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Abstract Recycling is one of the key ways of improving polymer properties and viable applica-

tions. Polymer blends are generating desired properties and the strength of recycled polymer

improves depending on the ratio of the compositional blend. Microscopic characterization of the

properties of recycled polyacrylonitrile fibre with polyethylene terephthalate using SEM and

AFM was investigated in this work. The results revealed that blended compositions of rPAN/

PET (50/50; 70/30) are viable to explore while rPAN/PET (30/70) blend resulted in poor adhesion

between the matrix and phase. Therefore, high percentage composition of rPAN in the blended

samples positively improves the processing properties of PET.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Polyacrylonitrile (PAN) products are finding application in the
field of polymer development due to their high mechanical
strengths, toughness and excellent thermal properties [1].

These attributes are very indispensable in understanding
PAN functions and its application as precursors for the pro-
duction of carbon fibre [2,3], etc. Therefore, many PAN prod-

ucts have been discovered for different applications as the need
required. These PAN products are not easily disposed and the
need for their recycling is coming to light, due to government

legislative laws on recycling. Recycling of PAN and PAN
blends is challenging because they comprised of multiple seg-
ments (matrix and phases). Hence, there has been significant

research into the recycling of PAN due to a number of recy-
cling technologies now available [4–6]. Of all the different
PAN recycling methods, mechanical recycling is the simplest
approach. This process allowed pure and used PAN materials

to be compounded with other polymers which are either misci-
ble or immiscible [4,5].

Different recycling techniques have been reported in the

work of many authors. Their reports have shown tremendous
improvement in blending application of PAN [7–14]. In addi-
tion, great effort has also been applied in the blending and

development of PET as reported in many journals [15–19]. Lit-
tle effort is shown in the compatibility of rPAN with PET;
hence, the need for this study to be carried out.
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Table 1 Rheomixer operating parameters.

Temperature 290 �C
Speed 60 rpm

Time (min) 5 min

Roller - rotor 600 rpm

Sample mass 25 g

Density 1 g/cm3
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In this current study scanning electron microscopy (SEM)
and atomic force microscopy (AFM) were used to characterize
rPAN, PET and rPAN/PET blended samples. SEM and AFM

have proved to be a very useful technique employed for surface
imaging with sub-nanometric resolution. By imaging the sam-
ples with SEM and AFM, surface topography, composition,

molecular structure, pores distribution, surface roughness
and morphological aspect local properties, such as height, fric-
tion, with a probe were validated [9–11]. These characteriza-

tions are highly important in the development of the rPAN/
PET blends. This also aided the understanding of the effect
of blended ratios composition of the rPAN/PET.

2. Experimental methods

2.1. Materials

The rPAN fibre employed in this study was supplied by
ESKOM, South Africa. Neat PAN has a molecular weight

(Mw) = 53.06 g/mol, amorphous density of 1.184 g/cm3. The
glass transition and melting temperatures are 95 �C and
317 �C, respectively. The PET was purchased by the Tshwane

University of Technology (TUT) from Ten Cate advanced
composites BV, the Netherlands. PET has a molecular weight,
(Mw) = 192.2 g/mol and the amorphous density of 1.370 g/

cm3. It’s glass transition and melting temperatures are 75 �C
and 285 �C, respectively.

2.2. The recycled PAN fibre and PET processing

rPAN fibres were cleaned by soaking in water for 12 h, rinsed
and dried for 24 h at room temperature in order to remove the
ash and coal particles embedded in it before the blending pro-

cess took place. Dried rPAN fibres and neat PET were pre-
pared through melt blending using the HAAKE Polylab OS
Rheomix 600 (Thermo Electron Co., USA) at 290 �C for

5 min with a rotor speed of 80 rpm. The rPAN and PET were
blended at the ratios of 30/70, 50/50, and 70/30 as received,
while rPAN and PET were used as controls. The resulting

blends and control samples were then compression-moulded
to the desired dimensions for the various tests, using a carver
compression mould (Carver, USA). The total compression res-
idence time of 10 min with a compression step of 2 min at a

pressure of one metric ton was employed and water was also
used for the slow cooling during the carving process. Table 1
shows the rheomixer operating parameters.

