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ABSTRACT

The long run behaviour of solutions of Lipschitzian quantum stochastic differential
equation (QSDE) with non-instantaneous impulse is studied. This is achieved by
imposing some conditions on the coefficients associated with the map P. Using the
fixed point approach, we show that a solution exists under the given conditions and
subsequently establish Ulam's type stability. We present some examples to further
justify its application.
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1. INTRODUCTION

Stability of solutions of impulsive ordinary differential equations (ODEs), partial differential
equations (PDEs), Functional differential equations (FDES), etc. have been of interest to many
authors [1, 4-7, 9-13]. Wang and Feckan (2013) [13], established stability results for
stochastic differential equations. [4, 5, 9] established similar results when the impulse
conditions are combinations of the traditional initial value problems and the short term
perturbations. However, the perturbation terms in these classes of equations cannot show the
dynamic change of evolution processes as it should in some applications. To address some of
these limitations, Liao and Wang (2014) in [7], studied generalized Ulam-Hyers-Rassias (U-
H-R) stability of solutions for a class of equations with non-instantaneous impulses and
provided some examples to show their applications.

Some results on existence of solution of impulsive quantum stochastic differential
equations (IQSDEs) and quantum stochastic differential inclusions (QSDIs) have been
established in [2, 3, 8]. So far, results on stability of these equations have not been
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investigated. Considering the importance of the long run behaviour of systems in real life
applications, is a motivation for this study.

This paper is concerned with the study of U-H-R stability of the following QSDE (Also
known as nonclassical ordinary differential equation (NODE)) with non-instantaneous
impulse functions:

%<n,¢(t)e:> = P O)7 Ot e (5, b ]k =L

(n,60)¢) =(n.a,(FO)E) t e (t,5,]
(n.4(0)¢) =(n.4,¢),te1:=[0,T] (1.1)

Where () = P(LA)(1.€) s well defined in [2, 3], 7'¢ €D @ E is arbitrary,

O=t,=s, <t <s <t,<..<s, <t <s <t ., =T,P:IxB-—sesq (D® E) continuous, and
q :[t.,s.]—>0.

Note that the sesquilinear form valued map P is assumed to be real valued since
C =~ ?, hence, the methods of [7, 12] are applicable to this setting.

2. PRELIMINARIES
1. B is atopological vector space.
2. (D®E) is acomplex space.

3. C(1,B),PC(l,B) are spaces of continuous and piecewise continuous
functions.

4. Define PC'(1,B):={¢PC(1,B):¢' PC(1,B)|

5. The sesquilinear equivalent forms PC(I,sesq(D ® E)) and PC (I,sesq (D ® E))

Of the above spaces are defined in a similar manner with the usual supremum
norm defined in [2].

Definition 2.1. A stochastic process is called a solution of
Eq. (1.1) if, it satisfies the following:

(7,4(0),&) = (1, 4,&)
<77,¢('[),§> = <77, Qi (t,¢(t))§>,t € (t.,s.]
=(1.4&) + [ P(s. ¢, E)ds L [0, 4];

=(.0. 6 9ONE) + [ P(s. (5N, .t et 5.1k =1um

Subsequently, tel,n,£e(D® E)) andk= 1,...m except otherwise stated.
Next we re-frame the concept of Ulam’s type stability for the purpose of this paper.

Lot PC(I,B) :={¢e E§:¢(t)20},q) >0and @, (t) e PC(1,sesq

nér =

(DY E))
The following inequality will be useful:
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& (1.0002)- PRI < ¥, t € 6, 8]

(n,6®)E) (1,0, t pW)E) <@, (1), t € (t,.,5,] (2.1)
Definition 2.2. Equation (1.1) is U-H-R stable with respect to @, .,'¥, .(t)) if we can
find M,. >0 such that for each solution ¢<PC'(l, B) of (2.1), there exists a solution
® e PC'(1,B) of Eq.(1.1) with

ly®-¢@®)] . <M, (D, ¥, ) tel (2.2)

Eq. (1.1) has found applications in quantum stochastic control theory and
guantum dynamical systems, see [2, 8].It is worth mentioning that this method will
be more useful in many applications such as numerical analysis, Physics, especially
when exact solutions are difficult to come by.

