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Some fixed point theorems in ordered partial
metric spaces with applications
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Abstract: We defined the class of generalized weakly C-contractive mappings in
partial metric spaces and proved some fixed-point results for such maps in ordered
partial metric spaces without exploiting the continuity of any of the functions. We
also establish fixed-point theorem for the integral type of these maps. Example is
given to support the validity of our result. Our result generalizes the results of Chen
and Zhu [3] and others in the literature
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1. Introduction
Metric fixed-point theory has been a rigorous area of research in fixed-point theory and applica-
tions. A number of studies have been carried out concerning the generalization of metric spaces
(see Eke 2016, Imaga, & Odetunmibi, 2017; Eke & Olaleru, 2013; Mustafa & Sims, 2006). Matthews
(1992) introduced partial metric space to study the denotational semantics of dataflow networks.
In the same reference, he proved the partial metric version of the Banach contraction principle.
Alber and Guerre-Delabriere (1997), defined weakly contractive mappings on a Hilbert space and
established a fixed-point theorem for such mappings. Subsequently, Rhoades (2001) use the
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concept of weakly contractive mappings and obtained a fixed-point theorem in complete metric
space. Choudhury (2009) introduced a class of weakly C-contractive mappings as follows:

A mapping T : X ! X; where X; dð Þ is a complete metric space is said to be weakly

C� contractive or weak C� contraction if for all x; y 2 X;

d Tx; Tyð Þ � 1
2

d x; Tyð Þ þ d y; Txð Þ½ � � ψ d x; Tyð Þ; d y; Txð Þð Þ: 1ð Þ
where ψ : 0; 1½ Þ2 ! 0;1½ Þ is a continuous mapping such that ψ x; yð Þ ¼ 0 if and only if

x ¼ y ¼ 0:

Many authors had generalized the weak contractive mappings and proved fixed-point theorems
for such mappings in various abstract spaces (see Aage & Salunke, 2012; Chi, Karapinar, &
Thanh, 2013; Gairola & Krishan, 2015; Mishra, Tiwari, Mishra, & Mishra, 2015). Eke (2016)
introduced a class of generalized weakly C-contractive maps by replacing C-contraction maps
with Hardy–Rogers version of contractive maps. In the same reference, the fixed point of these
maps in G-partial metric spaces is proved. For a decade, the existence of fixed points in ordered
metric spaces was initiated by Ran and Reurings (2003). Olatinwo (2010) proved some fixed-
point theorems using weak contraction of the integral type. Long, Son, and Hoa (2017) reestab-
lished the uniqueness of two fuzzy weak solutions of fuzzy fractional partial differential equa-
tions via the unique fixed point of weakly contractive mappings in partially ordered metric
spaces. Long and Dong (2018) established the integral solution of nonlocal problems of fuzzy
implicit fractional differential system by employing Krasnoselskii’s fixed-point theorem of gen-
eralized contractive mappings in generalized semilinear Banch space. Long, Son, and Rodriguez-
Lopez (2018) prove that the fixed point of weakly contractive mappings in partially ordered
metric spaces is unique. The authors further apply the result to obtain unique two types of fuzzy
solution for fuzzy partial differential equations with local boundary conditions. In this work, we
proved some fixed-point theorems for the generalized weakly C-contraction mappings in
ordered partial metric spaces. Moreso, the application of these maps are established in the
integral type.

2. Preliminaries
The following definitions and results are found in (Matthews, 1992).

Definition 2.1: Let X be a nonempty set, and let p : X � X ! Rþbe a function satisfying the
following:

p1ð Þp x; yð Þ ¼ p y; xð Þ
p2ð Þp x; xð Þ ¼ p x; yð Þ ¼ p y; yð Þ iff x ¼ y;
p3ð Þp x; xð Þ � p x; yð Þ;
p4ð Þp x; yð Þ � p x; zð Þ þ p z; yð Þ � p z; zð Þ
for all x; y; z 2 X and the pair X; pð Þ is called a partial metric space:

Let (X,p) be a partial metric space, then a function dp : X � X ! 0; 1½ Þ defined as

dp x; yð Þ ¼ 2p x; yð Þ � p y; yð Þ � p x; xð Þ

is a metric on X.

