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Abstract 

Results on mild solution of nonclassical ordinary differential equations 
(NODE) with variable times and impulsive conditions are studied. The 
moments of impulsive effect depend on the solution. 

1. Introduction 

Extensive study has been carried out on impulsive systems with fixed 
moments. See the references [3, 5, 6, 8]. For quantum stochastic differential 
equations (QSDEs), few results on analytical properties of solutions of 
QSDEs with fixed moments were established in [2, 3]. The applications and 
importance of systems with impulsive effects cannot be over emphasized 
especially when dealing with systems that exhibit abrupt changes due to 
small perturbations [2, 3]. In recent times, the study of impulsive differential 
systems with variable times has been of interest to some researchers. Notable 
amongst these are the works of [1, 7, 9, 11]. It is on this note we study the 
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existence of solution of impulsive QSDE with variable times. This is to 
further enrich the qualitative theory of QSDE. We proceed as follows: 
Section 2 will show the preliminaries on which we intend to build the major 
result on and the major results will be discussed in Section 3. 

2. Preambles 

We study the following quantum stochastic differential equations also 
known as the nonclassical ordinary differential equation (NODE); 

( ) ( )( ) ( ) [ ] ( )( ) ,...,,1,,,0,,,, nitxtTIttxtPtx i =τ≠=∈ξη=ξη  

( ) ( ) ( )( ) ( )( ) ,...,,1,,,, nitxttxItx ii =τ=ξη=ξη +  

( ) ( ) [ ].0,, rtttx −∈ψ=  (1) 

Let the map ( ) ( ) ( )ξη∈ξη ,,, AxtP  be a stochastic process, where =A  

{ [ ] φ→−φ :
~

0,: Ar  is continuous except for some t, where ( ),−φ t  ( )+φ t  

exist and ( ) ( )},tt φ=φ −  ,A∈φ  ,0 ∞<< r  ( ),,
~ RACk ∈τ  mk ...,,1=  

are given functions. Define ( ) ( ) [ ]0,, rsstxsx −∈+= ηξηξ  to be a 

function in A for [ ] .
~

:,
~~

:,, R→τ→−∈ AAA iiJTrx  The space ( )A~,IC  

is a Banach space introduced in [2, 3, 11]. Its norm is given by 

( ) ( ){ }Ittxx ∈ξη=ηξ :,sup:  

and A is equipped with a similar norm for [ ].0,rt −∈  

Define the space A  as follows: Let ,0 110 Ttttt nn =<<<<= +  such 

that, ( )( ),iii txt τ=  ( )−itx  and ( )+itx  with ( ) ( ) ....,,1, nitxtx ii ==−  Then 

{ [ ] ( ] )}.~
,,,

~
,: 1 AAA +∈→−= ii ttCxTrx  

Definition 1. The map ( ) ( ) ( )ξη→ ,,, xtPxt  satisfies Caratheodory 

conditions if: 

(a) ( ) ( )ξη⋅ ,, yP  is computable for each ;Ay ∈  

(b) ( ) ( )ξη⋅ ,,tP  is continuous for almost all [ ];,0 Tt ∈  
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(c) there exist computable functions [ ] +ηξ → RTh q ,0:,  so that 

( ) ( ) ( ) qythytP q ≤∀≤ξη ηξηξ ,,, ,  and a.e. [ ].,0 Tt ∈  

We use the Schaefer’s fixed-point theorem. See [4, 10]. 

Definition 2. A stochastic process A∈x  is a solution of (1) if it satisfies 

(1) a.e. on [ ],,0 TI =  ( )( ),txt iτ≠  ni ...,,1=  and ( ) ( )( ),txJtx i=+  =t  

( )( ),txiτ  ( ) ( ),ttx ψ=  [ ].0,rt −∈  

The following conditions will be used to establish some major results: 

( )1S  The function ( ),,
~1 RACi ∈τ  ,...,,1 ni =  ( ) ( )xtx n<<τ< 10  

,T<  .
~
A∈∀x  

( )2S  Let ( ) iii lxnilxJ ,
~

,...,,1, A∈=≤ηξ  are constants. 

( )3S  There exist functions: 

 (i) [ ) ( )∞→∞ ,0,0:W  which is continuous and nondecreasing. 

(ii) IM :ηξ +→ R  which is measurable, such that ( ) ( ) ≤ξη,, ytP  

( ) ( ),ηξηξ yWtM  for a.e. AyIt ∈∈ ,  with ( )∫
∞

∞=
1

.sW
ds  

( )4S  ( ) ( ) ( ) ( ) [ ] .
~

,0,1,,,, A×∈∀≠ξηξτη TxtxtPxdt
d

i  

( )5S  ( )( ) ( ) ( )( ),1 xJxxJ iiiii +τ≤τ≤τ  for ni ...,,1=  and .
~
A∈∀x  

3. Major Results 

Theorem. Assume that hypothesis ( ) ( )41 - SS  hold. Then the problem (1) 

has at least a solution on [ ]., Tr−  

Proof. To apply the fixed point method, the problem (1) is transformed 

as follows: define the map ([ ] ) ([ ] )AA
~

,,
~

,,: TrCTrCN −→−  by 

( ) ( ) ( ) ( ) [ ]0,,, rtttxN −∈ψ=ξη ηξ  
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and 

