On some higher order boundary value problems at resonance with integral boundary conditions

SAMUEL AZUBUIKE IYASE, OLAWALE JOSHUA ADELEKE*

Department of Mathematics, Covenant University, Ota, PMB 1023, Canaanland, Ota, Ogun State, Nigeria

Received 29 October 2017; revised 17 April 2018; accepted 6 May 2018
Available online 12 May 2018

Abstract. This paper investigates the existence of solutions for higher-order multipoint boundary value problems at resonance. We obtain existence results by using coincidence degree arguments.

Keywords: Multipoint boundary value problems; Resonance; Integral boundary conditions; Coincidence degree; Higher-order

Mathematics Subject Classification: 34B15; 34B40

1. INTRODUCTION

In this article, we consider the following higher-order boundary value problems:

\[x^{(n)}(t) = f \left(t, x(t), x'(t), \ldots, x^{(n-1)}(t) \right) + e(t) \] \hspace{1cm} (1.1)

\[x^{(n-1)}(0) = \alpha x(\xi), \quad x'(0) = x''(0) = \cdots = x^{(n-2)}(0) = 0, \quad x(1) = \int_0^1 x(s)dg(s) \] \hspace{1cm} (1.2)

* Corresponding author.
E-mail addresses: samuel.iyase@covenantuniversity.edu.ng (S.A. Iyase), wale.adeleke@covenantuniversity.edu.ng (O.J. Adeleke).

Peer review under responsibility of King Saud University.
where α ≥ 0, 0 < ξ < 1, f : [0, 1] × R^n → R is a continuous function, e : [0, 1] → R is a function in L^1[0, 1] and g : [0, 1] → [0, ∞) is a nondecreasing function with g(0) = 0 and g(1) = 1. The integral in (1.2) is a Riemann–Stieltjes integral.

Multipoint boundary value problems of ordinary differential equations arise in many areas of Physics, Engineering and Applied Mathematics. In particular, integral boundary conditions are encountered in various applications such as population dynamics, blood flow models and cellular systems. In recent years, higher-order boundary value problems have appeared in many papers, for example, see [1–7] and the references therein. To the best of our knowledge, the corresponding problem for higher-order ordinary differential equations with integral boundary conditions at resonance has received little attention.

The boundary value problem (1.1)–(1.2) is called a problem at resonance if Lx = x(α)(t) = 0 has non-trivial solutions under boundary condition (1.2), that is, when dim Ker L ≥ 1. When Ker L = 0, the differential operator L is invertible. In this case, the problem is at non-resonance. The remainder of this paper is organized as follows. In Section 2 we provide some results and lemmas which are important in stating and proving the main existence theorems. In Section 3, the statement and proof of the main existence results are provided.

2. Preliminaries

In this section we present some preliminaries that will be used in the subsequent sections. Let X and Z be real Banach spaces and let L : domL ⊂ X → Z be a linear Fredholm operator of index zero. Let P : X → X and Q : Z → Z be continuous projections such that ImP = Ker L, Ker Q = ImL and X = Ker L ⊕ Ker P, Z = ImL ⊕ Im Q. It follows that L|_{domL∩Ker P} : domL ∩ Ker P → ImL is invertible. We denote this inverse by K_P.

If Ω is an open bounded subset of X such that domL ∩ Ω ≠ ∅, then the map N : X → Z is called L – compact on Ω if QN(Ω) is bounded and K_P(I – Q)N : Ω → X is compact, with P and Q as above.

In what follows we shall use the classical spaces C^{n−1}[0, 1], L^1[0, 1]. For x ∈ C^{n−1}[0, 1], L^1[0, 1], we use the norm ∥x∥_∞ = max_{t∈[0,1]}|x(t)| and ∥x∥ = max{∥x∥_∞, ∥x’∥_∞, ..., ∥x^{n−1}∥_∞}. We denote the norm in L^1[0, 1] by ∥·∥_1. We use the Sobolev space W^{n,1}(0, 1) defined by W^{n,1}(0, 1) = {x : [0, 1] → R | x, x’, ..., x^{(n−1)} are absolutely continuous on [0,1] with x^{(n)} ∈ L^1[0, 1]}. Let X = C^{n−1}[0, 1], Z = L^1[0, 1]. L is the linear operator from domL ⊂ X → Z with domL = {x ∈ W^{n,1}(0, 1) : x^{(n−1)}(0) = αx(ξ), x’(0) = x’(0) = ... = x^{n−2}(0) = 0, x(1) = ∫_0^1 x(s)dg(s)}. We define L : domL ⊂ X → Z by Lx = x^{(n)}(t) and N : X → Z by Nx = f(t, x(t), x’(t), ..., x^{n−1}(t)) + e(t). Then, the boundary value problem (1.1)–(1.2) becomes

Lx = Nx

We shall discuss existence results for (1.1)–(1.2) in the following cases.