Remark 2.2: In a partial metric space (X, p),

1ð Þ p x; yð Þ ¼ 0 ) x ¼ y but if x ¼ y then p x; yð Þ may not be zero:
2ð Þ p x; yð Þ >0 for all x�y; for all x; y 2 X:

Example 2.3: Let X ¼ Rþand define p x; yð Þ ¼ max x; yf g; for all x; y 2 X:Then (X, p) is a complete
partial metric space. Obviously, p is not a (usual) metric.
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Definition 2.4: In a partial metric space (X, p),

(i) a sequence xnf g is said to converge to a point x 2 X if and only if limn!1p xn; xð Þ ¼ p x; xð Þ.

(ii) a sequence xnf g is called Cauchy sequence if and only if limn;m!1p xn; xmð Þ is finite.

(iii) if every Cauchy sequence xnf g converges to a point x 2 X such
that limn;m!1p xn; xmð Þ ¼ p x; xð Þ

then (X, p) is known as complete partial metric space.

Lemma 2.5 (Chi et al., 2013): In a partial metric space (X, p), if a sequence xnf g converges to a
point x 2 X, then limn!1 p xn; xð Þ � p x; zð Þ for all z 2 X: Also if p x; xð Þ ¼ 0; then

limn!1 p xn; zð Þ � p x; zð Þ for all z 2 X:

Lemma 2.6 (Long et al., 2018): In a partial metric space (X, p),

(i) a sequence xnf g is Cauchy if and only if, it is a Cauchy in X; dpð Þ .

(ii) X is complete if and only if it is complete in X; dpð Þ.

In addition, limn!1dp xn; xð Þ ¼ 0 if and only if

limn;m!1p xn; xmð Þ ¼ limn!1p xn; xð Þ ¼ p x; xð Þ:

If xnf g is a Cauchy sequence in the metric space X; dpð Þ, we have

limn;m!1dp xn; xmð Þ ¼ 0

and therefore by definition of dp, we have

limn;m!1p xn; xmð Þ ¼ 0

Definition 2.7 (Ran & Reurings, 2003): Let X;�ð Þbe a partially ordered set. Then two elements x; y 2 X
are said to be totally ordered or ordered if they are comparable. That is, x � y or y � x.

Definition 2.8: Let X be a nonempty set. The triplet X;�;pð Þ is called an ordered partial metric
space if the following conditions hold:

(i) p is a partial metric on X;

(ii) � is a partial order on X.

Definition 2.9 (Shatanawi, 2011): A self-mapping ψ on a positive real numbers is said to be an
altering distance function, if holds for all t 2 ½0;1Þ such that:

(i) ψ is continuous and non-decreasing,

(ii) ψ tð Þ ¼ 0 if and only if t ¼ 0.

Rhoades (2001) named the map introduced by Chatterjea after him as C-contraction map. The
definition is as follows:

Definition 2.10 (Chatterjea, 1972) (C-contraction): Let T : X ! Xwhere (X, d) is a metric space is

called a C-contraction if there exists 0 < k < 1
2 such that for all x; y 2 X the following inequality holds:
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d Tx; Tyð Þ � k d x; Tyð Þ þ d y; Txð Þ½ �: (2)

A more generalized C-contractive mapping is introduced by (Hardy and Rogers 1973) and defined
as follow

Let (X, d) be a complete metric space and an operator T : X ! X be a contractive mapping then
there exist some numbers a, b, c, e and f, a + b + c + e + f < 1 such that for each x; y 2 X,

d Tx; Tyð Þ � ad x; yð Þ þ bd x; Txð Þ þ c d y; Tyð Þ þ ed x; Tyð Þ þ fd y; Txð Þ (3)

3. Main results
In this work, we introduced a class of generalized weak C-contractive mapping in partial metric
spaces by replacing the C-contractive map by Hardy and Rogers contractive map.

