFB0815w --->  PFF1365c--->PF11_0241 0.027 PFB0540w 

PFB0815w 

PFF1365c 

PF11_0241 

conserved Plasmodium protein, unknown function 

Calcium-dependent protein kinase 1 

HECT-domain (ubiquitin-transferase), putative 

Myb-like DNA-binding domain, putative 

 PFB0540w --->PFB0815w --->   PFF0220w---> 

PFF0590c --->PFL0305c 

 

0.035 PFB0540w 

PFB0815w 

PFF0220w 

PFF0590c 

PFL0305c 

conserved Plasmodium protein, unknown function 

Calcium-dependent protein kinase 1 

conserved Plasmodium protein, unknown function 

homologue of human HSPC025 

IMP-specific 5'-nucleotidase 

 PFB0540w --->PFB0815w --->   PFF0220w--->PFF0590c ---> 

PFL1385c 

0.024 PFB0540w 

PFB0815w 

PFF0220w 

PFF0590c 

PFL1385c 

conserved Plasmodium protein, unknown function 

Calcium-dependent protein kinase 1 

conserved Plasmodium protein, unknown function 

homologue of human HSPC025 

Merozoite Surface Protein 9, MSP-9 

 PFB0815w --->   PFL1795c 

 

0.009 PFB0815w 

PFL1795c 

Calcium-dependent protein kinase 1 

conserved Plasmodium protein, unknown function 

 PFB0540w --->PFB0815w --->    PFF1365c--->PF13_0139 0.029 PFB0540w 

PFB0815w 

PFF1365c 

PF13_0139 

conserved Plasmodium protein, unknown function 

Calcium-dependent protein kinase 1 

HECT-domain (ubiquitin-transferase), putative 

conserved Plasmodium protein, unknown function  

 PFB0540w --->PFB0815w --->  PFD0985w---> 

PFF0590c--->PF14_0029 

0.044 PFB0540w 

PFB0815w 

PFD0985w  

PFF0590c 

PF14_0029 

conserved Plasmodium protein, unknown function 

Calcium-dependent protein kinase 1 

transcription factor with AP2 domain(s), putative 

homologue of human HSPC025 

conserved Plasmodium protein, unknown function 

 PFB0815w --->   PF14_0170 

 

0.002 PFB0815w 

PF14_0170 

Calcium-dependent protein kinase 1 

NOT family protein, putative 

 PFB0815w ---> PFF0505c ---> PF14_010 

 

0.02 PFB0815w 

PFF0505c 

PF14_010 

Calcium-dependent protein kinase 1 

conserved Plasmodium protein, unknown function 

p23 co-chaperone, putative 
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 PFB0540w --->PFB0815w --->   PFF0220w---> 

PFF0590c --->  PF14_0632 

0.044 PFB0540w 

PFB0815w 

PFF0220w 

PFF0590c 

PF14_0632 

conserved Plasmodium protein, unknown function 

Calcium-dependent protein kinase 1 

t conserved Plasmodium protein, unknown function 

homologue of human HSPC025 

26S proteasome subunit, putative 

 PFB0540w --->PFB0815w  0.002 PFB0540w 

PFB0815w 

Calcium-dependent protein kinase 1 

conserved Plasmodium protein, unknown function 

 

PFA0110w---> PFB0540w---> FB0815w---> FD0090c 

FF0220w---> PFF0590c 

0.049 PFA0110w 

PFB0540w 

PFB0815w 

PFD0090c 

PFF0220w 

PFF0590c 

DNAJ protein, putative 

conserved Plasmodium protein, unknown function 

Calcium-dependent protein kinase 1 

Plasmodium exported protein (PHISTa), unknown 

function 

conserved Plasmodium protein, unknown function 

homologue of human HSPC025 
 

 PFB0815w ---> PFD0795w---> PFF1440w 0.016 PFB0815w 

PFD0795w 

PFF1440w 

Calcium-dependent protein kinase 1 

conserved Plasmodium protein, unknown function 

SET domain protein, putative 

 PFB0540w --->PFB0815w --->   PFD0985w--->PFF0590c  0.024 PFB0540w 

PFB0815w 

PFD0985w 

PFF0590c 

conserved Plasmodium protein, unknown function 

Calcium-dependent protein kinase 1 

transcription factor with AP2 domain(s), putative 

homologue of human HSPC025 

 PFB0540w --->PFB0815w --->    PFE0070w---> 

PFF0675c --->PF11_0111 

 

0.044 PFB0540w 

PFB0815w 

PFE0070w 

PFF0675c 

PF11_0111 

conserved Plasmodium protein, unknown function 

Calcium-dependent protein kinase 1 

interspersed repeat antigen, putative 

myosin E 

asparagine-rich antigen 

 PFB0540w --->PFB0815w --->  PFF0220w--->PFF0590c  0.024 PFB0540w 

PFB0815w 

PFF0220w 

PFF0590c 

conserved Plasmodium protein, unknown function 

Calcium-dependent protein kinase 1 

conserved Plasmodium protein, unknown function 

homologue of human HSPC025 

 PFB0815w --->    PFF0505c 

 

0.004 PFB0815w 

PFF0505c 

Calcium-dependent protein kinase 1 

conserved Plasmodium protein, unknown function 

 PFB0540w --->PFB0815w ---> PFF0590c  0.013 PFB0540w 

PFB0815w 

PFF0590c 

conserved Plasmodium protein, unknown function 

Calcium-dependent protein kinase 1 

homologue of human HSPC025 

 PFB0540w --->PFB0815w --->    PFF0675c--->PF11_0111 0.029 PFB0540w 

PFB0815w 

PFF0675c 

PF11_0111 

conserved Plasmodium protein, unknown function 

Calcium-dependent protein kinase 1 

myosin E 

asparagine-rich antigen   

 PFB0540w --->PFB0815w ---> PFD0985w---> PFF0590c 

-->PFF0785w  

0.044 PFB0540w 

PFB0815w 

PFD0985w 

PFF0590c 

PFF0785w 

conserved Plasmodium protein, unknown function 

Calcium-dependent protein kinase 1 

transcription factor with AP2 domain(s), putative 

homologue of human HSPC025 

Ndc80 homologue, putative 

 PFB0540w --->PFB0815w ---> PFF1365c 0.016 PFB0540w 

PFB0815w 

PFF1365c 

conserved Plasmodium protein, unknown function 

Calcium-dependent protein kinase 1 

HECT-domain (ubiquitin-transferase), putative 

 PFB0815w --->    PFF1440w 

 

