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ABSTRACT 

The solution of inelastic bifurcation of column is the eigenvalue and eigenvectors 

which can be solved by many methods such as Power Method and William-Wittrick 

algorithm which has been proven to be efficient. This study utilised a new method of 

solution algorithm that utilizes the decomposition of the net assembled structural 

global matrix into the lower and upper triangles leading to the calculation of the 

determinant of the decomposed matrix. The product of the squared leading diagonals 

is the determinant which is the error of the present calculation. This method has been 

demonstrated to be about 0.02% error.  The conventional Finite Strip Method is 

programmed with the new solution algorithm using an object oriented programming 

concept (Java). The method is compared with the published work and the agreement 
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between the current work and the reported experimental and numerical work is 

excellent. Residual stress is successfully implemented with the new solution algorithm. 
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1. INTRODUCTION 

Predicting the collapsed load of steel columns requires numerical computation because of 

material and geometric nonlinearities. The ability to reliably predict the collapsed load is 

fundamental to assessing the effects of local buckling, initial geometric imperfections in the 

section, residual stresses produced by manufacturing processes and material yielding and 

many other phenomena as noted by Ofuyatan et al. One of such methods is Finite Strip 

Method which is a versatile tool for the prediction of local, distortional and overall buckling 

of rolled and cold formed sections. The extent of the application of the method to the current 

work is limited to the material non-linearity. Although, the initial imperfection could be easily 

incorporated as demonstrated by Olawale, the emphasis now is the demonstration of the new 

solution algorithm. However, residual stress synonymous to rolled section is investigated.  Li 

and Schafer have explored the solutions and provided design recommendations for two 

practical issues that develop when integrating computational member analysis with the 

conventional finite strip method (FSM) into cold-formed steel member design utilizing the 

direct strength method (DSM). First, FSM often fails to uniquely identify the relevant local 

and distortional member buckling modes. However, advancement in the field of FSM such as 

constrained finite strip method (cFMS) resolves some issues such as distortional buckling. 

cFSM also has some limitations such as inability to account for rounded corners in the model 

of cross-section. G. Eccher, K.J.R. Rasmussen, R. Zandonini presented the application of the 

isoparametric spline finite strip method to the elastic buckling analysis of perforated folded 

plate structures. The general theory of the isoparametric spline finite strip method was 

introduced. The kinematics assumptions, strain– displacement and constitutive relations of the 

Mindlin plate theory described and applied to the spline finite strip method. The 

corresponding matrix formulation was utilized in the equilibrium and stability equations to 

derive the stiffness and stability matrices. A number of numerical examples of flat and folded 

perforated plate structures illustrate the applicability and accuracy of the proposed.  

2. FINITE STRIP METHOD 

The general concept of Finite Strip Method has been well established as an efficient means of 

predicting buckling of plate and plated structures. In most cases, elastic approach has been 

very popular even in the age of powerful computational power. The extension of the elastic 

finite strip method to the inelastic range is accomplished by using the deformation theory of 

plasticity applied to thin plates. Based on this theory of plasticity, the nonlinear material 

properties are given by the following equations: 

* +     , -* +        (1)  

where the elasto-plastic modular matrix [F] is given by 
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and the coefficients of [F] are given by 
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where 

Et is the tangent modulus 

Es is the secant modulus 

E20 is Young's modulus of elasticity at ambient temperature. 

These moduli are obtained from the uniaxial stress-strain relation. 

 

Figure 1a. A basic plate showing the Hookean and membrane displacements of a strip 
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Figure 1b A basic plate showing the Hookean and membrane displacements of a strip 

The moment-curvature relationship is given by 

* +  
     

  
, -* +       (4) 

and the curvature is given by 

* +  { 
   

    
   

    
   

    
}        

and t is the plate thickness 

To obtain the stiffness and stability matrices, the out-of-plane and in-plane effects 
are considered individually.  

a) Out-of-Plane: The combination of the resulting equations enables all buckling modes to be 

considered. The out-of-plane displacement function is given by 

         * +              (5) 
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}    (10)The out-of-plane strain vector is related to the 

curvature as given below 

  *  +   * +                       (11) 
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and [Bo] is given as 

 ,  -  

[
 
 
 
 

   

   * +      

 
 

  *    +
      

   

  
*   +

      ]
 
 
 
 

       (13) 

Applying the principle of virtual work, the change in the internal virtual work for the out-

of-plane behaviour can easily be established leading to the out-of-plane stiffness matrix as 

documented in many literature. 