Case 1: α = \frac{(n−1)!}{ξ^n}, ∫_0^1 s^n−1dg(s) = 1, ∫_0^1 s^n−2dg(s) ≠ 1, g(1) = 1, g(0) = 0

Case 2: α = 0, ∫_0^1 s^n−1dg(s) ≠ 1, g(1) = 1, g(0) = 0

3. Existence Results

We shall use the following fixed point theorem of Mawhin [8] to obtain our existence results.
Theorem 3.1. Let \(L \) be a Fredholm operator of index zero and let \(N \) be \(L - \) compact on \(\overline{\Omega} \). Assume that the following conditions are satisfied:

(i) \(Lx = \lambda Nx \) for every \((x, \lambda) \in [(\text{dom} L \setminus \text{Ker} L) \cap \partial \Omega] \times (0, 1)\)

(ii) \(Nx \notin 1mL \) for every \(x \in \text{Ker} L \cap \partial \Omega \)

(iii) \(\text{deg}(JQN|_{\partial \Omega \cap \text{Ker} L}, \Omega \cap \text{Ker} L, 0) \neq 0 \)

Then, the equation \(Lx = Nx \) has at least one solution in \(\text{dom} L \cap \overline{\Omega} \).

We shall first consider Case 1.

Lemma 3.1. If \(\alpha = \frac{(n-1)!}{\xi^{n-1}}, \int_0^1 s^{n-1}dg(s) = 1, \int_0^1 s^{n}dg(s) \neq 1, g(1) = 1, g(0) = 0, \) then,

(i) \(\text{Ker} L = \{ x \in \text{dom} L : x = ct^{n-1}, c \in \mathbb{N}, t \in [0, 1] \} \)

(ii) \(\text{Im} L = \{ y \in \mathbb{Z} : \int_0^1 y(t)dt = 0 \} \)

Proof. (i). For \(x \in \text{Ker} L \), we have \(x^{(n)} = 0 \). Hence, \(x(t) = a_0 + a_1t + a_2t^2 + \cdots + a_{n-1}t^{n-1} \), \(a_i \in \mathbb{N} \). In view of \(x'(0) = x''(0) = \cdots = x^{(n-2)}(0) = 0 \) we obtain \(x(t) = a_0 + a_{n-1}t^{n-1} \)

\(x(\xi) = a_0 + a_{n-1}\xi^{n-1} \).

From \(\alpha = \frac{(n-1)!}{\xi^{n-1}} \), and noting that \(x^{(n-1)}(0) = (n-1)!a_{n-1} \) we get

\[(n-1)!a_{n-1} = x^{(n-1)}(0) = \alpha x(\xi) = \frac{(n-1)!}{\xi^{n-1}}a_0 + \frac{(n-1)!}{\xi^{n-1}}a_{n-1}\xi^{n-1} \]

which implies that \(a_0 = 0 \).

From \(x(1) = \int_0^1 x(s)dg(s) \), we derive \(a_{n-1} = a_{n-1} \int_0^1 s^{n-1}dg(s) \) or \(a_{n-1} = \left(1 - \int_0^1 s^{n-1} \right)dg(s) = 0 \)

In view of \(\int_0^1 s^{n-1}dg(s) = 1 \), we have \(\text{Ker} L = \{ x \in \text{dom} L : x = ct^{n-1}, \ c \in \mathbb{N} \} \).

