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Abstract. This paper investigates the existence of solutions for higher-order multipoint
boundary value problems at resonance. We obtain existence results by using coincidence
degree arguments.
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1. INTRODUCTION

In this article, we consider the following higher-order boundary value problems:

x@) = f(t,x(0), x' (1), ..., x"7V(@) + et) (L.1)
1
x"7D0) = ax(®), XO)=x"0)=---=x"20)=0, x(1)= / x(s)dg(s)
0
(1.2)
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wherea > 0,0 < & < 1, f: [0, 1] x fN" — N is a continuous function, e : [0, 1] — NRisa
function in L'[0, 1] and g : [0, 1] — [0, 00) is a nondecreasing function with g(0) = 0 and
g(1) = 1. The integral in (1.2) is a Riemann-Stieltjes integral.

Multipoint boundary value problems of ordinary differential equations arise in many
areas of Physics, Engineering and Applied Mathematics. In particular, integral boundary
conditions are encountered in various applications such as population dynamics, blood flow
models and cellular systems. In recent years, higher-order boundary value problems have
appeared in many papers, for example, see [1-7] and the references therein. To the best of
our knowledge, the corresponding problem for higher-order ordinary differential equations
with integral boundary conditions at resonance has received little attention.

The boundary value problem (1.1)—(1.2) is called a problem at resonance if Lx = x"(t) =
0 has non-trivial solutions under boundary condition (1.2), that is, when dimKerL > 1.
When Ker L = 0, the differential operator L is invertible. In this case, the problem is at non-
resonance. The remainder of this paper is organized as follows. In Section 2 we provide some
results and lemmas which are important in stating and proving the main existence theorems.
In Section 3, the statement and proof of the main existence results are provided.

2. PRELIMINARIES

In this section we present some preliminaries that will be used in the subsequent sections.
Let X and Z be real Banach spaces and let L : domL C X — Z be a linear Fredholm
operator of index zero. Let P : X — X and Q : Z — Z be continuous projections such that
ImP = KerL, KerQ =ImL and X = KerL @ KerP,Z = ImL @ ImQ. It follows that
Llgomrnkerp : domL N Ker P — ImL is invertible. We denote this inverse by K ,.

If {2 is an open bounded subset of X such that domL N 2 # @, thenthemap N : X — Z
is called L — compact on Qif QN(ﬁ) is bounded and K ,(I — Q)N : 02— Xis compact,
with P and Q as above.

In what follows we shall use the classical spaces C"~'[0, 1], L'[0, 1]. For x € C"[0, 1],

we use the norm x| = maxepo,1ylx(1)] and [x|| = max{|xllo, 1X llsos - - -+ X" oo}
We denote the norm in L'[0, 1] by | - |l;. We use the Sobolev space W™*!(0, 1) defined
by W*1(0,1) = {x : [0,1] = R|x,x’,...,x"D are absolutely continuous on [0,1] with

x™ e L'0,1]}. Let X = C"7'[0,1], Z = L'[0,1]. L is the linear operator from
domL C X — Z withdomL = {x € W*»'(0,1) : x®»D(0) = ax(&), x'(0) = x"(0) =
e =x"20) =0, x(1) = fol x(s)dg(s)}. We define L : domL C X — Z by Lx = x™(¢t)
and N : X - ZbyNx = f (t, x(t),x'(®), ..., x"’l(t)) + e(t). Then, the boundary value
problem (1.1)—(1.2) becomes

Lx = Nx

We shall discuss existence results for (1.1)—(1.2) in the following cases.

Case I: @ = &, [15"~\dg(s) = 1, [ s"dg(s) # 1, g(1) = 1, 8(0) = 0

Case 2: = 0, [y s"dg(s) # 1,g(1) = 1, g(0) =0

3. EXISTENCE RESULTS

We shall use the following fixed point theorem of Mawhin [8] to obtain our existence
results.
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Theorem 3.1. Let L be a Fredholm operator of index zero and let N be L — compact on 2.
Assume that the following conditions are satisfied:

(i). Lx # ANx for every (x, A) € [(domL \ KerL)N d§2] x (0, 1)

(ii). Nx € ImL foreveryx € KerL N a2

(iit). deg(J QN |y ankerrs 2N Ker L, 0) # 0

Then, the equation Lx = Nx has at least one solution in domL N 0.