 ,  -  ∫ ,  -
 , -,  -    

   
 (14) 

Similarly, the out-of-plane stability matrix is obtained considering the out-of-plane 
displacement functions shown in eqn. 15 and membrane bending strain vector in eqn. 
16 respectively. 
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The out-of-plane stability matrix is obtained as shown in eqn. 19. Detail of its 

development is documented in Olawale 
[2].
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 ,  -  ∫ ,   -* +     
   

       (19) 

b) In-Plane: 

The in-plane displacement function is given by 

The in-plane displacement function is given by 

 *  +  *    +  ,  -*  +       (20) 
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where 

  * +  *          + 
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and 

  C1 =     

  C2 =             (23) 
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The in-plane strain vector is given by  
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The in-plane stiffness matrix is obtained following the same principle of increment in 

virtual work and is given by eqn. 28 

,  -  ∫ ,  -
 , -,  -    

   
       (28) 

In a similar vein as the out-of-plane stability matrix, the in-plane stability matrix [Si] is 

obtained using in-plane bending strain given in eqn. 29. 
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This can be expressed as 
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The in-plane stability matrix is thus obtained following the same principle as out-plane 

stability matrix as shown in eqn. 31 

,  -  
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    (31) 

The resulting out-of-plane and in-plane eigenvalue problems are solved using the new algorithm 
reported by Olawale and Ogunbiyi [1]. 

,,  -  ,  --*  +           (32) 

Also, in-plane equilibrium is given as 

  ,,  -  ,  --*  +          (33) 

The new solution algorithm used for the computation of the buckling load of column has 

been reported in Olawale and Ogunbiyi
[1]

 and briefly described here for completeness. 

The assembled global matrix is given as [AG]. This can be decomposed into lower and 

upper triangular matrices such that [L] [L]
T 

= [AG], where  
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and [L]
T 

is the transpose of the [L] matrix. The multiplication of the lower and upper 

triangular matrices [L] and [L]
T
 yields the global matrix which can be assembled in the form 

below 
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The determinant of the matrix [AG] is given by 
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One of the advantages of the new solution method is that the need for the introduction of 

sub strips with a strip to achieve accuracy is totally eliminated. This, in effect reduces the 

bandwidth requirement and the computational effort is greatly reduced. 

3. RESULTS AND DISCUSSION 

 

Figure 2 Comparison of the current analysis to European Convection Curve with Residual Stress of 

10% Yield Stress.  
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The development is programmed in Java which is an object oriented programming language 

and the result of the current work is compared with European Convention curve B3-24 with 

10% of yield stress for the residual stress level that is multi-linear distribution. The two 

computational results compare very closely and it can be said that current work is accurate to 

an appreciable extent for further parametric study. The plot of this comparison is shown in 

figure 2. 

The behaviour of various rolled steel shapes is studied at various residual stress levels 

ranging from 10% to 50% yield stress. The residual stress distribution is a multi-linear 

relationship as shown in figure 3. The variation of the critical stress with the slenderness ratio 

for different residual stress levels indicates that the critical stress is adversely affected by the 

presence of residual stress that can be either locked in during rolling process or welding 

procedure. This effect is clearly shown in figure 4 & 5 and it can be seen that the bigger the 

shape the more adversely the critical stress is affected. The depreciation in the critical stress 

for small shape can be seen to be gradual throughout the range of slenderness ratios 

considered. Another interesting observation is that residual does not affect very stocky 

columns with slenderness ratio of about 20. It can be seen that only the intermediate and 

slender columns are adversely affected by the presence of residual stress. 

 

Figure 3 Residual stress distribution 

 

Figure 4 Critical Stress variation with slenderness ratio at various level of residual stress for normal 

rolled section. 
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Figure 5 Critical Stress variation with slenderness ratio at various level of residual stress for wide 

flange rolled section 

 

Figure 6 Critical Stress variation with slenderness ratio at various level of residual stress for wide 

flange rolled section 

4. CONCLUSIONS 

From this study, the power of new solution algorithm has been demonstrated in predicting the 

collapsed load of steel columns with or without residual stresses. It is also observed that 

residual stresses do not affect short columns but the intermediate and slender columns are 

susceptible to the presence of residual stress. The residual stress can have the capacity of the 

column if the magnitude of the residual stress is so high if not controlled at the time of 

production of the steel shapes. Also, the bigger the shape, the more the effect of residual stress 

on the capacity of columns is pronounced. 
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