Definition 2.3. A stochastic process ¢ e PC*(1,B) is a solution of (2.1) if and only if
there exists a function F.ePC!(l,sesq(D®E)) and F,ePC'(l,sesq(D®E)) such
that

i IF.()|<®, (t).tel, and |F, [<¥,

K

i (M E) =P g)(7.£). t e (58]

- (1.008) = (7,0, 6 HOIE) + Fe t € (50t

Definition 2.4. Also, ¢ € PC(I,B) if is a solution of the (2.1), then it is also a solution of
the following integral inequality:

l¢®) —a, . pO)],, <D, t e (S0 t]
090 - [[PGs.gNas| <[, (st elon]

b0 -0, 6 d0))[ P.pENs| <0, 4 [0 (Sdsitelsital @3

We state the following established result and refer the reader to [7] and the
references therein:

Lemma 2.1. Let v,a,b be real valued piecewise continuous functions, where a is
nondecreasing. Assume the following inequality holds:
v(t)ga(t)+j(:b(s)v(s)ds+ Z yv(t),t>0, where Db(t)>0,7>0,i=1..,m. Then the
O<t; <t

following inequality also holds:

V) <a+ )+ te bt

where y =max{y,,i=1...,m}.
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3. MAIN RESULTS
We state the following useful hypotheses:

S, Let KP >0 be a constant such that

[Pt &) -PE A, <K ld -],
Foreach tel,d,¢, €B.

S, For qx e C([t,,s,]1xB,B), let there be constants L, > 0 such that

la. @A) =a. @), < Lllh =4l . Foreach tel, g4, ¢, €B.

S; Let I, >0 aconstant and let ¥ € PC(l, B) be a nondecreasing function such that
I;‘P(s)ds <1,¥(t), foreachtel.

The following result is a consequence of definition 2.1.

Theorem 3.1. Let the map P in Eg. (1.1) be continuous for each and let the
hypotheses S, —S, hold. Then equation (1.1) has a unique solution ¢ePC'(l,B)
provided

{L +KAT k=1..m}<1 (3.1)

Proof: The proof is an adaptation of the method employed in [2].
We give a sketch as follows and refer the reader to the reference [2] for details.
Transform the Eq. (1.1) to a fixed point problem by defining the map I" as follows:

Let I 1 PC(l,sesq (lD)@lE)) — PC(1,sesq (lD)@lE))

OO0, ) = (1. 9O)E)+ [ P(s. #(s))(7, £)ds
+4, (6 0)(7.€) (3:2)

and by the assumption (S, -S,), we have

PO, -T2 < [ IP(s, 60, £) ~ P(s, y($)n, )]s
+|a, (t, ¢®)(7.£) -, & y(t) (7. )|
<K [ lle- vl ds+Lllg-vl,
<(L, +KET k=Loam)p-y].

<[lé-l.

Where ¢(0) = y(0). Showing that (3.1) is satisfied and hence, I" is a con- traction
operator on PC(l,sesq (D ® [E)) and a fixed point exists, which is a unique solution of
(1.2).

Next, is the main result on stability.

Theorem 3.2: Let the conditions S, —S, and (3.1) hold. Then Eq. (1.1) is
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U-H-R stable.
Proof: Let

¢ e PC'(1,B) be a solution of Eqg. (1.1). Then
(. 6(0)E) = (1,9, (. (FV)E) t e (¢, 8.];

= (1. &)+ [, P(s,4()) (17, £)ds, t € [O.];
=0, (5, 45+ [, (P, ¢)(1.)+F, (s, te(stal

From (2.3) and Sz we get

l¢®) -0, &6, - [, PG #s)| ds

t
<@, +[ W, (5)s,
<O +HP . (1), telst,]