Definition 3.1: Let (X, p) be a partial metric space and T : X ! X be a mapping. Then T is said to
be generalized weakly C-contractive if for allx; y 2 X, the following inequality holds:

p Tx; Tyð Þ � a1p x; yð Þ þ a2p x; Txð Þ þ a3 p y; Tyð Þ þ a4 p x; Tyð Þ þ a5 p y; Txð Þ
� ϕ p x; yð Þ;p x; Txð Þ; p y; Tyð Þ; p x; Tyð Þ;p y; Txð Þð Þ (4)

where a1; a2;a3; a4;a5 2 0; 1½ Þ; ∑
5

i¼1
ai< 1, and ϕ : 0;1½ Þ5 ! 0; 1½ Þ is a continuous function with

ϕ v; w; x; y; zð Þ ¼ 0 if and only if v = w = x = y = z = 0.

Remark 3.2: If v = w = x = 0, a1 ¼ a2 ¼ a3 ¼ 0;a4 ¼ a5 ¼ 1
2 and partial metric space is replace

with metric space then (4) reduces to (1).

Example 3.3: Let X ¼ 0;1½ Þ be equipped with a partial metric which is defined by

p x; yð Þ ¼ max x; yf g. Define a mapping T : X ! X by Tx ¼ x
10 . Define ϕ : 0;1½ Þ5 ! 0; 1½ Þ by ϕ tð Þ ¼

x
80 and let a1 ¼ 1

4 ; a2 ¼ a3 ¼ a4 ¼ a5 ¼ 1
8 . Then weakly C-contractive mapping is extended by Hardy

and Rogers contractive mappings.

Theorem 3.4: Let X;�ð Þ be a partially ordered set and suppose that there exists a partial metric
on X such that (X, p) is complete. Let T : X ! X be a nondecreasing mapping such that for
comparable x; y 2 X,

ψðp Tx; Tyð Þ � φ a1 p x; yð Þ þ a2p x; Txð Þ þ a3 p y; Tyð Þ þ a4 p x; Tyð Þ þ a5 p y; Txð Þð Þ
� ϕ p x; yð Þ; p x; Txð Þ; p y; Tyð Þ; p x; Tyð Þ; p y; Txð Þð Þ (5)

where a1; a2;a3; a4;a5 2 0; 1½ Þ; ∑
5

i¼1
ai < 1, and ψ;φ are altering distance functions with

ψ tð Þ � φ tð Þ � 0 (6)

for t � 0, and ϕ : 0;1½ Þ5 ! 0; 1½ Þ is a continuous function with ϕ v; w; x; y; zð Þ ¼ 0 if and only
if v = w = x = y = z = 0. If there exists x0 2 Xsuch that x0 � Tx0, then T has a fixed point.

Proof: Observe that if T satisfies (5) then it satisfies

ψðp Tx; Tyð Þ � φ a p x; yð Þ þ bp x; Txð Þ þ bp y; Tyð Þ þ cp x; Tyð Þ þ cp y; Txð Þð Þ
� ϕ p x; yð Þ; p x; Txð Þ; p y; Tyð Þ; p x; Tyð Þ; p y; Txð Þð Þ (7)

where a ¼ a1; 2b ¼ a2 þ a3;2c ¼ a4 þ a5 ; aþ 2bþ 2c < 1. We use (7) for our argument.

Let x0 2 X be arbitrary chosen. Suppose x0 ¼ Tx0 then x0 is the fixed point of T. Let x0 � Tx0, x1 2 X
can be chosen such that x1 ¼ Tx0. Since T is nondecreasing function, then

x0 � x1 ¼ Tx0 � x2 ¼ Tx1 � x3 ¼ Tx2:
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Continuing the process, a sequence xnf g can be constructed such that xnþ1 ¼ Txn
with x0 � x1 � x2 � x3 � ::: � xn � xnþ1::: :

If p xn; xnþ1ð Þ ¼ 0 for some n 2 N then T has a fixed point. Letting p xn; xnþ1ð Þ > 0 for all n 2 N ,
we claim that

p xn; xnþ1ð Þ � p xn�1; xnð Þ; n 2 N (8)

Suppose xn �xnþ1; p xn; xnþ1ð Þ > p xn�1; xnð Þ for some n0 then

p xn0 ; xn0þ1 ;
� �

> p xn0�1 ; xn0 ;
� �

(9)

From (7) and (9) the proof of the claim is established as follows:

ψ p xn0 ; xn0þ1

� �� � ¼ ψ p Txn0�1 ; Txn0

� �� �
� φ a p xn0�1 ; xn0

� � þ b p xn0�1 ; Txn0�1

� � þ b p xn0 ; Txn0

� �þ c p xn0�1 ; Txn0

� �þc p xn0 ; Txn0�1s;
� �� �

� ϕ p xn0�1 ; xn0

� �
; p xn0�1 ; Txn0�1

� �
; p xn0 ; Txn0

� �
; p xn0�1 ; Txn0

� �
; p xn0 ; Txn0�1

� �� �
¼ φ a p xn0�1 ; xn0

� � þ b p xn0�1 ; xn0

� � þ b p xn0 ; xn0þ1

� �þ c p xn0�1 ; xn0þ1

� �þ c p xn0 ; xn0

� �� �
� ϕ p xn0�1 ; xn0

� �
; p xn0�1 ; xn0

� �
; p xn0 ; xn0þ1

� �
;p xn0�1 ; xn0þ1

� �
; p xn0 ; xn0

� �� �

� φ
a p xn0�1 ; xn0

� � þ b p xn0�1 ; xn0

� � þ b p xn0 ; xn0þ1

� �þ c p xn0�1 ; xn0

� �þ cpðxn0 ; xn0þ1Þ
�cp xn0 ; xn0

� �þ c p xn0 ; xn0

� �
 !

� ϕ p xn0�1 ; xn0

� �
; p xn0�1 ; xn0

� �
; p xn0 ; xn0þ1

� �
; p xn0 ; xn0

� �� �
� φ a p xn0�1 ; xn0

� � þ b p xn0�1 ; xn0

� � þ b p xn0 ; xn0þ1

� �þ c p xn0�1 ; xn0

� �þ cpðxn0 ; xn0þ1Þ
� �

� ϕ p xn0�1 ; xn0

� �
; p xn0�1 ; xn0

� �
; p xn0 ; xn0þ1

� �
; p xn0 ; xn0

� �� �
� φ ðaþ 2bþ 2cÞmax p xn0�1 ; xn0

� �
; p xn0 ; xn0þ1
� �� �� �

� ϕ p xn0�1 ; xn0

� �
; p xn0�1 ; xn0

� �
; p xn0 ; xn0þ1

� �
; p xn0 ; xn0

� �� �
� φ p xn0 ; xn0þ1

� �� �� ϕ p xn0�1 ; xn0

� �
; p xn0�1 ; xn0

� �
; p xn0 ; xn0þ1

� �
; p xn0 ; xn0

� �� �
(10)

Using (6), (10) becomes

ϕ p xn0�1 ; xn0

� �
; p xn0�1 ; xn0

� �
; p xn0 ; xn0þ1

� �
; p xn0�1 ; xn0þ1

� �
; p xn0 ; xn0

� �� � ¼ 0 (11)

By property of ϕ, (11) yields

p xn9�1 ; xn0

� � ¼ 0; p xn0�1 ; xn0

� � ¼ 0; p xn0 ; xn0þ1

� � ¼ 0; p xn0�1 ; xn0þ1

� � ¼ 0; p xn0 ; xn0

� � ¼ 0 (12)

Since

ψ p xn0þ1 ; xn0þ2

� �� � ¼ ψ p Txn0 ; Txn0þ1

� �� �
� φ a p xn0 ; xn0þ1

� � þ b p xn0 ; Txn0

� � þ b p xn0þ1 ; Txn0þ1

� �þ c p xn0 ; Txn0þ1

� �þ c p xn0þ1 ; Txn0 ;
� �� �

� ϕ p xn0 ; xn0þ1

� �
; p xn0 ; Txn0

� �
; p xn0þ1 ; Txn0þ1

� �
; p xn0 ; Txn0þ1

� �
; p xn0þ1 ; Txn0

� �� �
¼ φ a p xn0 ; xn0þ1

� � þ b p xn0 ; xn0þ1

� � þ b p xn0þ1 ; xn0þ2

� �þ c p xn0 ; xn0þ2

� �þ c p xn0þ1 ; xn0þ1 ;
� �� �

� ϕ p xn0 ; xn0þ1

� �
; p xn0 ; xn0þ1

� �
; p xn0þ1 ; xn0þ2

� �
; p xn0 ; xn0þ2

� �
; p xn0þ1 ; xn0þ1

� �� �

� φ
a p xn0 ; xn0þ1

� � þ b p xn0 ; xn0þ1

� � þ b p xn0þ1 ; xn0þ2

� �þ c p xn0 ; xn0þ1

� �þ c p xn0þ1 ; xn0þ2 ;
� �

�c p xn0þ1 ; xn0þ1 ;
� �þ c p xn0þ1 ; xn0þ1 ;