0.002 PFB0815w 

PFF0505c 

PFF1440w 

Calcium-dependent protein kinase 1 

conserved Plasmodium protein, unknown function 

SET domain protein, putative 

 PFB0540w --->PFB0815w ---> PFF1365c---> PFF1470c 0.029 PFB0540w 

PFB0815w 

PFF1365c 

PFF1470c 

conserved Plasmodium protein, unknown function 

Calcium-dependent protein kinase 1 

HECT-domain (ubiquitin-transferase), putative 

DNA polymerase epsilon, catalytic subunit a, putative 

 PFB0540w --->PFB0815w ---> PFF1365c---> MAL7P1.12 0.029 PFB0540w 

PFB0815w 

PFF1365c 

MAL7P1.12 

conserved Plasmodium protein, unknown function 

Calcium-dependent protein kinase 1 

HECT-domain (ubiquitin-transferase), putative 

erythrocyte membrane-associated antigen 

 PFB0540w --->PFB0815w ---> PF07_0053---> PF11_0111 0.027 PFB0540w 

PFB0815w 

PF07_0053 

PF11_0111 

conserved Plasmodium protein, unknown function 

Calcium-dependent protein kinase 1 

conserved Plasmodium protein, unknown function 

asparagine-rich antigen 
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Table 4.3 Predicted minimum pathways (potential signal transduction pathways) for the calcium 

signalling proteins: Column one indicates the name of the signalling pathway, the second column shows 

minimum paths extracted, while optimizing the identified number of proteins in the pathway under 

consideration. The third column shows the weight p-value and column four detailed the products (from 

plasmodb) of the proteins in the identified potential signalling pathways. 

Name Minimum path p-value Details of genes 

 

Genes IDS 

 

Products 

Calcium 

Signaling 

PFA0515w --->PF11_0239 ---> PF14_0252 0.021  

PFA0515w 

PF11_0239 

PF14_0252 

 

phosphatidylinositol-4-phosphate-5-kinase 

calcium-dependent protein kinase, putative 

conserved Plasmodium protein, unknown function 

 PF10_0143 --->PF11_0142 ---> PF11_0239 --->MAL13P1.206 0.033 PF10_0143 

PF11_0142 

PF11_0239 

MAL13P1.206 

transcriptional activator ADA2, putative 

ubiquitin domain containing protein 

calcium-dependent protein kinase, putative 

Na+ -dependent Pi transporter, sodium-

dependent phosphate transporter 

 PF11_0142 ---> PF11_0239 0.002 PF11_0142 

PF11_0239 

ubiquitin domain containing protein 

calcium-dependent protein kinase, putative 

 PF11_0239--->PFL0280c 0.013 PF11_0239 

PFL0280c 

calcium-dependent protein kinase, putative 

histone binding protein, putative 

 PF11_0239--->PFL1745c--->PF14_0637 0.019 PF11_0239 

PFL1745c 

PF14_0637 

calcium-dependent protein kinase, putative 

clustered-asparagine-rich protein 

rhoptry protein, putative 

 PF11_0239--->PFL2420w 0.002 PF11_0239 

PFL2420w 

calcium-dependent protein kinase, putative 

conserved Plasmodium protein, unknown function 

 PF11_0142 ---> PF11_0239---> PF13_0197--->  MAL13P1.206 0.038 PF11_0142 

PF11_0239 

PF13_0197 

MAL13P1.206 

ubiquitin domain containing protein 

calcium-dependent protein kinase, putative 

Merozoite Surface Protein 7 precursor, MSP7 

Na+ -dependent Pi transporter, sodium-

dependent phosphate transporter 

 PF08_0048  ---> PF11_0239--->  PF13_0219 0.024 PF08_0048 

PF11_0239 

PF13_0219 

ATP-dependent helicase, putative 

calcium-dependent protein kinase, putative 

conserved Plasmodium protein, unknown function 

 PF11_0142  ---> PF11_0239--->  MAL13P1.206 0.022 PF11_0142 

PF11_0239 

MAL13P1.206 

ubiquitin domain containing protein 

calcium-dependent protein kinase, putative 

Na+ -dependent Pi transporter, sodium-

dependent phosphate transporter 

 PF11_0142  ---> PF11_0239--->  MAL13P1.206---> 

PF14_0059 

0.046 PF11_0142 

PF11_0239 

MAL13P1.206 

 

PF14_0059 

ubiquitin domain containing protein 

calcium-dependent protein kinase, putative 

Na+ -dependent Pi transporter, sodium-

dependent phosphate transporter 

conserved Plasmodium protein, unknown 

function 

 PF11_0239--->PF14_0252 0.002 PF11_0239 

PF14_0252 

calcium-dependent protein kinase, putative 

conserved Plasmodium protein, unknown function 

 PF08_0048  ---> PF11_0239--->  PF14_0391 0.029 PF08_0048 

PF11_0239 

PF14_0391 

ATP-dependent helicase, putative 

calcium-dependent protein kinase, putative 

60S ribosomal protein L1, putative 

 PF11_0239--->PF14_0500 0.005 PF11_0239 

PF14_0500 

calcium-dependent protein kinase, putative 

SNARE protein, putative 

 PF11_0239--->PF14_0637 0.002 PF11_0239 

PF14_0637 

calcium-dependent protein kinase, putative 

rhoptry protein, putative 

 PF11_0142  ---> PF11_0239--->  MAL13P1.206---> 

PF14_0678 

0.033 PF11_0142 

PF11_0239 

MAL13P1.206 

PF14_0678 

ubiquitin domain containing protein 

calcium-dependent protein kinase, putative 

Na+ -dependent Pi transporter, sodium-

dependent phosphate transporter 

exported protein 2 

 PFB0915w--->PF11_0239 0.011 PFB0915w 

PF11_0239 

 

liver stage antigen 3 

calcium-dependent protein kinase, putative 

 PFC0235w--->PF11_0239 0.011 PFC0235w 

PF11_0239 

 

conserved Plasmodium protein, unknown function 

calcium-dependent protein kinase, putative 

 PFD0090c---> PF08_0048  ---> PF11_0239 0.019 PFD0090c 

PF08_0048 

PF11_0239 

Plasmodium exported protein (PHISTa), unknown 

function 

ATP-dependent helicase, putative 
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Table 4.4 Predicted minimum pathways (potential signal transduction pathways) for the cell cycle 

kinases proteins: Column one indicates the name of the signalling pathway, the second column shows 

minimum paths extracted, while optimizing the identified number of proteins in the pathway under 

consideration. The third column shows the weight p-value and column four detailed the products (from 

plasmodb) of the proteins in the identified potential signalling pathways. 

