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Abstract: The Gompertz inverse exponential (GoIE) distribution using the Gompertz
generalized family of distributionswas derived and introduced in this article. Some basic
statistical properties of the model were derived and discussed in minute details. The
model parameters were estimated using the maximum likelihood estimation method.
Real-life applications were provided and the GoIE distribution provides better fits than
the Gompertz exponential, Gompertz Weibull and Gompertz Lomax distributions.
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1. Introduction
The inverse exponential distribution is a special case of the inverse Weibull distribution; it has been
introduced as far back as 1982 by Keller & Kamath (1982) and is capable of modelling datasets
with inverted bathtub failure rate. It is a modification of the well-known exponential distribution
and has an advantage of not having a constant failure rate. Because of this quality, it can be
applied to describe real-life events in engineering, medicine and biology (especially, events with
inverted bathtub failure rates). More details about the usefulness of the inverse exponential
distribution have been discussed by Bakoban & Abu-Zinadah (2017), Lin, Duran, & Lewis (1989),
Oguntunde & Adejumo (2015), Oguntunde, Babatunde, & Ogunmola (2014) and many others.

Recent studies in this line of research involve extending exiting probability distributions with the
aim of increasing their modelling capability. Some attempts in the literature to increase the
modelling capacity of the inverse exponential distribution include the works of Oguntunde,
Adejumo, & Owoloko (2017a, 2017b, 2017c, 2017d) and Singh & Goel (2015); these works used
different families of distributions to extend the inverse exponential distribution; a list of these
families of distributions which include the beta generalized family of distribution (the first family of
distribution developed from the logit of a random variable) and many others can be found in
Alizadeh, Cordeiro, Bastos Pinho, & Ghosh (2017); Cordeiro, Alizadeh, Nascimeto, & Rasekhi (2016);
Oguntunde, Adejumo, Okagbue, & Rastogi (2016); Oguntunde, Khaleel, Ahmed, Adejumo, &
Odetunmibi (2017) and Owoloko, Oguntunde, & Adejumo (2015).

The interest of the article is, however, on the Gompertz family of distributions because it is
relatively new and flexible. Unlike the beta generalized family of distribution, it does not include
complex functions and thus is simpler to work with. It has been used in earlier works by Alizadeh
et al. (2017) and Abdal-Hameed, Khaleel, Abdullah, Oguntunde, & Adejumo (2018), and its den-
sities are as follows:

F xð Þ ¼ 1� e
α
β 1� 1�G xð Þ½ ��βf g; α > 0; β > 0 (1)

and

f xð Þ ¼ αg xð Þ 1� G xð Þ½ ��β�1 e
α
β 1� 1�G xð Þ½ ��βf g; α > 0; β > 0 (2)

where α and β are extra shape parameters and it was developed using the following
transformation:

F xð Þ ¼ �
� log 1�G xð Þ½ �

0
w tð Þ (3)

w tð Þ is the probability density function (pdf) of the Gompertz distribution and t is a random variable.

G xð Þ and g xð Þ are the cumulative distribution function (cdf) and pdf of the baseline distribution,
respectively. In our case, the baseline distribution is the inverse exponential distribution defined as:

G xð Þ ¼ e�
θ
x (4)

and

g xð Þ ¼ θ

x2
e�

θ
x (5)

where θ is regarded as the scale parameter.

2. The Gompertz inverse exponential distribution
The cdf of the Gompertz inverse exponential (GoIE) distribution is derived by substituting Equation
(4) into Equation (1) to have:
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F xð Þ ¼ 1� e
α
β 1� 1�e�

θ
x

� ��β
n o

;α > 0; β > 0; θ > 0 (6)

Also, the corresponding pdf is derived by substituting Equations (4) and (5) into Equation (2) to have:

f xð Þ ¼ α
θ

x2
e�

θ
x 1� e�

θ
x

h i�β�1
e

α
β 1� 1�e�

θ
x

� ��β
n o

;α > 0; β > 0; θ > 0 (7)

where α and β are shape parameters and θ is the scale parameter

The pdf and cdf of the GoIE are represented in Figures 1 and 2, respectively, using different
parameter values.