( ) ( ) ( ) ( ) ( )( ) ( ) [ ]∫ ∈ξη+ψ=ξη ηξ
t

TtdssxsPtxN
0

.,0,,,0,  

We establish the result in stages: 

Stage 1. N is continuous. Let the stochastic processes { }nx  be a sequence, 

and let xxn →  in ([ ] ).~
,, ATrC −  Then 

( )( )( ) ( )( )( ) ( )( )( ) ( )( )( )∫ ξη−ξη≤ξη−ξη
t

nn dssxsPsxxPtxNtxN
0

,,,,,,  

( )( )( ) ( )( )( )∫ ξη−ξη≤
T

n dssxsPsxsP
0

.,,,,  

By Lebesgue dominated convergence theorem, 

( )( ) ( )( ) ( )( ) ( )( ) 0,,, →−≤− ηξ∞ηξ txtPtxtPtxNtxN nn  as .∞→n  

Stage 2. N maps bounded sets into bounded sets in ([ ] ].~
,, ATrC −  For 

,0>q  we have a constant 0≥m  such that 

{ ([ ] ) ( ) },:
~

,, qtxTrCxAx q ≤−∈=∈ ηξA  

and ( ) .mxN ≤ηξ  Therefore by ( ),S3  

( ) ( ) ( ) ( ) ( )( ) ( )∫ ηξηξηξ +φ≤ξη+ψ≤ξη
s

qhdssxsPtxN
0 , .,,0,  

Thus, ( ) .:, mhxN q =+φ≤ ηξηξηξ  

Stage 3. N maps bounded sets into equicontinuous sets of ([ ] ).~
,, ArrC −  

Let [ ] ,,,0, 2121 ttTtt <∈  and qA  be as defined above. Then 

( ) ( ) ( ) ( ) ( )∫ →≤− ηξηξ
2

1
0,12

t

t q dsshtxNtxN  as .12 tt →  

The same holds for 021 ≤< tt  and .0 21 tt ≤≤  Hence, by Stages 1-3 

and Arzela-Ascoli theorem, we deduce that the map N is completely 
continuous. 
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Stage 4. Define ( ) { ([ ] ) ( ) }.10,:
~

,,: <ρ<ρ=−∈=Γ xNxTrCxN A  

We claim that the set ( )NΓ  is bounded: Let ( ).Nx Γ∈  Then, ( )xNx ρ=  

for some .10 <ρ<  For [ ],,0 Tt ∈  

( ) ( ) ( ) ( )( ) ( ) .,,0,
0

⎟
⎠
⎞

⎜
⎝
⎛ ξη+φρ=ξη ∫ηξ

t
dssxsPtx  

Therefore by ( )2S  and ( ),S3  we get 

 ( ) ( ) ( ) ( ) .,,
0 , ItdsxWsMtx
t

q ∈+φ≤ξη ∫ ηξηξηξ  (2) 

Define a function g by ( ) { ( ) } .0,:sup Tttsrsxtg ≤≤≤≤−= ηξ  

Let [ ]trt ,−∈∗  be such that ( ) ( ) .∗
ηξηξ = txtg  If [ ],,0 Tt ∈∗  then by 

(2), we have 

 ( ) ( ) ( ( )) [ ].,0,
0

TtdssgWsMtg
t

∈+φ≤ ∫ ηξηξηξηξ  (3) 

If [ ],0,rt −∈∗  then ( ) ηξηξ φ=tg  and (3) holds. Denote the R.H.S. of (3) 

by ( ).tvηξ  Then ( ) ( ) ( ) [ ]1,0,,0 ∈≤φ= ηξηξηξηξ ttvtgv  and 

( ) ( ) ( ( )),, tvWtMtv
dt
d

ηξηξ=ξη  a.e. [ ].,0 Tt ∈  

By W, ( ) ( ) ( ( ))., tvWtMtv
dt
d

ηξηξ≤ξη  For [ ],,0 Tt ∈  we get 

( )
( )

( )( )( )

( )
∫ ∫ ∫

∞
ηξ <≤

tv

v

T

v sW
dsdssM

sW
ds

0 0 0
.  

Let L be a constant so that ( ) [ ]TtLtv ,0, ∈≤ηξ  and ( ) [ ].,0, TtLtg ∈≤ηξ  

Let ∗L  be another constant depending on T and the functions ,ηξM  W. Since 

( ) ( ),tgtx ηξηξ ≤  ( ) { }.,max LLtx ηξ
∗

ηξ φ=≤  Thus ( )NΓ  is bounded, 

and hence a fixed point exists for N. 
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Next we show that the above stages are true for the case when the 
moments of impulsive effect depend on the solution. Denote the solution 
obtained by ., 1ξη x  Define 

( ) ( ) .0,, 11, ≥−ξτη=γ ttxt ii  

Remark. We remark that ,2RC ≡  hence ( )txηξ  is real valued. 