 
 
 
 
 
 
 
 

calcium-dependent protein kinase, putative 

 PFD0090c---> PFF0670w---> PF08_0048  ---> PF11_0239 0.041 PFD0090c 

PFF0670w 

PF08_0048 

PF11_0239 

Plasmodium exported protein (PHISTa), unknown 

function 

transcription factor with AP2 domain(s), putative 

ATP-dependent helicase, putative 

calcium-dependent protein kinase, putative 

 PFF0785w--->PF11_0239 0.006 PFF0785w 

PF11_0239 

Ndc80 homologue, putative 

calcium-dependent protein kinase, putative 

 PFF1185w--->  PF11_0142  ---> PF11_0239---> MAL13P1.206 0.037 PFF1185w  

PF11_0142 

PF11_0239 

MAL13P1.206 

Smarca -related protein 

ubiquitin domain containing protein 

calcium-dependent protein kinase, putative 

Na+ -dependent Pi transporter, sodium-dependent 

phosphate transporter 

 PFF1395c---> PF08_0048  ---> PF11_0239 0.024 PFF1395c 

PF08_0048 

PF11_0239 

Glutamyl-tRNA(Gln) amidotransferase subunit B, 

putatative 

ATP-dependent helicase, putative 

calcium-dependent protein kinase, putative 

 PF08_0048 --->PF11_0239 0.006 PF08_0048 

PF11_0239 

ATP-dependent helicase, putative 

calcium-dependent protein kinase, putative 

 Name Minimum path p-value Details of genes 

 

Genes IDS 

 

Products 

Cell Cycle PFE1370w ---> PF10_0143 ---> PF10_0272 

 

0.021 PFE1370w 

PF10_0143 

PF10_0272 

hsp70 interacting protein, putative 

transcriptional activator ADA2, putative 

60S ribosomal protein L3, putative 

 PF10_0254 --->PF11_0272  0.005 PF10_0254 

PF11_0272 

Conserved plasmodium protein, unknown function 

60S ribosomal protein L3, putative 

 PF10_0272--->PFL0185c 0.009 PF10_0272 

PFL0185c 

60S ribosomal protein L3, putative 

Nucleosome assembly protein 1, putative 

 PF10_0254--->PF10_0272--->PFL1385c 0.021 PF10_0254 

PF10_0272 

PFL1385c 

Conserved plasmodium protein, unknown function 

60S ribosomal protein L3, putative 

Merozoite Surface protein 9, MSP-9 

 PF10_0254--->PF10_0272--->PFL1845c 0.016 PF10_0254 

PF10_0272 

PFL1845c 

Conserved plasmodium protein, unknown function 

60S ribosomal protein L3, putative 

Calcyclin binding protein, putative 

 PFD0090c ---> PFE1370w---> PF10_0272 0.023 PFD0090c 

PFE1370w 

PF10_0272 

Plasmodium exported protein (PHISTa), unknown 

function 

Hsp70 interacting protein, putative 

60S ribosomal protein L3, putative 

 PFE1370w --->  PF10_0272 0.007 PFE1370w  

PF10_0272 

Hsp70 interacting protein, putative 

60S ribosomal protein L3, putative  
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Table 4.5 Predicted minimum pathways (potential signal transduction pathways) for the cyclic 

nucleotide proteins: Column one indicates the name of the signalling pathway, the second column shows 

minimum paths extracted, while optimizing the identified number of proteins in the pathway under 

consideration. The third column shows the weight p-value and column four detailed the products (from 

plasmodb) of the proteins in the identified potential signalling pathways. 

 
 
 
 

 

 

 

 

 

Name Minimum path p-value Details of genes 

 

Genes IDS 

 

Products 

Cyclic 

Nucleotide 

PFB0190c--->PFC0435w--->PFE0660c ---> PF10_0254 

--->  MAL13P1.202 

0.033 PFB0190c  

PFC0435w 

 PFE0660c 

PF10_0254 

MAL13P1.202 

conserved Plasmodium protein, unknown function 

conserved Plasmodium protein, unknown function 

purine nucleotide phosphorylase, putative 

conserved Plasmodium protein, unknown function 

conserved Plasmodium protein, unknown function 

 PFC0435w--->PFE0660c --->PF10_0281--->  PF11_0224 0.016 PFC0435w 

 PFE0660c 

PF10_0281 

PF11_0224 

conserved Plasmodium protein, unknown function 

purine nucleotide phosphorylase, putative 

merozoite TRAP-like protein, MTRAP 

circumsporozoite-related antigen 

 PFC0435w--->PFE0660c ---> PF08_0129--->  PF11_0111 

--->MAL13P1.202 

0.028 PFC0435w 

PFE0660c 

PF08_0129 

PF11_0111 

MAL13P1.202 

conserved Plasmodium protein, unknown function 

purine nucleotide phosphorylase, putative 

serine/threonine protein phosphatase, putative 

asparagine-rich antigen 

conserved Plasmodium protein, unknown function 

 PFC0435w---> PFE0660c---> PF11_0224 

 

 

0.007 PFC0435w 

PFE0660c 

PF11_0224 

conserved Plasmodium protein, unknown function 

purine nucleotide phosphorylase, putative 

circumsporozoite-related antigen 

 PFC0435w---> PFE0660c--->  PFL2520w--->  

MAL13P1.202 

 

 

 

0.016 PFC0435w 

PFE0660c 

PFL2520w 

MAL13P1.202 

conserved Plasmodium protein, unknown function 

purine nucleotide phosphorylase, putative 

reticulocyte-binding protein 3 homologue 

conserved Plasmodium protein, unknown function 

 PFC0435w---> PFE0660c--->  MAL13P1.202 

 

 

0.009 PFC0435w 

PFE0660c 

MAL13P1.202 

conserved Plasmodium protein, unknown function 

purine nucleotide phosphorylase, putative 

conserved Plasmodium protein, unknown function 

 PFB0190c--->  PFC0435w---> PFE0660c--->  

MAL13P1.202 

 

 

 PFB0190c 

PFC0435w 

PFE0660c 

MAL13P1.202 

conserved Plasmodium protein, unknown function 

conserved Plasmodium protein, unknown function 

purine nucleotide phosphorylase, putative 

conserved Plasmodium protein, unknown function 

 PFC0435w---> PFE0660c 

 

 

0.003 PFC0435w 

PFE0660c 

conserved Plasmodium protein, unknown function 

purine nucleotide phosphorylase, putative 

 PFC0435w---> PFE0660c--->   PF08_0129--->  

MAL13P1.202 

 

 

 

0.016 PFC0435w 

PFE0660c 

PF08_0129 

MAL13P1.202 

conserved Plasmodium protein, unknown function 

purine nucleotide phosphorylase, putative 

serine/threonine protein phosphatase, putative 

conserved Plasmodium protein, unknown function 
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Table 4.6 Predicted minimum pathways (potential signal transduction pathways) for the 
phosphatidylinositol cycle proteins: Column one indicates the name of the signalling pathway, the second 
column shows minimum paths extracted, while optimizing the identified number of proteins in the pathway 
under consideration. The third column shows the weight p-value and column four detailed the products 
(from plasmodb) of the proteins in the identified potential signalling pathways. 