2.1. Some basic statistical properties of the Gompertz inverse exponential distribution
Some of the basic statistical properties of the GoIE are obtained as follows:

First, the reliability function is obtained by using the relation:

S xð Þ ¼ 1� F xð Þ

So, the reliability function of the GoIE distribution is:

S xð Þ ¼ e
α
β 1� 1�e�

θ
x

� ��β
n o

;α > 0; β > 0; θ > 0 (8)

This is represented graphically in Figure 3.

The failure rate of the GoIE distribution is obtained by dividing the pdf in Equation (7) by the
reliability function in Equation (8) to have:

h xð Þ ¼
α θ

x2 e
�θ

x 1� e�
θ
x

h i�β�1
e

α
β 1� 1�e�

θ
x

� ��β
n o

e
α
β 1� 1�e�

θ
x

� ��β
n o

h xð Þ ¼ α
θ

x2
e�

θ
x 1� e�

θ
x

h i�β�1
;α > 0; β > 0; θ > 0 (9)

This is represented graphically in Figure 4.

Figure 1. PDF of the GoIE
distribution.
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The reversed hazard function of the GoIE distribution is obtained by dividing the pdf in Equation
(7) by the cdf in Equation (6) to have:

r xð Þ ¼
α θ

x2 e
�θ

x 1� e�
θ
x

h i�β�1
e

α
β 1� 1�e�

θ
x

� ��β
n o

1� e
α
β 1� 1�e�

θ
x

� ��β
n o ;α > 0; β > 0; θ > 0 (10)

Also, the odds function is obtained by dividing the cdf in Equation (6) by the reliability function in
Equation (8) to have:

O xð Þ ¼ 1� e
α
β 1� 1�e�

θ
x

� ��β
n o

e
α
β 1� 1�e�

θ
x

� ��β
n o ; α > 0; β > 0; θ > 0 (11)

2.2. Quantile function and median
The quantile function Q uð Þ is obtained from the relation:

Q uð Þ ¼ F�1 uð Þ

Figure 3. Reliability function of
GoIE distribution.

Figure 2. CDF of the GoIE
distribution.
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So, the quantile function of the GoIE distribution is derived as:

Q uð Þ ¼ �θ ln 1� 1� β ln 1� uð Þ
α

� ��1=β8<
:

9=
;

�1

(12)

where u� Uniform 0;1ð Þ. In other words, random samples from the GoIE distribution can be
generated using:

x ¼ �θ ln 1� 1� β ln 1� uð Þ
α

� ��1=β8<
:

9=
;

�1

The median of the GoIE distribution can conveniently be derived by making the substitution of u ¼
0:5 in Equation (12) to have:

Median ¼ �θ ln 1� 1� β ln 0:5ð Þ
α

� ��1=β8<
:

9=
;

�1

(13)

The corresponding first quartile and third quartile can also be obtained by making the substitution
of u ¼ 0:25 and u ¼ 0:75, respectively, into Equation (12).

2.3. Order statistics
The pdf of the jth order statistic for a random sample of size n from a distribution function F xð Þ and
an associated pdf f xð Þ is given by:

fj:n xð Þ ¼ n!
j� 1ð Þ! n� jð Þ! f xð Þ F xð Þ½ � j�1 1� F xð Þ½ �n�j (14)

where f xð Þ and F xð Þ are the pdf and cdf of the GoIE, respectively. The pdf of the jth order statistics
for a random sample of size n from the GoIE distribution is, however, given as follows:

fj:n xð Þ ¼ n!
j� 1ð Þ! n� jð Þ! α

θ

x2
e�

θ
x 1� e�

θ
x

h i�β�1
e

α
β 1� 1�e�

θ
x

� ��β
n o( )

1� e
α
β 1� 1�e�

θ
x

� ��β
n o" #j�1

e
α
β 1� 1�e�

θ
x

� ��β
n o" #n�j

(15)

Figure 4. Failure rate of the
GoIE distribution.
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So, the pdf of minimum order statistics is obtained by substituting j ¼ 1 in Equation (15) to have:

f1:n xð Þ ¼ n α
θ

x2
e�

θ
x 1� e�

θ
x

h i�β�1
e

α
β 1� 1�e�

θ
x

� ��β
n o( )

e
α
β 1� 1�e�

θ
x

� ��β
n o" #n�1

(16)

While the corresponding pdf of maximum order statistics is obtained by making the substitution of
j ¼ n in Equation (15) as:

fn:n xð Þ ¼ n α
θ

x2
e�

θ
x 1� e�

θ
x

h i�β�1
e

α
β 1� 1�e�

θ
x

� ��β
n o( )

