University Links: Home Page | Site Map
Covenant University Repository

The effect of particulate strengthening on microstructure and mechanical characterization of binary-modified composites on mild steel

Fayomi, O. S. I and Popoola, A. P. I. and Loto, C. A. (2015) The effect of particulate strengthening on microstructure and mechanical characterization of binary-modified composites on mild steel. Journal of Composite Materials, 49 (21). pp. 2625-2637.

[img] PDF
Download (1955Kb)
Official URL: http://jcm.sagepub.com

Abstract

This article presents the microstructure, tribological behavior, and hardness properties of the Zn-TiO2 functional composite coating produced using electrolytic co-deposition technique. The 7.0–13.0 weight fractions of Ti particles were incorporated in a Zn bath to form Zn-TiO2 alloy in the presence of other additives. The microstructural properties of the fabricated coating were investigated using a scanning electron microscope equipped with an energy-dispersive spectroscope, X-ray diffraction, and an atomic force microscope. The anticorrosion behavior in 3.65% NaCl medium was studied using potentiodynamic polarization technique and characterized using high-resolution optical microscope. The hardness and wear properties of the coated alloys were measured with high diamond microhardness tester and reciprocating sliding tester, respectively. From the results, the increases in hardness and wear resistance are attributed to the formation of the incorporated particulate and uniform precipitation of the metal grains at the metal lattice. The contribution of TiO2 particles especially with Zn-13Ti-0.3 V-S provides new orientation of metal–matrix-modified coated structure and decrease in friction coefficient. The anticorrosion resistance characteristics were found to improve significantly in response to concentration of additive.

Item Type: Article
Uncontrolled Keywords: Particulate strengthening, mechanical properties, metal–matrix composite, corrosion
Subjects: T Technology > T Technology (General)
T Technology > TJ Mechanical engineering and machinery
Divisions: Faculty of Engineering, Science and Mathematics > School of Engineering Sciences
Depositing User: Mrs Hannah Akinwumi
Date Deposited: 13 Nov 2018 12:03
Last Modified: 13 Nov 2018 12:03
URI: http://eprints.covenantuniversity.edu.ng/id/eprint/12109

Actions (login required)

View Item View Item