3. Characterization

3.1. Scanning electron microscopy (SEM)

The cryogenically fractured-surface morphology of rPAN,

PET and the blended samples was determined using a JEOL-
SEM model JSM-7500LV field emission scanning electron
microscopy (SEM) (JEOL, Japan). An accelerating voltage

of 3 kV was used under the gentle beam (low mode) in order
to prevent the beam from damaging the samples. The samples
were prepared by immersion in liquid nitrogen, cryogenically-

fractured, mounted on stubs edge-on and coated with mercury
in order to enhance conductivity. The images were collected at
a magnification of 50,000�. The size of the distinct features in
the images was determined using ImageJ (National institute of

Health, USA).

3.2. Atomic force microscopy (AFM)

Atomic force microscopy (AFM) WSxM 5.0 development 6.4
and digital instruments/VEECO multimode are currently find-
ing wide application in polymer surface imaging topography

at high resolution. AFM is designed to acquire images, mea-
sure and generate statistical properties such as the height dis-
tribution function, the root-mean-square (rms), slope,
curvature, average height, average surface area, power spectral

density, average surface roughness and surface fractal analysis
used to characterize polymer surfaces during analysis. AFM
uses scanning probe microscope (SPM) raster-scans over a

small area of samples and simultaneously measured the local
properties for analysis [20,21]. For this reason the measure-
ment of force curves has become essential in different fields

of research, such as surface science and materials engineering
[22–24].

In conclusion, AFM does not only measure the force on the

polymer sample but also regulate and allow acquisition of
images at very low forces. Lastly, a well-constructed feedback
loop is essential for AFM to generate 2D and 3D images for
detail analysis.
4. Results and discussion

4.1. The blends morphology

The nodule-like structure observed in Fig. 1a is due to the net

predominance of the solid-solid demixing during the blending
process. This demixing promotes simultaneous nucleation and
growth of the blend crystallites in all directions. The nodules

characterizing rPAN/PET blends exhibit different size and
compactness due to the blending ratio (Fig. 1a–c). In addition,
an increase in the processing temperature of PET resulted in

spherulite network characterized by the size suggesting that
the number of nuclei of crystallites in the blend is reduced at
a higher temperature, which favours crystal growth in struc-
ture formation. Therefore, changes in the degree of intercon-

nectivity of blends structure are expected according to
Gugliuzza and Drioli [25]. In addition, high composition of
PET in the blend decreases spherulites number of links, result-

ing in an increase in the pores formation. The formation of lar-
ger and larger gaps between the spherulites generates the
blends pores, whose size and distribution are significantly

dependent on the blend ratio [25].



Figure 1 Morphology of freeze-fractured surfaces of: (a) rP AN/PET (70/30), (b) rPAN PET (50/50), (c) rPAN/PET (30/70), (d) rPAN

and (e) PET. Images were collected at 50,000� at a voltage of 2 kV.
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4.2. Structure-property relationships

Varying the blend ratio and increasing the processing temper-

ature of PET affect the performance of the blended polymers.
In the present work, the fraction of PET in the blend was
bound to influence the viscosity of rPAN and same as rPAN
for PET. Therefore, the morphology of rPAN/PET blends

was studied in order to elucidate the blend homogeneity or
otherwise validate the correlation between the morphology,
pores distribution and blend compositional ratios as follows.

Fig. 1a shows the blend of rPAN/PET (70/30). This blend
reveals a near total dispersion of PET in the rPAN matrix.
The blend spherulites appear more compacted because of addi-

tional interlinks provided by high rPAN composition in the
blend. Also, due to high composition of rPAN in the blend,

disperse phase decreased remarkably according to Lepers
et al. [26]. Therefore, high rPAN composition in the blend
reduces PET particle size because the dispersed phase is less

viscous than the matrix according to Chesters [27] and Minale
et al. [28]. This implies that the compatibility between rPAN
and PET increased with increasing rPAN content by reducing

the interfacial adhesion between the two components, see
Fig. 1a SEM image.

Fig. 1b reveals the morphology of rPAN/PET (50/50) sam-

ple. The micrograph shows co-continuous morphology in the
blend structure which contains some degree of interpenetrating
and self-supporting phases of the rPAN/PET blend. This
shows the continuous path through which either phase may



Figure 2 Pore size distribution of (a) rPAN, (b) PET, (c) rPAN/PET (70/30), (d) rPAN/PET (50/50) and (e) rPAN/PET (30/70).
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be drawn to the boundaries, although some dispersed phase
portions were also observed in the blend.