1� e
α
β 1� 1�e�

θ
x

� ��β
n o" #n�1

(17)

2.4. Estimation
The method of maximum likelihood estimation is used to estimate the parameters of the GoIE
distribution. For a random sample x1; x2; :::; xn distributed according to the cdf of the GoIE distribu-
tion, the log-likelihood function is obtained as:

f x1; x2; :::; xn; α; β; θð Þ ¼
Yn
i¼1

α
θ

x2i
e�

θ
xi 1� e�

θ
xi

h i�β�1
e

α
β 1� 1�e

� θ
xi

h i�β
� �2

64
3
75 (18)

The log-likelihood function L is obtained as:

L ¼ n ln αð Þ þ n ln θð Þ � 2 ∑
n

i¼1
ln xið Þ � ∑

n

i¼1

θ

xi

� 	
� βþ 1ð Þ ∑

n

i¼1
ln 1� e�

θ
xi

h i

þ α

β
∑
n

i¼1
1� 1� e�

θ
xi

h i�β
� �

(19)

Differentiate L with respect to parameters α; β and θ and equate the results to zero, and solving the
resulting simultaneous equations gives the parameter estimates. The solution may not be
obtained in closed form; so, software can be used to obtain the estimates numerically; example
of such software include R, MAPLE and so on.

3. Model validation and application
The GoIE distribution is applied to two datasets and comparisons are made with the Gompertz
exponential, Gompertz Weibull and Gompertz Lomax distributions. R software was used for the
analysis and the criteria used for model selection are Akaike information criteria (AIC), consistent
Akaike information criteria (CAIC), Bayesian information criteria (BIC), negative log-likelihood (NLL)
and Hannan and Quinn information criteria (HQIC).

The criteria for selecting the distribution with the best fit depends on the values of the AIC, CAIC,
BIC, NLL and HQIC, and lower values of this criteria indicate a better fit.

First Illustration: A data relating to the strengths of 1.5cm glass fibres which has been
analysed previously by Oguntunde et al. (2017) and Bourguignon, Silva, & Cordeiro (2014),
Merovci, Khaleel, Ibrahim, & Shitan (2016) Smith & Naylor (1987) was used. The observa-
tions are:

0.55, 0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30, 1.25, 1.27, 1.28, 1.29, 1.48, 1.36,
1.39, 1.42, 1.48, 1.51, 1.49, 1.49, 1.50, 1.50, 1.55, 1.52, 1.53, 1.54, 1.55, 1.61, 1.58, 1.59, 1.60, 1.61,
1.63, 1.61, 1.61, 1.62, 1.62, 1.67, 1.64, 1.66, 1.66, 1.66, 1.70, 1.68, 1.68, 1.69, 1.70, 1.78, 1.73, 1.76,
1.76, 1.77, 1.89, 1.81, 1.82, 1.84, 1.84, 2.00, 2.01, 2.24

The result of the analysis is displayed in Table 1.
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The GoIE is adjudged the distribution with the best fit because it has the lowest AIC, CAIC, BIC,
NLL and HQIC values.

The histogram of the data with the competing distributions is displayed in Figure 5.

The empirical cdf of the competing distributions with respect to the dataset used is displayed in
Figure 6.

Second Illustration: A sport data which is downloadable at www.stat.auckland.ac.nz/~lee/330/
datasets.dir/sport.data was used and the observations are:

19.75, 21.30, 19.88, 23.66, 17.64, 15.58, 19.99, 22.43, 17.95, 15.07, 28.83, 18.08, 23.30, 17.71,
18.77, 19.83, 25.16, 18.04, 21.79, 22.25, 16.25, 16.38, 19.35, 19.20, 17.89, 12.20, 23.70, 24.69,
16.58, 21.47, 20.12, 17.51, 23.70, 22.39, 20.43, 11.29, 25.26, 19.39, 19.63, 23.11, 16.86, 21.32,