Name Minimum path p-value Details of genes 

 

Genes IDS 

 

Products 

Phosphatidylinositol 

cycle 

PFA0110w --->PFE0750c---> MAL13P1.256 0.005 PFA0110w  

PFE0750c 

MAL13P1.256 

DNAJ protein, putative 

RNA recognition motif, putative 

phosphatidylinositol transfer protein, putative 

 PFA0285c---> PFE0750c--->  MAL13P1.256 0.029 PFA0285c 

PFE0750c 

MAL13P1.256 

conserved Plasmodium protein, unknown 

function 

RNA recognition motif, putative 

phosphatidylinositol transfer protein, putative 

 PFA0635c--->   PFE0750c--->   MAL13P1.256 0.043 PFA0635c 

PFE0750c  

MAL13P1.256 

Plasmodium exported protein (hyp1), unknown 

function 

RNA recognition motif, putative 

phosphatidylinositol transfer protein, putative 

 PFE0750c--->  PF10_0115--->   MAL13P1.256 0.005 PFE0750c 

PF10_0115 

MAL13P1.256 

RNA recognition motif, putative 

QF122 antigen 

phosphatidylinositol transfer protein, putative 

 PFE0750c---> PF11_0175---> MAL13P1.256 0.019 PFE0750c 

PF11_0175 

MAL13P1.256 

RNA recognition motif, putative 

heat shock protein 101, putative 

phosphatidylinositol transfer protein, putative 

 PFE0750c--->  PFL0830w--->   MAL13P1.256 0.019 PFE0750c 

PFL0830w  

MAL13P1.256 

RNA recognition motif, putative 

RNA binding protein, putative 

phosphatidylinositol transfer protein, putative 

 PFE0750c---> PFL1385c--> MAL13P1.256 0.005 PFE0750c 

PFL1385c 

MAL13P1.256 

RNA recognition motif, putative 

Merozoite Surface Protein 9, MSP-9 

phosphatidylinositol transfer protein, putative 

 PFE0750c---> PFL1930w--->  MAL13P1.256 0.005 PFE0750c 

PFL1930w  

MAL13P1.256 

RNA recognition motif, putative 

conserved Plasmodium protein, unknown 

function 

phosphatidylinositol transfer protein, putative 

 PFE0750c---> MAL13P1.56-� MAL13P1.256 0.019 PFE0750c 

MAL13P1.56 

MAL13P1.256 

RNA recognition motif, putative 

m1-family aminopeptidase 

phosphatidylinositol transfer protein, putative 

 PFE0750c ---> PF13_0091--> MAL13P1.256 0.043 PFE0750c 

PF13_0091 

MAL13P1.256 

RNA recognition motif, putative 

conserved Plasmodium protein, unknown 

function 

phosphatidylinositol transfer protein, putative 

 PFE0750c --->   PF10_0115--->    PF13_0165 --> 

MAL13P1.256 

0.048 PFE0750c   

PF10_0115    

PF13_0165 

MAL13P1.256 

RNA recognition motif, putative 

QF122 antigen 

conserved Plasmodium protein, unknown 

function 

phosphatidylinositol transfer protein, putative 

 PFE0750c---> MAL13P1.256--> PF13_0315 0.043 PFE0750c 

MAL13P1.256 

PF13_0315 

RNA recognition motif, putative 

phosphatidylinositol transfer protein, putative 

RNA binding protein, putative 

 PFA0110w---> PFE0750c--> MAL13P1.256--> 

PF14_0257 

0.046 PFA0110w 

PFE0750c 

MAL13P1.256 

PF14_0257 

DNAJ protein, putative 

RNA recognition motif, putative 

phosphatidylinositol transfer protein, putative 

conserved protein, unknown function 

 PFE0750c --->  PF10_0115 --->  MAL13P1.256--> 

PF14_0344 

0.043 PFE0750c   

PF10_0115   

MAL13P1.256 

PF14_0344 

RNA recognition motif, putative 

QF122 antigen 

phosphatidylinositol transfer protein, putative 

conserved Plasmodium protein, unknown 

function 

 PFC0425w--->  PFE0750c--->   MAL13P1.256 0.01 PFC0425w 

PFE0750c   

MAL13P1.256 

conserved Plasmodium protein, unknown 

function 

RNA recognition motif, putative 

phosphatidylinositol transfer protein, putative 

 PFA0110w---> PFD0090c--> PFE0750c--> MAL13P1.256 0.029 PFA0110w 

PFD0090c 

PFE0750c 

MAL13P1.256 

DNAJ protein, putative 

Plasmodium exported protein (PHISTa), 

unknown function 

RNA recognition motif, putative 

phosphatidylinositol transfer protein, putative 
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Table 4.7 Predicted minimum pathways (potential signal transduction pathways) for the FIKK proteins: 

Column one indicates the name of the signalling pathway, the second column shows minimum paths extracted, while 
optimizing the identified number of proteins in the pathway under consideration. The third column shows the weight 
p-value and column four detailed the products (from plasmodb) of the proteins in the identified potential signalling 
pathways. 

 PFD0835c--->   PFE0750c  --->  PF10_0115--->  

MAL13P1.256 

0.043 PFD0835c  

PFE0750c  

PF10_0115 

MAL13P1.256 

LETM1-like protein, putative 

RNA recognition motif, putative 

QF122 antigen 

phosphatidylinositol transfer protein, putative 

 PFD0950w--->  PFE0750c--->  MAL13P1.256 0.019 PFD0950w  

PFE0750c 

MAL13P1.256 

ran binding protein 1, putative 

RNA recognition motif, putative 

phosphatidylinositol transfer protein, putative 

 PFE0750c---> MAL13P1.256 0.005 PFE0750c 

MAL13P1.256 

RNA recognition motif, putative 

phosphatidylinositol transfer protein, putative 

 PFE0750c--> PFF0785w--> MAL13P1.256 0.007 PFE0750c 

PFF0785w 

MAL13P1.256 

RNA recognition motif, putative 

Ndc80 homologue, putative 

phosphatidylinositol transfer protein, putative 

 PFE0750c--> PFF1050w--> PF10_0115--> MAL13P1.256 0.043 PFE0750c 

PFF1050w 

PF10_0115 

MAL13P1.256 

RNA recognition motif, putative 

nascent polypeptide associated complex alpha 

chain, putative 

QF122 antigen 

phosphatidylinositol transfer protein, putative 

 PFE0750c-->PFF1100c-->MAL13P1.256 0.017 PFE0750c 

PFF1100c 

MAL13P1.256 

RNA recognition motif, putative 

transcription factor with AP2 domain(s), 

putative 

phosphatidylinositol transfer protein, putative 

Name Minimum path p-value Details of genes 

 

Genes IDS 

 

Products 

FIKK PFA0130c ---> PFE1590w ---> MAL8P1.153--->  

PFA0215w 

 

 

 

0.046 PFA0130c 

PFE1590w 

MAL8P1.153 

PFA0215w 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

transcription factor with AP2 domain(s), putative 

Nill 

 PFA0130c ---> PFE1590w ---> MAL8P1.153--->   

PF10_0075 

 

 

 

0.039 PFA0130c 

PFE1590w 

MAL8P1.153 

PF10_0075 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

transcription factor with AP2 domain(s), putative 

transcription factor with AP2 domain(s), putative 

 PFA0130c --->  PF10_0143 0.005 PFA0130c 

PF10_0143 

Serine/Threonine protein kinase, FIKK family, putative 

transcriptional activator ADA2, putative 

 PFA0130c ---> PFE1590w --->  PF10_0232 

 