(ii) We next show that

\[\text{Im} L = \{ y \in \mathbb{Z} : \int_0^1 \int_0^{r_n} \cdots \int_0^{r_2} y(\tau_1)d\tau_1 \cdots d\tau_n \\
- \int_0^1 \int_0^s \int_0^{r_n} \cdots \int_0^{r_2} y(\tau_1)d\tau_1 \cdots d\tau_n dg(s) = 0 \} \]

(3.1)

To do this, we consider the problem

\[x^{(n)}(t) = y(t) \]

(3.2)

We show that Problem (3.2) has a solution \(x(t) \) satisfying

\[x^{(n-1)}(0) = \frac{(n-1)!}{\xi^{n-1}}x(\xi), \ x'(0) = x''(0) = x^{(n-1)}(0) = 0, \ x(1) = \int_0^1 x(s)dg(s) \]

(3.3)

if and only if

\[\int_0^1 \int_0^{r_n} \cdots \int_0^{r_2} y(\tau_1)d\tau_1 \cdots d\tau_n - \int_0^1 \int_0^s \int_0^{r_n} \cdots \int_0^{r_2} y(\tau_1)d\tau_1 \cdots d\tau_n dg(s) = 0 \]

(3.4)
Suppose \((3.2)\) has a solution \(x(t)\) satisfying \((3.3)\) then from \((3.2)\) we have
\[
x(t) = x(0) + \frac{x'(0)t}{1!} + \cdots + \frac{1}{(n-1)!}x^{(n-1)}(0)t^{n-1} + \int_0^t \int_0^{\tau_n} \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n \\
x(0) + \frac{1}{(n-1)!}t^{n-1} \int_0^t \int_0^{\tau_n} \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n = x(0) + \frac{x'(0)t}{1!} + \cdots + \frac{1}{(n-1)!}x^{(n-1)}(0)t^{n-1} + \int_0^t \int_0^{\tau_n} \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n \\
x(1) = x(0) + \frac{x'(0)t}{1!} + \cdots + \frac{1}{(n-1)!}x^{(n-1)}(0)t^{n-1} + \int_0^t \int_0^{\tau_n} \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n \\
= \int_0^1 x(s) dg(s) + \int_0^1 \left[x(0) + \frac{1}{(n-1)!}x^{(n-1)}(0)s^{n-1} + \int_0^t \int_0^{\tau_n} \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n \right] dg(s) \\
= x(0) + \frac{1}{(n-1)!}x^{(n-1)}(0) \int_0^1 s^{n-1} dg(s) + \int_0^1 \int_0^{\tau_n} \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n dg(s) \\
\int_0^1 s^{n-1} dg(s) = 1 \text{ we obtain from } (3.5) \text{ and } (3.6) \text{ that}
\[
\int_0^t \int_0^{\tau_n} \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n - \int_0^1 \int_0^{\tau_n} \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n dg(s) = 0
\]
If however \((3.4)\) holds, then setting
\[
x(t) = dt^{n-1} + \int_0^t \int_0^{\tau_n} \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n
\]
where \(d\) is an arbitrary constant, then \(x(t)\) is a solution of \((3.2)\) satisfying \((3.3)\).

Lemma 3.2. If the conditions of Lemma 3.1 holds then
(i) \(L : \text{dom}L \subset X \to Z\) is a Fredholm operator of index zero and furthermore the linear continuous projection \(Q : Z \to Z\) can be written as
\[
Qy = \frac{n!}{1 - \int_0^1 s^n dg(s)} \left[\int_0^1 \int_0^{\tau_n} \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n - \int_0^1 \int_0^{\tau_n} \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n dg(s) \right]
\]
(ii) Let \(P : X \to X\) be defined as
\[
P_x = x^{(n-1)}(0)t^{n-1}
\]
Then, the generalized inverse \(K_p : \text{Im}L \to \text{dom}L \cap \text{Ker}P\) can be defined as
\[
K_py = \int_0^t \int_0^{\tau_n} \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n - \int_0^1 \int_0^{\tau_n} \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n dg(s)
\]
(iii) \(\|K_py\| \leq 2\|y\|_1, \text{ for all } y \in \text{Im}L.\)
Proof. (i). For \(y \in Z \), we define the projection \(Q \) as

\[
Qy = \frac{n!}{1 - \int_0^1 s^n ds} \left[\int_0^1 \int_0^{\tau_n} \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n - \int_0^1 \int_0^s \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n d\tau \right]
\]

Let \(y_1 = y - Qy \), then

\[
\int_0^1 \int_0^{\tau_n} \cdots \int_0^{\tau_2} y_1(\tau_1) d\tau_1 \cdots d\tau_n - \int_0^1 \int_0^s \cdots \int_0^{\tau_2} y_1(\tau_1) d\tau_1 \cdots d\tau_n d\tau = 0
\]

Thus, \(y_1 \in \text{Im} L \) and hence \(Z = \text{Im} L + \mathbb{R} \). Since \(\text{Im} L \cap \mathbb{R} = \{0\} \) we conclude that \(Z = \text{Im} L \oplus \mathbb{R} \) and therefore

\[
dim \ker L = \dim \mathbb{R} = \text{Codim} \text{Im} L = 1
\]

Therefore, \(L \) is a Fredholm operator of index zero.