Table 1. Table of result

Models Estimates NLL AIC CAIC BIC HQIC Rank

GoIE (Proposed) α
^ ¼ 0:2030548

β
^
¼ 11:5541435

θ
^
¼ 2:0003185

14.04093 34.08187 34.48865 40.51127 36.61059 1

GoExp (New) α
^ ¼ �0:004768848

β
^
¼ �1:810999364

θ
^
¼ �1:987714978

14.81765 35.6353 36.04208 42.06471 38.16402 2

GoWei (New) α
^ ¼ 0:228488761

β
^
¼ 0:009628097

θ
^
¼ 0:794918813

λ
^
¼ 5:612111282

15.18847 38.37694 39.06659 46.94948 41.74856 4

GoLom (Developed
by Oguntunde
et al. [2017])

α
^ ¼ 0:004592168

β
^
¼ 8:179090955

θ
^
¼ 0:506999370

λ
^
¼ 1:515829085

14.50274 37.00548 37.69513 45.57802 40.3771 3

Figure 5. Histogram of the first
data with the competing
distributions.
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26.57, 17.93, 24.97, 22.62, 15.01, 18.14, 26.78, 17.22, 26.50, 23.01, 30.10, 13.93, 26.65, 35.52,
15.59, 19.61, 14.52, 11.47, 17.71, 18.48, 11.22, 13.61, 12.78, 11.85, 13.35, 11.77, 11.07, 21.30,
20.10, 24.88, 19.26, 19.51, 23.01, 8.07, 11.05, 12.39, 15.95, 9.91, 16.20, 9.02, 14.26, 10.48, 11.64,
12.16, 10.53, 10.15, 10.74, 20.86, 19.64, 17.07, 15.31, 11.07, 12.92, 8.45, 10.16, 12.55, 9.10, 13.46,
8.47, 7.68, 6.16, 8.56, 6.86, 9.40, 9.17, 8.54, 9.20, 11.72, 8.44, 7.19, 6.46, 9.00, 12.61, 9.03, 6.96,
10.05, 9.56, 9.36, 10.81, 8.61, 9.53, 7.42, 9.79, 8.97, 7.49, 11.95, 7.35, 7.16, 8.77, 9.56, 14.53, 8.51,
10.64, 7.06, 8.87, 7.88, 9.20, 7.19, 6.06, 5.63, 6.59, 9.50, 13.97, 11.66, 6.43, 6.99, 6.00, 6.56, 6.03,
6.33, 6.82, 6.20, 5.93, 5.80, 6.56, 6.76, 7.22, 8.51, 7.72, 19.94, 13.91, 6.10, 7.52, 9.56, 6.06, 7.35,
6.00, 6.92, 6.33, 5.90, 8.84, 8.94, 6.53, 9.40, 8.18, 17.41, 18.08, 9.86, 7.29, 18.72, 10.12, 19.17,
17.24, 9.89, 13.06, 8.84, 8.87, 14.69, 8.64, 14.98, 7.82, 8.97, 11.63, 13.49, 10.25, 11.79, 10.05, 8.51,
11.50, 6.26

The result of the analysis is displayed in Table 2.

Figure 6. The empirical cdf of
the first data together with the
competing distributions.

Table 2. Table of result

Models Estimates NLL AIC CAIC BIC HQIC Rank
GoIE (Proposed) α

^ ¼ 4:636970

β
^
¼ 1:583631

θ
^
¼ 25:794220

629.335 1264.67 1234.791 1274.595 1268.686 1

GoExp (New) α
^ ¼ 5:330925317

β
^
¼ 20:978768343

θ
^
¼ 0:004836174

663.8036 1333.607 1333.728 1343.532 1337.623 4

GoWei (New) α
^ ¼ 11:22264866

β
^
¼ �1:29977338

θ
^
¼ 0:02630932

λ
^
¼ 2:54531004

641.4217 1290.843 1291.046 1304.076 1296.197 2

GoLom (Developed
by Oguntunde
et al. [2017])

α
^ ¼ 0:006519876

β
^
¼ 3:370057658

θ
^
¼ 0:714843759

λ
^
¼ 0:747124582

645.6623 1299.325 1299.528 1312.558 1304.679 3
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The GoIE is also adjudged the distribution with the best fit because it has the lowest AIC, CAIC,
BIC, NLL and HQIC values.

The histogram of the second data with the competing distributions is displayed in Figure 7.

The empirical cdf of the competing distributions with respect to the second dataset is displayed
in Figure 8.

4. Discussion
The results from Tables 1 and 2 show that the GoIE has the lowest values for all the criteria used.
So, the GoIE distribution is considered the best model to fit the datasets among the other

Figure 7. Histogram of the sec-
ond data with the competing
distributions.