 

0.009 PFA0130c 

PFE1590w 

PF10_0232 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

Chromodomain-helicase-DNA-binding protein 1 homolog, putative 

 PFA0130c ---> PFE1590w --->   PF11_0142 

 

 

0.009 PFA0130c 

PFE1590w 

PF11_0142 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

ubiquitin domain containing protein 

 PFA0130c ---> PFE1590w --->    PF11_0302 

 

 

0.014 PFA0130c 

PFE1590w 

PF11_0302 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

conserved Plasmodium protein, unknown function 

 PFA0130c ---> PFE1590w ---> MAL8P1.153--->  

PF11_0342 

 

 

 

0.036 PFA0130c 

PFE1590w 

MAL8P1.153 

PF11_0342 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

transcription factor with AP2 domain(s), putative 

conserved Plasmodium protein, unknown function 

 PFA0130c ---> PFE1590w --->  PF10_0232---> 

PF11_0506 

 

 

 

0.036 PFA0130c 

PFE1590w 

PF10_0232 

PF11_0506 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

Chromodomain-helicase-DNA-binding protein 1 homolog, putative 

Antigen 332, DBL-like protein 

 PFA0130c--->PFE1590w--->MAL8P1.104---> PFL0350c 0.046 PFA0130c 

PFE1590w 

MAL8P1.104 

PFL0350c 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

CAF1 family ribonuclease, putative 

conserved Plasmodium protein, unknown function 

 PFA0130c--->PFE1590w--->PFF0590c---> 

MAL8P1.153--> PFL1385c 

0.046 PFA0130c 

PFE1590w 

PFF0590c  

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

homologue of human HSPC025 
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MAL8P1.153 

PFL1385c 

transcription factor with AP2 domain(s), putative 

Merozoite Surface Protein 9, MSP-9 

 PFA0130c--->PFE1590w--->MAL8P1.153---> PFL1395c 0.036 PFA0130c 

PFE1590w 

MAL8P1.153 

PFL1395c 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

transcription factor with AP2 domain(s), putative 

conserved Plasmodium protein, unknown function 

 PFA0130c--->PFE1590w--->PF10_0232--->PFL1705w 0.039 PFA0130c 

PFE1590w 

PF10_0232 

 

PFL1705w 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

Chromodomain-helicase-DNA-binding protein 1 homolog, putative 

RNA binding protein, putative 

 PFA0130c--->PFE1590w--->PFL1900w 0.014 PFA0130c 

PFE1590w 

PFL1900w 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

transcription factor with AP2 domain(s), putative 

 PFA0130c--->PFE1590w--->PFL2520w---> 

MAL13P1.202 

0.036 PFA0130c 

PFE1590w 

PFL2520w 

MAL13P1.202 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

reticulocyte-binding protein 3 homologue 

conserved Plasmodium protein, unknown function 

 PFA0130c--->PFE1590w--->PFF1185w--->PF13_0036 0.036 PFA0130c 

PFE1590w 

PFF1185w 

PF13_0036 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

Smarca -related protein 

DNAJ protein, putative 

 PFA0130c--->PFE1590w--->PF13_0044 0.03 PFA0130c 

PFE1590w 

PF13_0044 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

carbamoyl phosphate synthetase 

 PFA0130c--->PFE1590w--->MAL13P1.202 0.007 PFA0130c 

PFE1590w 

MAL13P1.202 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

conserved Plasmodium protein, unknown function 

 PFA0130c--->PFE1590w--->MAL8P1.153--> 

MAL13P1.275 

0.046 PFA0130c 

PFE1590w 

MAL8P1.153 

MAL13P1.275 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

transcription factor with AP2 domain(s), putative 

protein phosphatase, putative 

 PFA0130c--->PFE1590w--->MAL8P1.153---> 

PF14_0031 

0.039 PFA0130c 

PFE1590w 

MAL8P1.153 

PF14_0031 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

transcription factor with AP2 domain(s), putative 

conserved Plasmodium protein, unknown function 

 PFA0130c--->PFE1590w--->MAL8P1.153---> 

MAL8P1.23--->PF14_0463 

0.039 PFA0130c 

PFE1590w 

MAL8P1.153 

MAL8P1.23 

PF14_0463 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

transcription factor with AP2 domain(s), putative 

ubiquitin-protein ligase 1, putative 

chloroquine resistance marker protein 

 PFA0130c--->PFE1590w--->PF14_0636 0.036 PFA0130c 

PFE1590w 

PF14_0636 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

conserved Plasmodium protein, unknown function 

 PFA0130c--->PFE1590w--->PF10_0232--> PF14_0644 0.039 PFA0130c 

PFE1590w 

PF10_0232 

 

PF14_0644 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

Chromodomain-helicase-DNA-binding protein 1 homolog, putative 

conserved Plasmodium protein, unknown function 

 PFA0130c--->PFE1590w--->MAL7P1.19--->PF14_0678 0.039 PFA0130c 

PFE1590w 

MAL7P1.19 

PF14_0678 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

ubiquitin transferase, putative 

exported protein 2 

 PFA0130c--->PFE1590w---> MAL8P1.153---> 

PF14_0679 

0.046 PFA0130c 

PFE1590w 

MAL8P1.153 

PF14_0679 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

transcription factor with AP2 domain(s), putative 

inorganic anion exchanger, inorganic anion antiporter 

 PFA0130c--->PFB0190c--->PFE1590w---> 

MAL13P1.202 

0.039 PFA0130c 

PFB0190c 

PFE1590w 

MAL13P1.202 

Serine/Threonine protein kinase, FIKK family, putative 

conserved Plasmodium protein, unknown function 

early transcribed membrane protein 5, ETRAMP5 

conserved Plasmodium protein, unknown function 

 PFA0130c--->PFC0390w--->PFE1590w 0.009 PFA0130c 

PFC0390w 

PFE1590w 

Serine/Threonine protein kinase, FIKK family, putative 

N2227-like protein, putative 

early transcribed membrane protein 5, ETRAMP5 

 PFA0130c-->PFD0835c-->PFE1590w--> MAL8P1.153 0.036 PFA0130c 

PFD0835c 

PFE1590w 

MAL8P1.153 

Serine/Threonine protein kinase, FIKK family, putative 

LETM1-like protein, putative 

early transcribed membrane protein 5, ETRAMP5 

transcription factor with AP2 domain(s), putative 

 PFA0130c-->PFD0885c-->PFE1590w 0.007 PFA0130c 

PFD0885c 

PFE1590w 

Serine/Threonine protein kinase, FIKK family, putative 

conserved Plasmodium protein, unknown function 

early transcribed membrane protein 5, ETRAMP5 

 PFA0130c-->PFD0985w-->PFE1590w--> MAL8P1.153 0.036 PFA0130c 

PFD0985w 

PFE1590w 

Serine/Threonine protein kinase, FIKK family, putative 

transcription factor with AP2 domain(s), putative 

early transcribed membrane protein 5, ETRAMP5 
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MAL8P1.153 transcription factor with AP2 domain(s), putative 