To prove (ii), we define the generalized inverse \(K_p : \text{Im} L \to \text{dom} L \cap \ker P \) as

\[
K_p y = \int_0^t \int_0^s \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n - \int_0^\xi \int_0^s \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n
\]

Now for \(y \in \text{Im} L \), we have

\[
(LK_p) y(t) = [(K_p y)(t)]^{(n)} = y(t)
\]

and for \(x \in \text{dom} L \cap \ker P \), we get

\[
(K_p L) x(t) = \int_0^t \int_0^s \cdots \int_0^{\tau_2} x^{(n)}(\tau_1) d\tau_1 \cdots d\tau_n - \int_0^\xi \int_0^s \cdots \int_0^{\tau_2} x^{(n)}(\tau_1) d\tau_1 \cdots d\tau_n
\]

\[
= x(t) - \frac{x^{(n-1)}(0)}{(n-1)!} t^{n-1} - x(\xi) + \frac{x^{(n-1)}(0)}{(n-1)!} \xi^{n-1}
\]

In view of \(x \in \text{dom} L \cap \ker P \), \(Px = x^{(n-1)}(0) t^{n-1} \) and \(x^{(n-1)}(0) = \alpha x(\xi) = \frac{[n-1]}{\xi^{n-1}} x(\xi) \) we obtain

\[
(K_p L) x(t) = x(t)
\]

We conclude that \(K_p = (L|_{\text{dom} L \cap \ker P})^{-1} \).

To prove (ii) we note that from the definition of \(K_p \), we derive that

\[
\|K_p y\|_\infty \leq \int_0^1 \int_0^1 \cdots \int_0^1 |y(\tau_1)| d\tau_1 \cdots d\tau_n
\]

\[
+ \int_0^1 \int_0^1 \cdots \int_0^1 |y(\tau_1)| d\tau_1 \cdots d\tau_n = 2\|y\|_1
\]

\[
(K_p y)'(t) = \int_0^t \int_0^{\tau_n-1} \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n
\]
\[\| (K_p y) \|_{\infty} \leq \| y \|_1 \]

\[\vdots \]

\[\| (K_p y)^{(n-1)} \|_{\infty} \leq \| y \|_1 \]

Thus,

\[\| K_p y \| \leq 2\| y \|_1. \quad \square \]

Theorem 3.2. Let \(f : [0, 1] \times \mathbb{R}^n \to \mathbb{R} \) be a continuous function and assume that

(A1) There exist functions \(a_1(t), \ldots, a_n(t), r(t) \in L^1[0, 1] \) such that for all \((x_1, x_2, \ldots, x_n) \in \mathbb{R}^n, t \in [0, 1] \)

\[|f(x_1, x_2, \ldots, x_n)| \leq \sum_{i=1}^n a_i(t)|x_i| + r(t) \]

(A2) There exists a constant \(M_1 > 0 \) such that for \(x \in \text{dom} L \), if \(x^{(n-1)}(t) > M_1 \) for all \(t \in [0, 1] \) then

\[
\int_0^1 \cdots \int_0^1 y(t_1)dt_1 \cdots dt_n - \int_0^1 \cdots \int_0^1 \int_0^s \int_0^1 y(t_1)dt_1 \cdots dt_n dg(s) \neq 0
\]

(A3) There exists a constant \(M_2 > 0 \) such that for all \(d \in \mathbb{R}, |d| > M_2 \) then either

\[d \cdot QN(d) \geq 0 \quad \text{or} \quad d \cdot QN(d) \leq 0 \quad (3.8) \]

Then, for \(e(t) \in L^1[0, 1] \), the boundary value problem (1.1)–(1.2) with \(\alpha \in \frac{(n-1)!}{\xi^{n-1}}, \)

\[
\int_0^1 s^{n-1}dg(s) = 1, \quad \int_0^1 s^ng(s) \neq 1 \quad \text{and} \quad g(1) = 1, \quad g(0) = 0 \text{ has at least one solution in} \]

\[C^{n-1}[0, 1] \] provided \(\sum_{i=1}^n \| a_i \|_1 < \frac{1}{4} \)

To prove Theorem 3.2, we shall first establish the following lemmas.