Figure 8. The empirical cdf of
the second data together with
the competing distributions.
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distributions used. This is also evident in the plots provided in Figure 5–8. In Figures 5 and 7, the
red curve which represents GoIE distribution has the highest peak compared to others. Also in
Figures 6 and 8, the red line is closer to the empirical cdf of the datasets than others.

5. Conclusion
The GoIE distribution has been successfully introduced in this paper and some of its basic
statistical properties have been obtained. The pdf of the model and its failure rate have unimodal
shapes; this means that the model would be useful to fit real-life events with unimodal failure
rates. The model is tractable and flexible and shows high modelling capability as it performs better
than the Gompertz exponential, Gompertz Weibull and Gompertz Lomax distributions; this was
judged based on the AIC, CAIC, BIC, NLL and HQIC values of these distributions. The GoIE
distribution is of no doubt a competitive model, and it is hoped that it would be of use in fields
like engineering, biology and medicine. Some other statistical properties of the distribution (which
were not considered in this paper) can be explored and simulation study can also be conducted.

Acknowledgements
The authors appreciate Covenant University for providing
an enabling environment for this research. The efforts of
the reviewers are greatly appreciated.

Funding
The authors received no direct funding for this research.

Author details
Pelumi E. Oguntunde1

E-mail: pelumi.oguntunde@covenantuniversity.edu.ng
Mundher A. Khaleel2

E-mail: mun880088@gmail.com
Adebowale O. Adejumo3

E-mail: aodejumo@unilorin.edu.ng
Hilary I. Okagbue1

E-mail: hilary.okagbue@covenantuniversity.edu.ng
Abiodun A. Opanuga1

E-mail: aodejumo@unilorin.edu.ng
Folashade O. Owolabi4

E-mail: folashade.owolabi@covenantuniversity.edu.ng
1 Department of Mathematics, Covenant University, Ota,
Nigeria.

2 Department of Mathematics, University of Tikrit, Tikrit,
Iraq.

3 Department of Statistics, University of Ilorin, Ilorin,
Nigeria.

4 Department of Accounting, Covenant University, Ota,
Nigeria.

Citation information
Cite this article as: The Gompertz Inverse Exponential
(GoIE) distribution with applications, Pelumi E. Oguntunde,
Mundher A. Khaleel, Adebowale O. Adejumo, Hilary I.
Okagbue, Abiodun A. Opanuga & Folashade O. Owolabi,
Cogent Mathematics & Statistics (2018), 5: 1507122.

References
Abdal-Hameed, M., Khaleel, M. A., Abdullah, Z. M.,

Oguntunde, P. E., & Adejumo, A. O. (2018). Parameter
estimation and reliability, hazard functions of
Gompertz Burr Type XII distribution. Tikrit Journal for
Administration and Economics Sciences, 1(41 part 2),
381–400.

Alizadeh, M., Cordeiro, G. M., Bastos Pinho, L. G., & Ghosh,
I. (2017). The Gompertz-g family of distributions.
Journal of Statistical Theory and Practice, 11(1), 179–
207. doi:10.1080/15598608.2016.1267668

Bakoban, R. A., & Abu-Zinadah, H. H. (2017). The beta
generalized inverted exponential distribution with

real data applications. REVSTAT-Statistical Journal,
15(1), 65–88.

Bourguignon, M., Silva, R. B., & Cordeiro, G. M. (2014). The
Weibull-G family of probability distributions. Journal
of Data Science, 12, 53–68.

Cordeiro, G. M., Alizadeh, M., Nascimeto, A. D. C., &
Rasekhi, M. (2016). The exponentiated Gompertz
generated family of distributions: Properties and
applications. Chilean Journal of Statistics, 7(2), 29–50.

Keller, A. Z., & Kamath, A. R. (1982). Reliability analysis of
CNC machine tools. Reliability Engineering, 3, 449–
473. doi:10.1016/0143-8174(82)90036-1

Lin, C. T., Duran, B. S., & Lewis, T. O. (1989). Inverted
gamma as life distribution. Microelectron Reliability,
29(4), 619–626. doi:10.1016/0026-2714(89)90352-1

Merovci, F., Khaleel, M. A., Ibrahim, N. A., & Shitan, M.
(2016). The beta type X distribution: Properties with
applications. SpringerPlus, 5, 697. doi:10.1186/
s40064-016-2271-9

Oguntunde, P. E., & Adejumo, A. O. (2015). The trans-
muted inverse exponential distribution. International
Journal of Advanced Statistics and Probability, 3(1), 1–
7. doi:10.14419/ijasp.v3i1.3684

Oguntunde, P. E., Adejumo, A. O., Okagbue, H. I., &
Rastogi, M. K. (2016). Statistical properties and
applications of a new Lindley exponential distribu-
tion. Gazi University Journal of Science, 29(4), 831–
838.