� �
 !

� ϕ p xn0 ; xn0þ1

� �
; p xn0 ; xn0þ1

� �
; p xn0þ1 ; xn0þ2

� �
; p xn0þ1 ; xn0þ1

� �� �
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� φ a p xn0 ; xn0þ1

� � þ b p xn0 ; xn0þ1

� � þ b p xn0þ1 ; xn0þ2

� �þ c p xn0 ; xn0þ1

� �þ c p xn0þ1 ; xn0þ2 ;
� �� �

� ϕ p xn0 ; xn0þ1

� �
; p xn0 ; xn0þ1

� �
; p xn0þ1 ; xn0þ2

� �
; p xn0þ1 ; xn0þ1

� �� �
� φ ðaþ 2bþ 2cÞmax p xn0 ; xn0þ1

� �
; p xn0þ1 ; xn0þ2

� �� �� �
� ϕ p xn0 ; xn0þ1

� �
; p xn0 ; xn0þ1

� �
; p xn0þ1 ; xn0þ2

� �
; p xn0þ1 ; xn0þ1

� �� �
� φ max p xn0 ; xn0þ1

� �
;p xn0þ1 ; xn0þ2

� �� �� �
� ϕ p xn0 ; xn0þ1

� �
; p xn0 ; xn0þ1

� �
; p xn0þ1 ; xn0þ2

� �
; p xn0þ1 ; xn0þ1

� �� �
� φ p xn0þ1 ; xn0þ2

� �� �� ϕ p xn0 ; xn0þ1

� �
; p xn0 ; xn0þ1

� �
; p xn0þ1 ; xn0þ2

� �
; p xn0þ1 ; xn0þ1

� �� �
(13)

Using (6), (13) becomes

ϕ p xn0 ; xn0þ1

� �
; p xn0 ; xn0þ1

� �
; p xn0þ1 ; xn0þ2

� �
; p xn0 ; xn0þ2

� �
;p xn0þ1 ; xn0þ1

� �� � ¼ 0 (14)

By property of ϕ, (14) yields

p xn0 ; xn0þ1

� � ¼ 0; p xn0þ1 ; xn0þ2

� � ¼ 0; p xn0þ1 ; xn0þ1

� � ¼ 0;p xn0 ; xn0þ2

� � ¼ 0 (15)

Thus, p xn; xnþ1ð Þf gis a decreasing sequence of nonnegative real numbers. Hence, there exists k � 0
such that

limn!1p xn; xnþ1ð Þ ¼ k:

From (10) and the above facts, we have

ψ p xn; xnþ1ð Þð Þ � φð p xn; xnþ1ð Þ
� ϕ p xn�1; xnð Þ; p xn�1; xnð Þ; p xn; xnþ1ð Þ; p xn�1; xnþ1ð Þ;p xn; xnð Þð Þ

Taking the limit as n ! 1 in the above inequality yields
lim infn!1 ϕ p xn�1; xnð Þ; p xn�1; xnð Þ; p xn; xnþ1ð Þ; p xn�1; xnþ1ð Þ; p xn; xnð Þð Þð Þ ¼ 0:

By the continuity of ϕ we have

ϕ lim infn!1p xn�1; xnð Þ; lim infn!1p xn; xnþ1ð Þ; lim infn!1p xn�1; xnþ1ð Þ;ð
lim infn!1 p xn; xnð ÞÞ ¼ 0:The property of ϕ gives that

lim infn!1p xn�1; xnð Þ ¼ 0; lim infn!1p xn; xnþ1ð Þ ¼ 0; lim infn!1p xn�1; xnþ1ð Þ
¼ 0; lim infn!1 p xn; xnð Þ ¼ 0: (16)

Taking the inferior limit in (15) and using (16), ψ kð Þ ¼ 0, this implies that k = 0.
Therefore limn!1 p xn; xnþ1ð Þ ¼ 0.