Lemma 3.3. Let \(\Omega_1 = \{ x \in \text{dom} L \setminus \text{Ker} L : Lx = \lambda Nx, \; \lambda \in (0, 1) \} \). Then \(\Omega_1 \) is a bounded set in \(X \).

Proof. Let \(x \in \Omega_1 \). We assume that \(Lx = \lambda Nx, \; 0 < \lambda \leq 1 \). Then, \(Nx \in \text{Im} L = \text{Ker} Q \) and hence from (A2) there exist \(t_0 \in [0, 1] \) such that \(|x^{(n-1)}(t_0)| \leq M_1 \). Then

\[x^{(n-1)}(0) = x^{(n-1)}(0) - \int_0^{t_0} x^{(n)}(s)ds \]

\[\| P x \| = |x^{(n-1)}(0)| \leq M_1 + \| Nx \|_1 \quad (3.9) \]

For \(x \in \Omega_1, x \in \text{dom} L \setminus \text{Ker} L \), then \((I - P)x \in \text{dom} L \cap \text{Ker} P \)

\[\| (I - P)x \| = \| K_p L(I - P)x \| \leq \| K_p Lx \| \leq 2\| Lx \|_1 \leq 2\| Nx \|_1 \quad (3.10) \]

where \(I \) is the identity operator on \(X \).
Using (3.9) and (3.10) we obtain
\[
\|x\| = \|Px + (I - P)x\| \leq \|Px\| + \|(I - P)x\| \leq M_1 + 3\|Nx\|_1
\]
(3.11)

By (A1) and the definition of \(N\), we obtain
\[
\|N\|_1 \leq \int_0^1 |f(s, x(s), x'(s), \ldots, x^{(n-1)}(s)) + e(s)| ds
\]
\[
\leq \sum_{i=1}^n |a_i|_1 \|x^{(i-1)}\|_\infty + |r|_1 + |e|_1 \leq \sum_{i=1}^n |a_i|_1 \|x\| + |r|_1 + |e|_1
\]
\[\text{Combining (3.11) and (3.12), we obtain}
\]
\[
\|x\| \leq \frac{3|r|_1 + 3|e|_1 + M_1}{1 - \sum_{i=1}^n |a_i|_1} = M_3
\]
(3.13)

From (A1) and (3.13), we get
\[
\|x^{(n)}\|_1 \leq 3M_3 \sum_{i=1}^n |a_i|_1 + |r|_1 + |e|_1
\]

Therefore, \(\Omega_1\) is bounded in \(X\). \(\blacksquare\)

Lemma 3.4. The set \(\Omega_2 = \{x \in KerL : Nx \in 1mL\}\) is a bounded set in \(X\).

Proof. Let \(x \in \Omega_2, x \in dt^{n-1}, d \in \mathbb{R}, t \in [0, 1]\) and \(QN x = 0\). Therefore,
\[
\int_0^1 \int_0^{t_2} \cdots \int_0^{t_2} \left[f \left(\tau_1, d\tau_1^{n-1}, d(n-1)\tau^{n-2}, \ldots, d(n-1)! \right) + e(\tau_1) \right] d\tau_1 \cdots d\tau_n
\]
\[
- \int_0^1 \int_0^{t_2} \cdots \int_0^{t_2} \left[f \left(\tau_1, d\tau_1^{n-1}, d(n-1)\tau^{n-2}, \ldots, d(n-1)! \right) \right.
\]
\[
+ e(\tau_1) \left. \right| d\tau_1 \cdots d\tau_n dg(s) = 0
\]

From (A2) there exists \(t_0 \in [0, 1]\) such that \(|x^{(n-1)}(0)| \leq M_1\). That is \(|(n-1)d| \leq M_1\). Hence,
\[
\|x\| = \text{Max} \{\|x\|_\infty, \ldots, \|x^{(n-1)}\|_\infty\} = \{\|x^{(n-1)}\|_\infty \leq M_1\}
\]

Therefore, \(\Omega_2\) is bounded in \(X\). \(\blacksquare\)

Lemma 3.5. Let
\[
\Omega_3^+ = \{x \in KerL : \lambda x + (1 - \lambda)QNx = 0, \ \lambda \in [0, 1]\}
\]
(3.14)

and
\[
\Omega_3^- = \{x \in KerL : -\lambda x + (1 - \lambda)QNx = 0, \ \lambda \in [0, 1]\}
\]
(3.15)

Then \(\Omega_3^+\) and \(\Omega_3^-\) are bounded in \(X\) provided (3.14) and (3.15) are satisfied, respectively.