‘We shall first consider Case 1.

Lemma 3.1 If o = S, [[5""1dg(s) = 1, [y s"dg(s) # 1, g(1) = 1, 8(0) = 0, then,
(i). KerL = {x € dom{, x=ct" LceRtel0, 1]}1
(i) ImL={y e Z: [, [ ;2 y@Ddt---dr,— [y [y o' Jo* y(r)dTi - - dT,dg(s)

=0}

Proof. (i). For x € KerL, we have x" = 0. Hence, x(t) = ap+at +axt>+- - - +a,_ 11" ",

a; € R. In view of x’(0) = x"(0) = --- = x"2(0) = 0 we obtain x(t) = ag + a,_t""!
x(&)=ag+ ay,_1E"'. Froma = (2;11)!, and noting that x”~D(0) = (n — 1)!a,_; we get
-1 (-1

(n — Dlay,—y = x""D(0) = ax(§) = ap &

gnfl é:nfl

which implies that ap = 0.
From x(1) = fol x(s)dg(s), we derive a,_; = a,_, /01 s"ldg(s) or a,_ (1 - 01 sl
dg(s)) =0
In view offo1 s"’ldg(s) =1, wehave KerL = {x € domL : x = ct"™', ¢ e R}
(i) We next show that

1 T T
ImL:{yeZ:// ~-~/2y(rl)dr1--~drn
0o Jo 0
1 s T ()
- / / / / y(t)dt - - - dt,dg(s) = 0} 3.1
o Jo Jo 0

To do this, we consider the problem

xM(@) = y() (3.2)
We show that Problem (3.2) has a solution x(#) satisfying

(n— 1)
En—l

1
x"D(0) = x(), X'(0)=x"0)=x""P0)=0, x(I)= / x(s)dg(s)
0
3.3)

if and only if

I ro 15) 1 ps p1p o
f/ f y(n)drlmdrn—/// / YT -+ dTydg(s) = 0
0 0 0 0 0 0 0

(3.4)
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Suppose (3.2) has a solution x(¢) satisfying (3.3) then from (3.2) we have

! (O)t

x(t) =x(0) + + .. _{_; (n— 1)(0)tn 1
(n—1D)!

[ [ e
=X(O)+ mll1_lA /(; /0 y(Tl)dTI - dr,

(n—1) 1 T T
X(I)ZX(O)-FX—(O)-F/ / / 2y(ﬁ)dﬁ-"dfn (3.5)
(n—1)! o Jo 0
1
=/0 x(s)dg(s)

1 t 7 T
— / [X(O) + 1 x(n—l)(())sn—l + / / e / ’ y(Tl)dTI AN d'[n:| dg(s)
0 (n— D! o Jo 0

1 1
— x()g(1) + ———x=D() / 5" dg(s)
=1 )

1 s T 2]
+ / / / - / y()dr - - - dr,dg(s)
0o Jo Jo 0

Since fol s"'dg(s) = 1 we obtain from (3.5) and (3.6) that

1 T 1) L ps pm 1)
/ / / y(zdr -+ -d, —/ / / / y(zdr -+ -dr,dg(s) =
0 0 0 0 0 0 0

If however (3.4) holds, then setting

t Tn (%)
x(t) = dr"! +f / / y(t)dt - - - dr,
0 JO 0

where d is an arbitrary constant, then x(¢) is a solution of (3.2) satisfying (3.3). O

(3.6)