 PFA0130c-->PFE0070w-->PFE1590w--> MAL7P1.19 0.039 PFA0130c 

PFE0070w 

PFE1590w 

MAL7P1.19 

Serine/Threonine protein kinase, FIKK family, putative 

interspersed repeat antigen, putative 

early transcribed membrane protein 5, ETRAMP5 

ubiquitin transferase, putative 

 PFA0130c-->PFE1225w-->PFE1590w 0.036 PFA0130c 

PFE1225w 

PFE1590w 

Serine/Threonine protein kinase, FIKK family, putative 

organelle ribosomal protein L7/L12 precursor, putative 

early transcribed membrane protein 5, ETRAMP5 

 PFA0130c-->PFE1590w 0.005 PFA0130c 

PFE1590w 

 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

 PFA0130c-->PFE1590w-->PFE1605w--> MAL8P1.153 0.036 PFA0130c 

PFE1590w 

PFE1605w 

MAL8P1.153 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

Plasmodium exported protein (PHISTb), unknown function 

transcription factor with AP2 domain(s), putative 

 PFA0130c-->PFE1590w-->PFF0220w-->PFF0590c 

--> MAL8P1.153 

0.046 PFA0130c 

PFE1590w 

PFF0220w 

PFF0590c 

MAL8P1.153 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

conserved Plasmodium protein, unknown function 

homologue of human HSPC025 

transcription factor with AP2 domain(s), putative 

 PFA0130c-->PFE1590w-->PFF0590c--> MAL8P1.153 0.018 PFA0130c 

PFE1590w 

PFF0590c 

MAL8P1.153 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

homologue of human HSPC025 

transcription factor with AP2 domain(s), putative 

 PFA0130c-->PFE1590w-->PFF0835w 0.036 PFA0130c 

PFE1590w 

PFF0835w 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

conserved Plasmodium protein, unknown function 

 PFA0130c-->PFE1590w-->PFF0920c-->PF10_0232 0.036 PFA0130c 

PFE1590w 

PFF0920c 

PF10_0232 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

conserved Plasmodium protein, unknown function 

Chromodomain-helicase-DNA-binding protein 1 homolog, putative 

 PFA0130c-->PFE1590w-->PFF1185w 0.007 PFA0130c 

PFE1590w 

PFF1185w 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

Smarca -related protein 

 PFA0130c-->PFE1590w--> PFF1220w--> MAL8P1.153 0.036 PFA0130c 

PFE1590w 

PFF1220w 

MAL8P1.153 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

conserved Plasmodium protein, unknown function 

transcription factor with AP2 domain(s), putative 

 PFA0130c-->PFE1590w--> MAL7P1.19 0.014 PFA0130c 

PFE1590w 

MAL7P1.19 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

ubiquitin transferase, putative 

 PFA0130c-->PFE1590w-->  PF07_0044 0.03 PFA0130c 

PFE1590w 

PF07_0044 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

conserved Plasmodium protein, unknown function 

 PFA0130c-->PFE1590w--> PF07_0056--> 

MAL8P1.153--> MAL8P1.23 

0.036 PFA0130c 

PFE1590w 

PF07_0056 

MAL8P1.153 

MAL8P1.23 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

conserved Plasmodium protein, unknown function 

transcription factor with AP2 domain(s), putative 

ubiquitin-protein ligase 1, putative 

 PFA0130c--> PF07_0115 0.005 PFA0130c 

PF07_0115 

Serine/Threonine protein kinase, FIKK family, putative 

cation transporting ATPase, cation transporter 

 PFA0130c-->PFE1590w-->  MAL7P1.171--> 

MAL8P1.104 

0.039 PFA0130c 

PFE1590w 

MAL7P1.171 

MAL8P1.104 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

Plasmodium exported protein, unknown function 

CAF1 family ribonuclease, putative 

 PFA0130c-->PFE1590w-->  MAL8P1.153 0.007 PFA0130c 

PFE1590w 

MAL8P1.153 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

transcription factor with AP2 domain(s), putative 

 PFA0130c-->PFE1590w-->  PF08_0129--> 

MAL13P1.202 

0.036 PFA0130c 

PFE1590w 

PF08_0129 

MAL13P1.202 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

serine/threonine protein phosphatase, putative 

conserved Plasmodium protein, unknown function 

 PFA0130c-->PFE1590w-->   MAL8P1.104 0.014 PFA0130c 

PFE1590w 

MAL8P1.104 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

CAF1 family ribonuclease, putative 

 PFA0130c-->PFE1590w-->   MAL8P1.153--> 

PF08_0034 

0.041 PFA0130c 

PFE1590w 

MAL8P1.153 

PF08_0034 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

transcription factor with AP2 domain(s), putative 

histone acetyltransferase GCN5, putative 

 PFA0130c-->PFE1590w-->   MAL8P1.153-->  

MAL8P1.23 

0.036 PFA0130c 

PFE1590w 

MAL8P1.153 

MAL8P1.23 

Serine/Threonine protein kinase, FIKK family, putative 

early transcribed membrane protein 5, ETRAMP5 

transcription factor with AP2 domain(s), putative 

ubiquitin-protein ligase 1, putative 
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Table 4.8: Predicted minimum pathways (potential signal transduction pathways) for the unknown signal 

transduction groups proteins. Column one indicates the name of the signalling pathway, the second column shows 

minimum paths extracted, while optimizing the identified number of proteins in the pathway under consideration. The 

third column shows the weight p-value and column four detailed the products (from plasmodb) of the proteins in the 

identified potential signalling pathways. 

Name Minimum path p-

value 

Details of genes 

 

Genes IDS 

 