Now we claim that xnf g is a Cauchy sequence. It is sufficient to show that x2nf g is a Cauchy
sequence. On the contrary, suppose x2nf g is not a Cauchy sequence then there exists ε > 0 and

two subsequences x2nk
� �

and x2mk

� �
of x2nf g such that n(k) > m(k) > k and sequences in (7) tend to

ε as k ! 1. For two comparable elements x ¼ x2nkþ1
and y ¼ x2mk

we can obtain from (7) that

ψ p x2nkþ1
; x2mk

� �� � ¼ ψ p Tx2nk ; Tx2mk�1

� �� �
� φ a p x2nk ; x2mk�1

� � þ b p x2nk ; Tx2nk

� � þ b p x2mk�1
; Tx2mk�1

� �þ c p x2nk ; Tx2mk�1

� � þ c p x2mk�1
; Tx2nk

� �� �
� ϕ p x2nk ; x2mk�1

� �
; p x2nk ; Tx2nk
� �

; p x2mk�1 ; Tx2mk�1

� �
; p x2nk ; Tx2mk�1

� �
; p x2mk�1 ; Tx2n
� �� �

� φ a p x2nk
; x2mk�1

� � þ b p x2nk
; x2nkþ1

� � þ b p x2mk�1
; x2mk

� �þ c p x2nk
; x2mk

� � þ c p x2mk�1
; x2nkþ1

� �� �
� ϕ p x2nk

; x2mk�1

� �
; p x2nk

; x2nkþ1

� �
; p x2mk�1

; x2mk

� �
; p x2nk

; x2mk

� �
; p x2mk�1

; x2nþ1
� �� �

(17)

As k ! 1 in (17), we obtain

ψ εð Þ � φ εð Þ � ϕ ε; ε; ε; ε; εð Þ;
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this implies that ϕ ε; ε; ε; ε; εð Þ ¼ 0, henceε ¼ 0, a contradiction. Thus x2nf g is a Cauchy sequence
and so is xnf g. Since X; pð Þ is complete so X; dpð Þis also complete (by Lemma 2.6). Therefore, the
Cauchy sequence xnf gconverges in X; dpð Þ, that is, limn!1p xn; zð Þ ¼ pðz; zÞthen by Lemma 2.6, we
have

limn;m!1p xn; xmð Þ ¼ limn!1p xn; zð Þ ¼ p z; zð Þ (18)

By Lemma 2.6, we obtain limn!1p xn; zð Þ ¼ 0,

so, by definition ofdp, we obtain

dp xn; xmð Þ ¼ 2p xn; xmð Þ � p xm; xmð Þ � p xn; xnð Þ:

Using (16) and taking n; m ! 1 in above inequality yields

limn;m!1p xn; xmð Þ ¼ 0 (19)

From (18) and (19), we obtain

limn!1p xn; zð Þ ¼ p z; zð Þ ¼ 0 (20)

By P4ð Þ, we obtain

p z; Tzð Þ � p z; xnð Þ þ p xn; Tzð Þ � p xn; xnð Þ

Taking n ! 1 and using Equation (16), (20) and Lemma 2.5 in the above inequality yields

p z; Tzð Þ � p Tz; Tzð Þ (21)

From P2ð Þ, we have

p Tz; Tzð Þ � p z; Tzð Þ (22)

By (21) and (22), we obtain

ψ p z; Tzð Þð Þ ¼ ψ p Tz; Tzð Þð Þ

� φ ap z; zð Þ þ bp z; Tzð Þ þ bp z; Tzð Þ þ cp z; Tzð Þ þ cp z; Tzð Þð Þ
�ϕ p z; zð Þ; p z; Tzð Þ; p z; Tzð Þ; p z; Tzð Þ; p z; Tzð Þð Þ