The morphology of rPAN/PET (30/70) sample is shown in
Fig. 1c. The blend shows some degree of uniformity of the two
polymers, but it further revealed the formation of pores in the

blend which resulted in the matrix weakness, thereby leading
to sample brittleness as a result of poor adhesion between
the components. This ratio is not viable for recycling

processes.
The micrograph of rPAN shows a complex interconnected

network of fibres (Fig. 1d). Obviously, the rPAN fibre mor-
phology provides a compounding pathway that can enhance

an effective blending and this can improve the rPAN blend
properties if carefully explored as shown in the blends of
rPAN/PET (70/30 and 50/50). Fig. 1e shows the morphology

of the pure PET, and this shows a possible matrix compound-
ing for new material development. The morphology reveals the
possibilities of fibre penetration in the network of the matrix;
this is a positive prospect for rPAN fibre blending.

Lastly, SEM cryogenically-fractured surfaces of rPAN,
PET and rPAN/PET blended samples also revealed pore distri-
bution. This pore size and its distribution are very important

for the performance data analysis in recycling technology. It
provides a quantitative description of the range of pore sizes
present in a given blended sample and it gave a more accurate

description of the particle sizes that is likely to affect the
blended compositional ratios. Pore size distribution is one of
the numerical parameters that can be obtained directly from
the AFM.

AFM topography imaging of samples was helpful in
obtaining information on the pore size distribution by provid-
ing statistics on the surface of pore dimensions (Fig. 2). In the

study, the pore size distribution varies with the blended sam-
ples compositional ratios, that is, with rPAN as the matrix,



Figure 3 AFM microgram of (a) rPAN, (b) rPAN/PET (30/70), (c) rPAN/PET (50/50), (d) rPAN/PET (70/30) and (e) PET samples.

Characterization of rPAN fibre and PET blends 479
the pore size distribution decreases (Fig. 2c) while the intro-

duction of PET as matrix increased the pore size distribution
in the blend (Fig. 2e). This resulted in poor adhesion between
the matrix and phase composition rPAN/PET (30/70) (Fig. 2).

4.3. Surface roughness analysis with atomic force microscopy

(AFM)

Fig. 3 shows the non-contact mode 3D topography images

obtained from AFM for 5.0 lm � 5.0 lm rPAN, PET and
rPAN/PET blended samples. The 3D topography images rep-
resent the samples top views with the information on the depth

of the samples in the Z-direction, coded in colour intensity
having the highest points. The light regions represent the peaks
and the dark region represents the pores. The samples have a

thick structure and higher ridges of three-dimensional ortho-
graphic features. These ridges could be due to the incorporated
developed programming tool that can be useful when investi-
gating the rPAN/PET blended samples and the thick structure

was as a result of the dense nature of the matrix-phase compo-
sition. The 3D orthographic image of samples shows the
occurrence of tiny peaks and valleys.

The tiny peaks are responsible for the improved roughness
of rPAN/PET (50/50 and 30/70) when compared to PET; this
might lead to improved adhesion of the matrix and phase [29].
The roughness parameter of the rPAN/PET (70/30) was very

low. Furthermore, Table 2 reveals that the roughness values
decreased as PET was added to rPAN. This trend resulted in
the weakening of the interlinking network of the blends; poor

adhesion between the matrix and the phase leads to brittleness.
This brittleness was revealed by the cracking of rPAN/PET
(30/70) during preparation for further test. In conclusion, the

addition of PET above 50% in composition weakens the blend
and makes the blend unsuitable for the proposed recycling
application. Introduction of suitable additives can be explored
to improve this weakness.



Fig. 3 (continued)

Table 2 Summary of AFM roughness analysis.

Sample Img. Rms

(Rq) (nm)

Mean roughness

(Ra) (nm)

rPAN (100) 80.304 65.739

rPAN/PET (30/70) 63.232 49.781

rPAN/PET (50/50) 70.371 53.693

rPAN/PET (70/30) 20.924 15.806

PET (100) 49.508 38.698
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5. Conclusions

The AFM pore size distribution and surface roughness shed

light on the behaviour of rPAN/PET blended samples. This
provided valuable information on rPAN/PET blended samples
characterization. The study also revealed that rPAN/PET

(50/50) is the optimum blended ratio for PET and any ratio
above 50% of PET resulted in poor adhesion between the
matrix and phase, which lead to the poor blended composition.
SEM micrographs showed that, varying the ratio of the blends
has a significant effect on the mechanical property. Therefore,
both AFM and SEM are significant tools that aided the devel-

opment of the rPAN/PET blends. In addition, the study also
revealed that used PAN can be recycled with PET at different
blended ratios.