Products 

Unknown 

genes 

PFA0125c --->PFA0515w--->  PF08_0034--> 

PF11_0504 

0.045 PFA0125c 

PFA0515w 

PF08_0034 

 PF11_0504 

erythrocyte binding antigen-181 

phosphatidylinositol-4-phosphate-5-kinase 

histone acetyltransferase GCN5, putative 

Plasmodium exported protein (hyp11), unknown function 

 PFA0125c--->  PF08_0034--->   PF10_0146--> 

PF11_0504 

0.039 PFA0125c 

PF08_0034  PF10_0146 

PF11_0504 

erythrocyte binding antigen-181 

histone acetyltransferase GCN5, putative 

conserved Plasmodium protein, unknown function 

Plasmodium exported protein (hyp11), unknown function 

 PFA0125c--->    PF08_0034-->  PF10_0232--> 

PF11_0504 

0.029 PFA0125c    PF08_0034 

PF10_0232 

PF11_0504 

erythrocyte binding antigen-181 

histone acetyltransferase GCN5, putative 

Chromodomain-helicase-DNA-binding protein 1 homolog, 

putative 

Plasmodium exported protein (hyp11), unknown function 

 PFA0125c--->   PFE0570w--->    PF11_0055 

--> PF11_0277 

0.03 PFA0125c   PFE0570w    

PF11_0055 PF11_0277 

erythrocyte binding antigen-181 

RNA pseudouridylate synthase, putative 

conserved protein, unknown function 

conserved Plasmodium protein, unknown function 

 PFA0125c--->  PF08_0034-->  PF11_0504--> 

PFL0815w 

0.033 PFA0125c  PF08_0034 

PF11_0504 PFL0815w 

erythrocyte binding antigen-181 

histone acetyltransferase GCN5, putative 

Plasmodium exported protein (hyp11), unknown function 

DNA-binding chaperone, putative 

 PFA0125c   --->  PFE0570w --->   PF11_0277 

 -->  PFL1385c 

0.027 PFA0125c    PFE0570w   

PF11_0277   PFL1385c 

erythrocyte binding antigen-181 

RNA pseudouridylate synthase, putative 

conserved Plasmodium protein, unknown function 

Merozoite Surface Protein 9, MSP-9 

 PFA0125c ---> PFE0570w--> PF11_0277--> 

PFL1565c 

0.03 PFA0125c 

PFE0570w 

PF11_0277 PFL1565c 

erythrocyte binding antigen-181  

RNA pseudouridylate synthase, putative 

conserved Plasmodium protein, unknown function 

CG2-related protein, putative 

 PFA0125c ---> PF11_0277--> PFL2520w--> 

chr13_1000012.gen_6 

0.03 PFA0125c 

PF11_0277  

PFL2520w 

Chr13_1000012.gen_6 

erythrocyte binding antigen-181 

conserved Plasmodium protein, unknown function 

reticulocyte-binding protein 3 homologue 

nil 

 PFA0125c ---> PF11_0277--> MAL13P1.135--> 

chr13_1000012.gen_6 

0.032 PFA0125c  

PF11_0277 

MAL13P1.135 

chr13_1000012.gen_6 

erythrocyte binding antigen-181  

conserved Plasmodium protein, unknown function 

SNARE protein, putative 

nil 

 PFA0125c---> PF08_0034--> PF11_0504--> 

PF13_0161 

0.032 PFA0125c 

PF08_0034 

PF11_0504 

PF13_0161 

erythrocyte binding antigen-181 

histone acetyltransferase GCN5, putative 

Plasmodium exported protein (hyp11), unknown function 

conserved Plasmodium protein, unknown function 

 PFA0125c---> PF08_0034--> PF11_0504---> 

PF13_0173 

0.049 PFA0125c  

PF08_0034 

PF11_0504 PF13_0173 

erythrocyte binding antigen-181 

histone acetyltransferase GCN5, putative 

Plasmodium exported protein (hyp11), unknown function 

conserved Plasmodium protein, unknown function 

 

 PFA0125c--->  PFE0570w--->  PFE1590w--> 

PF11_0277--> MAL13P1.202 

0.036 PFA0125c 

PFE0570w 

PFE1590w 

PF11_0277 

MAL13P1.202 

erythrocyte binding antigen-181 

RNA pseudouridylate synthase, putative 

early transcribed membrane protein 5, ETRAMP5 

conserved Plasmodium protein, unknown function 

conserved Plasmodium protein, unknown function 

 PFA0125c--->  PF08_0034--->  PF11_0504--->  

MAL13P1.269 

0.035 PFA0125c  

PF08_0034  PF11_0504  

MAL13P1.269 

erythrocyte binding antigen-181 

histone acetyltransferase GCN5, putative 

Plasmodium exported protein (hyp11), unknown function 

tryptophan-rich antigen, putative 

 PFA0125c---> PFE0570w--> PF11_0277--> 

PF13_0322 

0.029 PFA0125c 

PFE0570w 

PF11_0277 

PF13_0322 

erythrocyte binding antigen-181 

RNA pseudouridylate synthase, putative 

conserved Plasmodium protein, unknown function 

falcilysin 

 PFA0125c--->  PF08_0034  ---> PF11_0504---> 0.043 PFA0125c erythrocyte binding antigen-181 
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PF14_0230 PF08_0034  PF11_0504 