Proof. Let \(x \in \Omega_3^+\). Then, there exists \(d \in \mathbb{R}\) such that \(x(t) = dt^{n-1}\). From the first part of (3.8) we have for \(|d| > M_2, d \cdot QN(d) \geq 0\) and from (3.14) we obtain
\[
(1 - \lambda) QNx = -\lambda x
\]
(3.16)
If $\lambda = 0$, it follows that $QN_x = 0$ and therefore $N_x \in \text{Ker} \, Q = \text{Im} \, L$, that is $N_x \in \Omega_2$ and by Lemma 3.4 we can deduce that $\|x\| \leq M_1$. However, if $\lambda \in (0, 1]$ and $|d| > M_2$ then, by assumption (A3) we obtain

$$0 \leq (1 - \lambda)d QN(d) = -\lambda |d|^2 < 0$$

which is a contradiction. Thus, $\|x\| = |d| \leq M_2$. Therefore, Ω^+_3 is bounded. By a similar argument we can prove that Ω^-_3 is bounded in X. □

Theorem 3.3. Let the assumptions (A1)–(A3) hold. Then, problem (1.1)–(1.2) has at least one solution in X.

Proof. As a consequence of Theorem 3.2, we only show that all the conditions of Theorem 3.1 are fulfilled. Let Ω be a bounded subset of X such that $\bigcup_{i=1}^3 \Omega_i \subset \Omega$ where $\Omega_3 = \Omega^+_3$ if (3.14) holds or $\Omega_3 = \Omega^-_3$ if (3.15) holds. It is easily seen that conditions (i) and (ii) of Theorem 3.1 are satisfied if we use Lemmas 3.3 and 3.4. To verify the third condition we apply the invariance under a homotopy property of the degree. Let

$$H(x, \lambda) = \pm \lambda x + (1 - \lambda) QN_x$$

and let $I : \text{Im} \, Q \to \text{Ker} \, L$ be the identity operator. By Lemma 3.5 we know that $H(x, \lambda) \neq 0$ for $(x, \lambda) \in \text{Ker} \, L \cap \partial \Omega \times [0, 1]$. Therefore,

$$\deg (QN|_{\text{Ker} \, L}, \Omega \cap \text{Ker} \, L, 0) = \deg (H(\cdot, 0), \Omega \cap \text{Ker} \, L, 0)$$

$$= \deg (H(\cdot, 1), \Omega \cap \text{Ker} \, L, 0)$$

$$= \deg (\pm I, \Omega \cap \text{Ker} \, L, 0) = \pm 1$$

This proves Theorem 3.3. □

Next, we consider Case 2. By using the same procedure as in the proof of Lemma 3.1 and 3.2, we can prove the following lemma.

Lemma 3.6. If $\alpha = 0$, $\int_0^1 s^n dg(s) \neq 0$, $g(1) = 1$, $g(0) = 0$, then

(i) $\text{Ker} \, L = \{x \in \text{dom} \, L : x = d, \quad d \in \mathbb{R}, \quad t \in [0, 1]\}$

(ii) $\text{Im} \, L = \{y \in Z : \int_0^1 \int_0^{\tau_n} \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n - \int_0^1 \int_0^{\tau_n} \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n \int_0^1 s^n dg(s)\}$

(iii) $L : \text{dom} \, L \subset X \to Z$ is a Fredholm operator of index zero and furthermore, the linear continuous projection $Q : Z \to Z$ can be defined as

$$Qy = \frac{n!}{1 - \int_0^1 s^n dg(s)} \left[\int_0^1 \int_0^{\tau_n} \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n - \int_0^1 \int_0^{\tau_n} \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n dg(s) \right]$$