For t e (s,,t,], we obtain

[¢®) - t.4)],. <@,

60 -90) - [, P(s.(5)a| S0
Therefore, for each t €[s,,t, ,], we get
l#®) -y, <[¢0) -0, & 4t~ [, Pls.g(s))ds
And when t e[0,t,], yields +a, (4, #(50) - 6. (5. YD),
+[_ IPG.(5) - PG, y()] ds
<@H @, +¥, )+ L D ¢ -6,

O<t, <t

né

* Kﬂch.; lp(s.) - y(SK)||,7¢dS

Applying Lemma 2.1, yields
[¢®) -y, <@+, )@, +'¥, )L+ L)" exp(K, t.;) t € (5.l (3.3)

Moreover, for t € (S.t ], we obtain

6=yl <[60-0. .60,
+a.(t.60) - 0.t yO)],,
<o, +L o0 -y,

1
1-L

q
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Again, for each t €[0,t,] , we obtain

¢ -y, <1,¥,.0+ K, [ |9(9) - y(s)]_ds

By Gronwall’s Inequality, we get

K o
||¢(t)— y(t)||”§ <I,Y¥ .(t)e ~ (3.5)
Hence, by putting (3.3),(3.4) and (3.5) together, we obtain

q

lé®) -y, < ((1+ AT L)e e 1L 41 gl J(cb,]g 0

= MnK (q)r]§ +\III"IK (t))
where M, .is as defined in Definition 2.2 This implies that equation (1.1) is
generalized U-H-R stable with respectto (®, ., 'V, .(t)).

4. EXAMPLE
| =[0,2], P(t, 4(0)(7.€) = (€ ~D((m, 6, K,.. = £, (n, 0, (6, p(0)) =

2

¢(t)exp[%—t—%], L =3 Nowlet¥ . (t) and @,.,1 = 1/
(1.4(0)&)=(n.&) =" =1.

Considering the following problems:

Let Let

& (1.6002) = P 4O 9)

=(e*-1)((n,¢(t)¢).t e (0,1]
(o)) =(n,9,(t, 4(1)E)

= ¢(t)exp(e—:—t—%}t e(12] (4.1)

9 y®e) = Py (7.8)

dt
=(e*-1)((m, y(t)§) .t (0.1]
(1, y(®E) = (.0, y(D)E)

= y(t) exp[%—t— %]t e(1,2] (4.2)

Where #(0)=y(0). Let yePC(1,B) be a solution of (4.2). Then, we find
F,.()ePC'(1,B) and F, B such that
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F.0] =€) teIF 1< Y,

%(n,y(t)§>= Pt Y(®)(7.8)+F,. ()

=(™-1)((n, y(t)&),+F,.(t),t € (0,1]
(m,y()E) = (n,a,(t, y(t))&)+F, (1)1

= y(t)exp(%—t—%],t €(0,2] (4.3)

Integrating (4.3), yields

(1, Y0E) = (71, YO)F) + [ (€ ~1)((7. y(s))ds,t & (0.1],
And

2t

(1 Y€)= (7.6, € YO)E) + R =y exp[%—t— %} Pl

By Theorem 3.1, (4.1) has a unique solution which we present by

(1.60E) = (1,60)€)+ [ (€* ~1)((7.4(5)€))ds,t & (0.1].
And

(m.6(0E) = p) exp(e” —t- 1),

And for t €[0,1], we obtain

(008)-(ny0E) <[5 <© L <e

Again we obtain

(7.60) - (1. YOL) < Z .02 - (1, yOE) +F, .1

< <m0~ (1Y) +
And this yields

(1.602)~(n.y®2)] < 2
Which finally result to

(7, 60)~ (m, yOZ) s%(%#ji ‘ol

http://www.iaeme.com/IJMET/index.asp @ editor@iaeme.com



S. A. Bishop, M. O. Ogundiran and O. P. Ogundile

5. CONCLUSION
This shows that the solution of Eq. (1.1) is generalized U-H-R

()

=L and v, (1) =e®.
stable with 2

né
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