Oguntunde, P. E., Adejumo, A. O., & Owoloko, E. A.
(2017a). Application of Kumaraswamy inverse expo-
nential distribution to real lifetime data. International
Journal of Applied Mathematics and Statistics, 56(5),
34–47.

Oguntunde, P. E., Adejumo, A. O., & Owoloko, E. A. (2017b,
July 5–7). On the flexibility of the transmuted inverse
exponential distribution. Lecture Notes on engineer-
ing and computer science: Proceeding of the World
Congress on Engineering (pp. 123–126). London, UK.

Oguntunde, P. E., Adejumo, A. O., & Owoloko, E. A.
(2017c, July 5–7). On the exponentiated general-
ized inverse exponential distribution. Lecture Notes
on engineering and computer science: Proceeding of
the World Congress on Engineering (pp. 80–83).
London, UK.

Oguntunde, P. E., Adejumo, A. O., & Owoloko, E. A. (2017d,
July 5–7). The Weibull-inverted exponential distribu-
tion: A generalization of the inverse exponential dis-
tribution. Lecture Notes on engineering and computer
science: Proceeding of the World Congress on
Engineering (pp. 16–19). London, UK.

Oguntunde et al., Cogent Mathematics & Statistics (2018), 5: 1507122
https://doi.org/10.1080/25742558.2018.1507122

Page 10 of 11

https://doi.org/10.1080/15598608.2016.1267668
https://doi.org/10.1016/0143-8174(82)90036-1
https://doi.org/10.1016/0026-2714(89)90352-1
https://doi.org/10.1186/s40064-016-2271-9
https://doi.org/10.1186/s40064-016-2271-9
https://doi.org/10.14419/ijasp.v3i1.3684


Oguntunde, P. E., Babatunde, O. S., & Ogunmola, A. O.
(2014). Theoretical analysis of the Kumaraswamy-
inverse exponential distribution. International
Journal of Statistics and Applications, 4(2),
113–116.

Oguntunde, P. E., Khaleel, M. A., Ahmed, M. T., Adejumo,
A. O., & Odetunmibi, O. A. 2017. A new generalization
of the Lomax distribution with increasing, decreasing
and constant failure rate. Article ID 6043169
Modelling and Simulation in Engineering, 2017, 6.
doi:10.1155/2017/6043169

Owoloko, E. A., Oguntunde, P. E., & Adejumo, A. O. (2015).
Performance rating of the transmuted exponential dis-
tribution. An Analytical Approach, SpringerPlus, 4, 818.

Singh, B., & Goel, R. (2015). The beta inverted exponential
distribution: Properties and applications.
International Journal of Applied Sciences and
Mathematics, 2(5), 132–141.

Smith, R. I., & Naylor, J. C. (1987). A comparison of max-
imum likelihood and Bayesian estimators for the
three-parameter Weibull distribution. Applied
Statistics, 36, 258–369. doi:10.2307/2347795

©2018 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

You are free to:
Share — copy and redistribute the material in any medium or format.
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions

Youmay not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Cogent Mathematics & Statistics (ISSN: 2574-2558) is published by Cogent OA, part of Taylor & Francis Group.

Publishing with Cogent OA ensures:

• Immediate, universal access to your article on publication

• High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online

• Download and citation statistics for your article

• Rapid online publication

• Input from, and dialog with, expert editors and editorial boards

• Retention of full copyright of your article

• Guaranteed legacy preservation of your article

• Discounts and waivers for authors in developing regions

Submit your manuscript to a Cogent OA journal at www.CogentOA.com

Oguntunde et al., Cogent Mathematics & Statistics (2018), 5: 1507122
https://doi.org/10.1080/25742558.2018.1507122

Page 11 of 11

https://doi.org/10.1155/2017/6043169
https://doi.org/10.2307/2347795