By ( ),S1  ( ) 001, ≠γi  on [ ]T,0 , that is ( )( )ξτη≠ txt i 1,  on [ ],,0 T  

....,,1 ni =  Then ξη 1, x  is a solution of (1). Suppose ( ) ,01,1 =γ t  ∈t  

[ ].,0 T  Now if ( ) ,01,1 ≠γ t  due to its continuity, we find 01 >t  so that 

( ) 011,1 =γ t  and ( ) ,01,1 ≠γ t  [ ).,0 1tt ∈  Thus, by ( ),S1  we get ( ) 01, ≠γ ti  

for all [ ) ....,,1,,0 1 nitt =∈  

Stage 5. Assume the following problem: 

( ) ( ) [ ],,,, 111 ttttxx γ−∈ξη=ξτ,η  

( ) ( )( ) ( )ξη=ξη ,,, txtPtxdt
d  a.e. [ ],,1 Ttt ∈  

( ) ( )( ) .,, 1111 ξη=ξη + txJtx  (4) 

By transforming (4) into a fixed point problem as follows, define :1N  

([ ] ) ([ ] )AA
~

,,
~

,, 11 TtCTtC γ−→γ−  by 

( )( )( )
( ) [ ]

( )( ) ( )( )( ) [ ]⎪⎩

⎪
⎨
⎧

∈ηξ+ξη

γ−∈ξη
=ξη

∫ .,if,,,,

,,if,,
,

111

111

1

1
TttdsqsxsPtxJ

ttttx
txN t

t

 

Again we show that 1N  is completely continuous as in previous section and 

that the set ( ) { ([ ] ) ( ) }10,:
~

,,: 111 <ρ<ρ=γ−∈= xNxTtCxN Aϒ  is bounded. 

Now define ([ ] ).~
,,: 1 ATtCB γ−=  By Schaefer’s theorem, the desired 

result to problem (4) is obtained. 

Again, let 2,ηξx  be a solution. Define ( ) ( ( )) ,2,2, ttxt ii −τ=γ ηξ  for 
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.1tt ≥  If ( ) ,02, ≠γ ti  on ( ]Tt ,1  and for all ,...,,1 ni =  then 

( )
( ) [ ]
( ) ( ]⎩

⎨
⎧

∈

∈
=

ηξ

ηξ
ηξ Ttttx

tttx
tx

,if,
,,0if,

12,

11,  

is a solution of equation (1). Now, when ( ) ,02,2 =γ t  for some ( ],,1 Ttt ∈  we 

obtain by ( ),S5  

( ) ( ( )) ( ( )) 112,212,212,2 ttxtxt −τ=τ=γ +
ηξ

+
ηξ

+  

( ( ( ))) ( ( )) ( ) .011,1111,1111,12 ==−τ>−τ= ηξηξ trttxttxJ  

Since 2,2γ  is continuous, we have ,12 tt >  such that ( ) 022,2 =γ t  and ( )t2,2γ  

,0≠  for all ( )., 21 ttt ∈  Now by ( ),S4  ( ) ,02, ≠γ ti  for all ( )., 21 ttt ∈  Let 

( ]21, tts ∈  be such that ( ) .02,1 =γ t  By ( ),S5  we get 

( ) ( ( )) ( ( ( ))) 111,11112,112,1 ttxJttxt −τ=−τ=γ ηξ
+

ηξ
+  

( ( )) ( ) .01 11,1111, =γ=−−τ≤ ηξ tttx  

Thus 2,1γ  attains a non-negative maximum at some point ( ].,11 Tts ∈  Since 

( ) ( )( ) ( ),,,, 22 ξη=ξη txtPtx
dt
d  we have 

( ) ( ( )) ( ) .01, 121
2

112,1 =−ξη=τ=γ sxdt
dsxdt

dsdt
d  

Therefore, we have the following, which contradicts ( ):S4  

( ( )) ( )( ) ( ) .1,,1, 1212,1
1

=ξη−τ ηξ sxsPsx
ds
d  

Stage 6. Continuing and letting [ ]Ttn nxx ,1 |=+  be a solution, 

( ) ( ) [ ],,,,, nnn trtttxtx −∈ξη=ξη  

( ) ( )( ) ( ),,,, ξη=ξη txtPtxdt
d  a.e. ( ],, Ttt n∈  

( ) ( ) ( )( ) ( ).,, 1 ξη=ξη −
+

nnnn txJtx  (5) 
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The solution ( )ξη tx,  of (1) is then defined by 

( )

( ) [ ]
( ) ( ]

( ) ( ]⎪
⎪
⎩

⎪⎪
⎨

⎧

∈ξη

∈ξη
γ−∈ξη

=ξη

+ .,if,,

,,if,,
,,if,,

,

1

212

11

Ttttx

ttttx
tttx

tx

nn
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