A further development is the proposed addition of additives
and fillers to the composition in order to explore the possible
application of the blend of rPAN/PET. This is to improve

on the phase separation observed in this current study.

Acknowledgment

ESKOM TESP grant for research support.

References

[1] S. Chand, Carbon fibers for composites, J. Mater. Sci. 35 (2000)

1303–1313.

[2] D.D. Edie, The effect of processing on the structure and

properties of carbon fibers, Carbon 36 (1998) 345–362.

[3] Y.V. Basova, D.D. Edie, Y.S. Lee, L.K. Reid, Effect of

precursor composition on the activation of pitch-based carbon

fibers, Carbon 42 (2004) 485–495.

http://refhub.elsevier.com/S1110-0168(16)30299-X/h0005
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0005
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0010
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0010
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0015
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0015
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0015


Characterization of rPAN fibre and PET blends 481
[4] B.K. Kim, Y.S. Oh, Y.M. Lee, K.Y. Lee, L. Soo, Modified

polyacrylonitrile blends with cellulose acetate: blend properties,

J. Polym. 41 (2005) 385–390.

[5] D.M. Cates, H.J. White, Preparation and properties of fibers

containing mixed polymers. II. Polyacrylonitrile-cellulose fibers,

J. Polym. Sci. 20 (1956) 181–195.

[6] W. Pan, S.L. Yang, M.J. Jian, G. Li, Electrical and structural

analysis of conductive polyaniline/polyacrylonitrile composites,

Eur. Polym. J. 41 (2005) 2127–2133.

[7] M.P. Taylor, Temperature and strain controlled optimization of

stabilization of polyacrylonitrile precursor fibers, Theses and

Dissertations–Mechanical Engineering, Paper 4, 2012. <http://

uknowledge.uky.edu/me_etds/4>.

[8] S.Y. Yun, J.-H. Ha, Y. Kim, W.K. Lee, Process optimization for

preparing high performance PAN based carbon fibers, Bull.

Korean Chem. Soc. 30 (2009) 6.

[9] J. Liu, P. Zhou, L. Zhang, Z. Ma, J. Liang, H. Fong,

Thermo-chemical reactions occurring during the oxidative

stabilization of electrospun polyacrylonitrile precursor

nanofibers and the resulting structural conversions, Carbon 47

(2009) 1087–1095.

[10] Y. Liu, H.G. Chae, S. Kumar, Stabilization of Gel-Spun

Polyacrylonitrile/Carbon Nanotubes Composite Fibers. Part

II: Stabilization Kinetics and Effects of Various Chemical

Reactions, School of Polymer, Textile and Fiber Engineering.

Georgia Institute of Technology, Atlanta, 2010.

[11] M.J. Yu, C.G. Wang, Y.J. Bai, N. Lun, Y.-X. Wang, B. Zhu,

Evolution of tension during the thermal stabilization of

polyacrylonitrile fibers under different parameters, J. Appl.

Polym. Sci. 102 (2006) 5500–5506.

[12] Y.-J. Bai, C.-G. Wang, N. Lun, Y.-X. Wang, M.-J. Yu, B. Zhu,

HRTEM. Microstructures of PAN precursor fibers, Carbon 44

(2006) 1773–1778.

[13] M. Rahaman, A. Ismail, A. Mustafa, A review of heat treatment

on polyacrylonitrile fiber, Polym. Degrad. Stab. 92 (2007) 1421–

1432.

[14] S. Dalton, F. Heatley, P.M. Budd, Thermal stabilization of

polyacrylonitrile fibers, Polymer 40 (1999) 5531–5543.

[15] X. Fei, E.A. Lofgren, A.J. Saleh, Melting and crystallization

behaviour of poly (ethylene terephthalate) and poly (m-xylylene

adipamide) blends, J. Appl. Polym. Sci. 118 (2010) 2153–2164,

VC 2010 Wiley Periodicals, Inc..
[16] M.C. Costache, M.J. Heidecker, E. Manias, C.A. Wilkie,

Preparation and characterization of poly (ethylene

terephthalate)/clay nanocomposites by melt blending using

thermally stable surfactants, J. Polym. Adv. Technol. 17

(2006) 764–771.