� φ ap z; zð Þ þ bp z; Tzð Þ þ bp z; Tzð Þ þ cp z; Tzð Þ þ cp z; Tzð Þð Þ � ϕ p z; zð Þ; p z; Tzð Þð Þ

� φ a þ 2bþ 2cð Þmax p z; zð Þ; p z; Tzð Þf gð Þ � ϕ p z; zð Þ; p z; Tzð Þð Þ

� φ max p z; zð Þ; p z; Tzð Þf gð Þ � ϕ p z; zð Þ; p z; Tzð Þð Þ:

Using (20) and (6) in above inequality, we obtain

ψ p z; Tzð Þð Þ � φ p z; Tzð Þð Þ � � ϕ 0; p z; Tzð Þð Þ;

this gives ϕ 0; p z; Tzð Þð Þ � 0 this implies that ϕ 0; p z; Tzð Þð Þ ¼ 0. Hence p(z, Tz) = 0. Thus, Tz = z.

Corollary 3.5 (Chen & Zhu, 2013): Let X; �ð Þ be a partially ordered set and suppose that there
exists a partial metric in X such that (X, p) is complete. Let T : X ! Xbe continuous nondecreasing
mapping. Suppose that for comparablex; y 2 X, we have

ψ p Tx; Tyð Þð Þ � φ
p x; Tyð Þ þ p y; Txð Þ

2

� �
� ϕ p x; Tyð Þ; p y; Txð Þð Þ (23)

where ψ tð Þ � φ tð Þ � 0 (24)
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for all t � 0, and ϕ : 0; 1½ Þ2 ! 0; 1½ Þ is a continuous function with ϕ y; zð Þ ¼ 0 if and only if
y = z = 0. If there exists x0 2 X such that x0 � Tx0 then T has a fixed point.

Corollary 3.6: Let X; �ð Þ be a partially ordered set and suppose that there exists a partial metric
in X such that (X, p) is complete. Let T : X ! X be continuous nondecreasing mapping. Suppose
that for comparablex; y 2 X, we have

ψ p Tx; Tyð Þð Þ � φ p x; yð Þð Þ � ϕ p x; yð Þð Þ; (25)

where ψ tð Þ � φ tð Þ � 0 (26)

for all t � 0, and ϕ : 0; 1½ Þ ! 0; 1½ Þ is a continuous function with ϕ xð Þ ¼ 0 if and only if x = 0. If
there exists x0 2 X such that x0 � Tx0 then T has a fixed point.

The proof of the corollary follows from Theorem 3.3.

Remarks 3.7: If we replace ordered partial metric space with G-metric space and ψ kð Þ ¼ k, φ tð Þ ¼ t
in (25) then corollary 3.5 gives Theorem 2.1 of Chi et al. (2013).

Example 3.8 (Ran & Reurings, 2003): Let X = [0,1] with usual order � be a partially ordered set
and endowed with a partial metricp : X � X ! Rþ. This partial metric is defined by p(x, y) = max{x,
y}. Then the partial metric space is complete. Also, we define the mapping T : X ! X by Tx ¼ x

3 . Let

us take ψ;φ : 0; þ1½ Þ ! 0; þ1½ Þsuch that ψ tð Þ ¼ t2 and φ tð Þ ¼ t2
3 , respectively, and take ϕ :

0; þ1½ Þ5 ! 0; þ1½ Þ such that ϕ u; v; x; y; zð Þ ¼ uþvþxþyþzð Þ2
9 .

By simple calculation we have,

p Tx; Tyð Þ � 1
3
p x; yð Þ (27)

p Tx; Tyð Þ � 1
3

p x; Tx;ð Þ þ p y; Tyð Þ½ � (28)

p Tx; Tyð Þ � 1
3

p x; Tyð Þ þ p y; Txð Þ½ � (29)

If x � y then

p Tx; Tyð Þ ¼ max
x
3
;
y
3

n o
¼ x

3
:

Also,

p x; yð Þ þ p x; Txð Þ þ p y; Tyð Þ þ p x; Tyð Þ þ p y; Txð Þ

¼ p x; yð Þ þ p x;
x
3

� 	
þ p y;

y
3

� 	
þ p x;

y
3

� 	
þ p y;

x
3

� 	

¼ max x; yf g þmax x;
x
3

n o
þ p y;

y
3

� 	
þmax x;

y
3

n o
þ p y;

x
3

� 	

¼ 3xþ p y;
y
3

� 	
þ p y;

x
3

� 	
:

Hence,

ψ p Tx; Tyð Þð Þ ¼ x2

9
� 3xþ p y; y3

� �þ p y; x3
� �� �2

9
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� 3xþ p y; y3
� �þ p y; x3

� �� �2
3

� 3xþ p y; y3
� �þ p y; x3

� �� �2
9

¼ φ a1p x; yð Þ þ a2p x; Txð Þ þ a3p y; Tyð Þ þ a4p x; Tyð Þ þ a5p y; Txð Þð Þ
�ϕ p x; yð Þ; p x; Txð Þ; p y; Tyð Þ;p x; Tyð Þ; p y; Txð Þð Þ:

If y � x then we have

p Tx; Tyð Þ ¼ max
x
3
;
y
3

n o
¼ y

3

Also,

p x; yð Þ þ p x; Txð Þ þ p y; Tyð Þ þ p x; Tyð Þ þ p y; Txð Þ

¼ p x; yð Þ þ p x;
x
3

� 	
þ p y;

y
3

� 	
þ p x;

y
3

� 	
þ p y;

x
3

� 	

¼ max x; yf g þmax x;
x
3

n o
þ p y;

y
3

� 	
þmax x;

y
3

n o
þ p y;

x
3

� 	

¼ 3y þ p x;
x
3

� 	
þ p x;

y
3

� 	
:

Therefore,

ψ p Tx; Tyð Þð Þ ¼ y2

9
� 3y þ p x; x3

� �þ p x; y3
� �� �2

9

� 3y þ p x; x3
� �þ p x; y3

� �� �2
3

� 3y þ p x; x3
� �þ p x; y3

� �� �2
9

¼ φ a1p x; yð Þ þ a2p x; Txð Þ þ a3p y; Tyð Þ þ a4p x; Tyð Þ þ a5p y; Txð Þð Þ
�ϕ p x; yð Þ; p x; Txð Þ; p y; Tyð Þ;p x; Tyð Þ; p y; Txð Þð Þ:

For a comparable x; y 2 X and with the above argument, we conclude that (5) holds. Therefore all
the conditions of Theorem 3.4 are satisfied. The fixed point of T is 0.

4. Application to integral type
Theorem 4.1: Let X; �ð Þ be a partially ordered set and suppose that there exists a partial metric in
X such that (X, p) is complete. Let T : X ! X be continuous nondecreasing mapping. Suppose that
for comparablex; y 2 X, we have

ðp Tx; Tyð Þ

0
αðsÞds �

ð a1 þ a2 þ a3 þ a4 þ a5ð Þ max p x;yð Þ; p x;Txð Þ;p y; Tyð Þ;p x;Tyð Þ ; p y; Txð ÞÞf g

0
βðsÞds

� ϕ

ð p x;yð Þ; p x;Txð Þ; p y; Tyð Þ; p x;Tyð Þ; p y; Txð Þð Þ

0
γðsÞds

(30)

where a1; a2; a3; a4; a5 2 0; 1½ Þ; ∑
5

i¼1
ai< 1, and α;β;γ : 0; 1½ Þ ! 0; 1½ Þ is a Lebesgue–Stieltjes

integrable mapping which are summable and nonnegative . Suppose ϕ : 0; 1½ Þ5 ! 0; 1½ Þ is a
continuous function with ϕ v; w; x; y; zð Þ ¼ 0 if and only if v = w = x = y = z = 0. If there exists
x0 2 X such that x0 � Tx0, then T has a fixed point.

Proof: We consider the functions ψ;φ : 0; 1½ Þ ! 0;1½ Þ defined by
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ψ tð Þ ¼ �
t

0
αðsÞds;φ tð Þ ¼ �

t

0
βðsÞds;

and ψ and φ altering distance functions satisfying

ψ tð Þ � φ tð Þ � 0 (31)

for all t � 0 . Since ψ and φ satisfied the above condition then the result follows immediately from
Theorem 3.3. This completes the proof.
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