 PF14_0230 

histone acetyltransferase GCN5, putative 

Plasmodium exported protein (hyp11), unknown function 

60S ribosomal protein L5, putative 

 PFA0125c--->  PF08_0034--->  PF11_0504--> 

PF14_0510 

0.032 PFA0125c  PF08_0034 

PF11_0504 PF14_0510 

erythrocyte binding antigen-181 

histone acetyltransferase GCN5, putative 

Plasmodium exported protein (hyp11), unknown function 

p23 co-chaperone, putative 

 PFA0125c--->  PF08_0034--->  PF11_0504-->  

PF14_0678 

0.032 PFA0125c  PF08_0034 

PF11_0504 PF14_0510 

erythrocyte binding antigen-181 

histone acetyltransferase GCN5, putative 

Plasmodium exported protein (hyp11), unknown 

exported protein 2 

 PFA0125c--> PFB0095c--> PF08_0034--> 

PF11_0504 

0.049 PFA0125c 

PFB0095c 

PF08_0034 PF11_0504 

erythrocyte binding antigen-181 

erythrocyte membrane protein 3 

histone acetyltransferase GCN5, putative 

Plasmodium exported protein (hyp11), unknown function 

 PFA0125c-->  PFD0835c--> PF08_0034--> 

PF11_0504 

0.03 PFA0125c 

PFD0835c  

PF08_0034 PF11_0504 

erythrocyte binding antigen-181 

LETM1-like protein, putative  

histone acetyltransferase GCN5, putative 

Plasmodium exported protein (hyp11), unknown function 

 PFA0125c-->   PFD0885c--> PFE0570w--> 

PFE1590w--> PF11_0277 

0.036 PFA0125c 

PFD0885c 

PFE0570w 

PFE1590w 

PF11_0277 

erythrocyte binding antigen-181 

conserved Plasmodium protein, unknown function 

RNA pseudouridylate synthase, putative 

early transcribed membrane protein 5, ETRAMP5 

conserved Plasmodium protein, unknown function 

 PFA0125c-->PFE0770w-->PF11_0277--> 

chr13_1000012.gen_6 

0.027 PFA0125c 

PFE0770w- 

PF11_0277 

chr13_1000012.gen_6 

erythrocyte binding antigen-181 

conserved Plasmodium protein, unknown function 

conserved Plasmodium protein, unknown function 

nil 

 PFA0125c-->PFE0845c-->PF08_0034--> 

PF11_0504 

0.048 PFA0125c 

PFE0845c 

PF08_0034 

PF11_0504 

erythrocyte binding antigen-181 

60S ribosomal protein L8, putative 

histone acetyltransferase GCN5, putative 

Plasmodium exported protein (hyp11), unknown function 

 PFA0125c-->PFE1225w-->PF11_0277--> 

chr13_1000012.gen_6 

0.027 PFA0125c 

PFE1225w 

PF11_0277 

chr13_1000012.gen_6 

erythrocyte binding antigen-181 

organelle ribosomal protein L7/L12 precursor, putative 

conserved Plasmodium protein, unknown function 

nil 

 PFA0125c-->PFE1465w-->PF11_0277--> 

chr13_1000012.gen_6 

0.03 PFA0125c 

PFE1465w 

PF11_0277 

chr13_1000012.gen_6 

erythrocyte binding antigen-181 

conserved Plasmodium protein, unknown function 

conserved Plasmodium protein, unknown function 

nil 

 PFA0125c -->PFE0570w -->PFE1590w--> 

PF11_0277 

0.024 PFA0125c  

PFE0570w  

PFE1590w 

PF11_0277 

erythrocyte binding antigen-181 

RNA pseudouridylate synthase, putative 

early transcribed membrane protein 5, ETRAMP5 

conserved Plasmodium protein, unknown function 

 PFA0125c-->PFE0570w-->PFE1590w--> 

PFF1185w--> PF11_0277 

0.042 PFA0125c 

PFE0570w 

PFE1590w 

PFF1185w 

PF11_0277 

erythrocyte binding antigen-181 

RNA pseudouridylate synthase, putative 

early transcribed membrane protein 5, ETRAMP5 

Smarca -related protein 

conserved Plasmodium protein, unknown function 

 PFA0125c-->PFE0570w--> PFE1590w--> 

MAL8P1.153--> PF11_0277 

0.043 PFA0125c 

PFE0570w 

PFE1590w 

MAL8P1.153 

PF11_0277 

erythrocyte binding antigen-181 

RNA pseudouridylate synthase, putative 

early transcribed membrane protein 5, ETRAMP5 

transcription factor with AP2 domain(s), putative 

conserved Plasmodium protein, unknown function 

 PFA0125c -->PF08_0127 -->PF08_0034 --> 

PF11_0504 

0.043 PFA0125c 

PF08_0127 PF08_0034 

PF11_0504 

erythrocyte binding antigen-181 

conserved Plasmodium protein, unknown function 

histone acetyltransferase GCN5, putative 

Plasmodium exported protein (hyp11), unknown function 

 PFA0125c-->PF08_0034-->PFI0495w--> 

PF11_0504 

0.045 PFA0125c 

PF08_0034 

PFI0495w 

PF11_0504 

erythrocyte binding antigen-181 

histone acetyltransferase GCN5, putative 

conserved Plasmodium protein, unknown function 

Plasmodium exported protein (hyp11), unknown function 

 PFA0125c-->PF08_0034--> PFI1715w--> 

PF10_0232--> PF11_0504 

0.046 PFA0125c 

PF08_0034 

PFI1715w 

PF10_0232 

PF11_0504 

erythrocyte binding antigen-181 

histone acetyltransferase GCN5, putative 

Plasmodium exported protein ,unknown function 

Chromodomain-helicase-DNA-binding protein 1 homolog, 

putative 

Plasmodium exported protein (hyp11), unknown function 

 PFA0125c-->PFE0570w--> PFE1590w--> 

PF11_0277--> MAL13P1.86 

0.049 PFA0125c 

PFE0570w 

PFE1590w 

PF11_0277 

MAL13P1.86 

erythrocyte binding antigen-181 

RNA pseudouridylate synthase, putative 

early transcribed membrane protein 5, ETRAMP5 

conserved Plasmodium protein, unknown function 

cholinephosphate cytidylyltransferase 

 PFA0125c--> PF08_0034--> PF11_0504--> 0.049 PFA0125c erythrocyte binding antigen-181 
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MAL13P1.88 PF08_0034 

PF11_0504 

MAL13P1.88 

histone acetyltransferase GCN5, putative 

Plasmodium exported protein (hyp11), unknown function 

conserved Plasmodium protein, unknown function 

 PFA0125c-->PF10_0081 0.009 PFA0125c 

PF10_0081 

erythrocyte binding antigen-181 

26S proteasome regulatory subunit 4, putative 

 PFA0125c-->PF10_0183-->PF11_0277 0.013 PFA0125c  

PF10_0183  

PF11_0277 

erythrocyte binding antigen-181 

eukaryotic translation initiation factor subunit eIF2A, putative 

conserved Plasmodium protein, unknown function 

 PFA0125c--> PF11_0277 0.001 PFA0125c 

PF11_0277 

erythrocyte binding antigen-181 

conserved Plasmodium protein, unknown function 

 PFA0125c--> PF08_0034--> PF11_0504 0.017 PFA0125c  

PF08_0034 PF11_0504 

erythrocyte binding antigen-181 

histone acetyltransferase GCN5, putative 

Plasmodium exported protein (hyp11), unknown function 

 PFA0125c-->PFL0830w 0.003 PFA0125c 

PFL0830w 

erythrocyte binding antigen-181 

RNA binding protein, putative 

 PFA0125c-->PF14_0241 0.006 PFA0125c 

PF14_0241 

erythrocyte binding antigen-181 

basic transcription factor 3b, putative 

 PFA0125c--> PFC0465c 0.006 PFA0125c  

PFC0465c 

erythrocyte binding antigen-181 

pre-mRNA splicing factor, putative 

 PFA0125c--> PFD0795w-->PF11_0277 0.013 PFA0125c  

PFD0795w 

PF11_0277 

erythrocyte binding antigen-181 

RNA pseudouridylate synthase, putative 

conserved Plasmodium protein, unknown function 

 PFA0125c--> PFE0570w -->PF11_0277 0.013 PFA0125c 

PFE0570w  

PF11_0277 

erythrocyte binding antigen-181 

RNA pseudouridylate synthase, putative 

conserved Plasmodium protein, unknown function 

 PFA0125c -->PFF1050w -->PF14_0241 0.026 PFA0125c  

PFF1050w 

PF14_0241 

erythrocyte binding antigen-181 

nascent polypeptide associated complex alpha chain, putative 

basic transcription factor 3b, putative 

 PFA0125c -->MAL7P1.172 -->PF10_0081 0.024 PFA0125c MAL7P1.172 

PF10_0081 

erythrocyte binding antigen-181 

Plasmodium exported protein (PHISTc), unknown function 

26S proteasome regulatory subunit 4, putative 

 PFA0125c-->PF08_0034 0.001 PFA0125c 

PF08_0034 

erythrocyte binding antigen-181 

histone acetyltransferase GCN5, putative 

 PFA0125c--> PFI0635c -->PF11_0277 0.016 PFA0125c  

PFI0635c  

PF11_0277 

erythrocyte binding antigen-181 

conserved Plasmodium protein, unknown function 

conserved Plasmodium protein, unknown function 

 PFA0125c--> PFI1090w 0.003 PFA0125c 

PFI1090w 

erythrocyte binding antigen-181 

S-adenosylmethionine synthetase 

 PFA0125c--> PF11_0277--> chr13_1000012.gen_6 0.013 PFA0125c 

PF11_0277 

chr13_1000012.gen_6 

erythrocyte binding antigen-181 

conserved Plasmodium protein, unknown function 

nil 
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