[17] C.F. Ou, M.T. Ho, J.R. Ling, Synthesis and characterization of

poly (ethylene terephthalate) nanocomposites with organoclay,

J. Appl. Polym. Sci. 91 (2004) 140–145.

[18] Y. Imai, Y. Inukay, H. Tateyama, Properties of poly (ethylene

terephthalate)/layered silicate nanocomposites prepared by two-

step polymerization procedure, J. Polym. 35 (2003) 230–235.

[19] C.H. Davis, L.J. Mathias, J.W. Gilman, D.A. Schiraldi, J.R.

Shields, P. Trulove, T.E. Sutto, H.C. Delong, Effects of melt-

processing conditions on the quality of poly (ethylene

terephthalate) montmorillonite clay nanocomposites, J. Polym.

Sci. Part B 40 (2002) 2661–2666.

[20] G.K. Pang, K.Z. Baba-Kishi, A. Patel, Topographic and phase

contrast imaging in atomic force microscopy, Ultramicroscopy

81 (2000) 35–40.

[21] G. Bar, L. Delineau, R. Brandsch, M. Bruch, M.-H. Whangbo,

Importance of the indentation depth in tapping-mode atomic

force microscopy study of compliant materials, Appl. Phys. Lett.

75 (1999) 4198–4200.

[22] G. Bar, R. Brandsch, Effect of viscoelastic properties of

polymers on the phase shift in tapping mode atomic force

microscopy, Langmuir 14 (1998) 7343–7347.

[23] J.P. Cleveland, B. Anczykowski, A.E. Schmid, V.B. Elings,

Energy dissipation in tapping mode atomic force microscopy,

Appl. Phys. Lett. 72 (1998) 2613–2615.

[24] H.-J. Butt, B. Cappella, M. Kappl, Force measurements with the

atomic force microscope: technique, interpretation and

applications, J. Surf. Sci. Rep. 59 (2005) 1–152.

[25] A. Gugliuzza, E. Drioli, New performance of hydrophobic

fluorinated porous membranes exhibiting particulate-like

morphology, Desalination 240 (2009) 14–20.

[26] J.-H. Lepers, B.D. Favis, C. Lacroix, J. Polym. Phys. 37 (1999)

939–951.

[27] A.K. Chesters, Trans. I Chem. E 69 (1991) 259.

[28] M. Minale, P. Moldenaers, J. Mewis, Macromolecules 30 (1997)

5470.

[29] W.R. Bowen, N. Hilal, R.W. Lovitt, C.J. Wright, J. Membr. Sci.

139 (1998) 269.

http://refhub.elsevier.com/S1110-0168(16)30299-X/h0020
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0020
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0020
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0025
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0025
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0025
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0030
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0030
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0030
http://uknowledge.uky.edu/me_etds/4
http://uknowledge.uky.edu/me_etds/4
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0040
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0040
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0040
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0045
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0045
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0045
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0045
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0045
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0050
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0050
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0050
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0050
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0050
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0050
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0055
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0055
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0055
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0055
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0060
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0060
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0060
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0065
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0065
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0065
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0070
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0070
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0075
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0075
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0075
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0075
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0080
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0080
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0080
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0080
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0080
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0085
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0085
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0085
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0090
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0090
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0090
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0095
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0095
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0095
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0095
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0095
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0100
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0100
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0100
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0105
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0105
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0105
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0105
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0110
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0110
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0110
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0115
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0115
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0115
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0120
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0120
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0120
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0125
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0125
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0125
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0130
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0130
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0135
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0140
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0140
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0145
http://refhub.elsevier.com/S1110-0168(16)30299-X/h0145

	SEM and AFM microscopical characterization of rPAN fibre and PET blends
	1 Introduction
	2 Experimental methods
	2.1 Materials
	2.2 The recycled PAN fibre and PET processing

	3 Characterization
	3.1 Scanning electron microscopy (SEM)
	3.2 Atomic force microscopy (AFM)

	4 Results and discussion
	4.1 The blends morphology
	4.2 Structure-property relationships
	4.3 Surface roughness analysis with atomic force microscopy (AFM)

	5 Conclusions
	Acknowledgment
	References