(iv) The linear operator $K_p : \text{Im} \, L \to \text{dom} \, L \cap \text{Ker} \, P$ can be written as

$$K_p y = \int_0^t \int_0^{\tau_n} \cdots \int_0^{\tau_2} y(\tau_1) d\tau_1 \cdots d\tau_n$$

and

$$\|K_p y\|_\infty \leq \|y\|_1, \quad \text{for all} \quad y \in \text{Im} \, L$$
Theorem 3.4. Let \(f : [0, 1] \times \mathbb{R}^n \to \mathbb{R} \) be a continuous function. Assume that the condition (A1) in Theorem 3.2 holds as well as the following two additional conditions

(A4) There exists a constant \(M_1 > 0 \) such that for any \(x \in \text{dom}L \), if \(x(t) > M_1 \) for all \(t \in [0, 1] \), then,

\[
\int_0^1 \int_0^{\tau_n} \cdots \int_0^{\tau_1} y(\tau_1) d\tau_1 \cdots d\tau_n \geq 0.
\]

(A5) There exists a constant \(M_2 > 0 \) such that for \(d \in \mathbb{R} \), if \(|d| \geq M_2 \) then either

\[
d \cdot QN(d) \geq 0 \quad \text{or} \quad d \cdot QN(d) \leq 0.
\]

Then for every \(e(t) \in L^1[0, 1] \) the boundary value problem (1.1)–(1.2) has at least one solution in \(C^{n-1}[0, 1] \) provided \(\sum_{i=1}^n \|a_i\|_1 < \frac{1}{2} \).

Proof. Let \(\Omega_1 \) be defined as in Lemma 3.3. We prove that \(\Omega_1 \) is bounded in \(X \). If \(x \in \Omega_1 \), then following the procedure in the proof of Lemma 3.3, there exist \(t_0 \in [0, 1] \) such that \(|x(t_0)| \leq M_1 \). Then, for \(x(0) = x(t_0) - \int_{t_0}^1 x'(s) ds \) we get

\[
|x(0)| \leq M + \|x'\|_\infty
\]

Since \(x'(0) = x''(0) = \cdots = x^{(n-2)}(0) = x^{(n-1)}(0) = 0 \) we derive

\[
\|x'\|_\infty \leq \|x''\|_1 \leq \|x''\|_\infty
\]

\[
\|x''\|_\infty \leq \|x'\|_1 \leq \|x'\|_\infty
\]

\[
\vdots
\]

\[
\|x^{(n-1)}\|_\infty \leq \|x^{(n)}\|_1 \leq \|x^{(n)}\|_\infty
\]

\[
\|P_x\| = \|x(0)\| \leq M + \|x'\|_\infty \leq \|x''\|_\infty \leq \cdots \leq M + \|x^{(n)}\|_1
\]

\[
\leq M + \|Lx\|_1 \leq M + \|Nx\|_1 \tag{3.17}
\]

where \(P : X \to X \) is defined as \(Px = x(0) \)

\[
\|(I - P)x\| = \|K_pL(I - P)x\| \leq \|K_pLx\| \leq \|Lx\| \leq \|Nx\| \tag{3.18}
\]

and from (3.17) and (3.18) we obtain

\[
\|x\| \leq \|Px\| + \|(I - P)x\| \leq M + 2\|Nx\|_1 \tag{3.19}
\]

By (A1) and the definition of \(N \) we obtain

\[
\|Nx\|_1 \leq \int_0^1 |f(s, x(s), x'(s), \ldots, x^{(n-1)}(s)) + e(s)| ds
\]

\[
\leq \sum_{i=1}^n \|a_i\|_1 \|x^{(i-1)}\|_\infty + \|r\|_1 + \|e\|_1 \tag{3.20}
\]

\[
\leq \sum_{i=1}^n \|a_i\|_1 \|x\| + \|r\|_1 + \|e\|_1
\]
From (3.19) and (3.20) we obtain
\[\|x\| \leq \frac{2\|r\|_1 + 2\|e\|_1 + M}{1 - 2\sum_{i=1}^n \|a_i\|_1} \]

The remainder of the proof of Theorem 3.4 is similar to the proof of Theorem 3.2.

Theorem 3.5. Let the assumptions A1, A4 and A5 hold. Then problem (1.1)–(1.2) has at least one solution in X.

Proof. The proof follows the same steps as in Theorem 3.3.

References