Lemma 3.2. If the conditions of Lemma 3.1 holds then
(i) L : domL C X — Z is a Fredholm operator of index zero and furthermore the linear
continuous projection Q : Z — Z can be written as

n! b °
o= [ [ [
1= [y sndg(s) LJo Jo 0
1 s Tn 1)
_ / / / / y(rl)dt1-~-d‘fndg(5)i|
0 0 0 0

(ii) Let P : X — X be defined as
Px = x"D0)"! (3.7)
Then, the generalized inverse K, : ImL — domL N Ker P can be defined as

t pTy ) E 1)
K,,y:/ / / y(fl)dfl"'dfn—/ / / y(rdr - - - dT,dg(s)
o Jo 0 0o Jo 0

(i) |1Kpyll < 2lIyll, forall y € ImL.
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Proof. (i). For y € Z, we define the projection Q as

n! L orm ©
Oy=——7—"— [/ f / y(z)dt -+ - d,
1— [, sndg(s) LJo Jo 0

1 N 2
_ / / / y(‘Cl)dl'l"‘dTndg(s)]
0 Jo 0

Lety; =y — Q,, then

1 p1p 123 L ps prm 1)
/ / / yi(rdr - - -dt, —/ / / / yi(r)dry - - dt,dg(s)
o Jo 0 o Jo Jo 0
1 i %) 1 K i %)
=[] [ Cadnan = [ [T [T ywdn - dndso)
o Jo 0 o Jo Jo 0

(1 — fol s"dg(s))

— Oy ,
n:

Thus, yy € ImL and hence Z = ImL + 9. Since ImL NN = {0} we conclude that
Z = ImL & N and therefore

dimKerL = dim® = CodimImL =1

=0

Therefore, L is a Fredholm operator of index zero.
To prove (ii), we define the generalized inverse K, : ImL — domL N Ker P as

t K (%) 3 s 12}
pr:/ / / y(rl)d‘[l"'dtn_/ / / y(ﬁ)dl’]'-'d‘fn
0 Jo 0 0 Jo 0

Now for y € ImL, we have

(LK,) y(t) = [(K,y) 0]™ = y)
and for x € domL N Ker P, we get

t K 1) & s ©
(K,,L)x(t):/ / / x(”)(rl)drl~-~drn—f / / x™(t)dr - - - d,
0 JO 0 0 0 0

x*=D(0) 1 x=D(0) !
— ) — =l T M en—
x(1) 1) x(&)+ (n—l)!é
In view of x € domL N Ker P, Px = x"~D(0)t""! and x®*Y(0) = ax(¢) = (’g;ff!x(é) we
obtain

(K,,L) x(t) = x(1)

We conclude that K, = (L|somrrkerr) -
To prove (ii) we note that from the definition of K, we derive that

1 1 1
1Kl = [ [ [ s a,
0 0 0
1 1 1
+/ / / y(lde -+, = 21yl
0 0 0

t e o
(K];y)/(t) = / f / y(-’:l)d-[l ...d-L—n
0 JO 0
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1(Kpy) lloo < Ilyll1

(n—1)
(05 e = I
Thus,
1K,y < 2]yl O

Theorem 3.2. Let f : [0, 1] x R"* — N be a continuous function and assume that
(A1) There exist functions a\(t), . .., a,(t), r(t) € L'[0, 1] such that for all (x1, X2, . .., X,)
eN, tel0,1]

|f Cerxa, e ) | <) @@l + (@)
i—1

(A2) There exists a constant M, > O such that for x € domL, if x" V(@) > M, for all
t €10, 1] then

1 s ™ (%)
/ / / y(rdr; - rn—/ / / / y(z)dr -+ - dv,dg(s) #0
0 0 0 0

(A3) There exists a constant M, > 0 such that for alld € N, |d| > M, then either

d-ON(d)>0 or d-QN@d) <0 (3.8)
Then, for e(t) € L'[0, 1], the boundary value problem (1.1)- (1.2) with o = (;‘n;,ll)'

fol s"ldg(s) = 1, fol s"dg(s) # 1 and g(1) = 1, g(0) = 0 has at least one solution in
C" 1[0, 1] provided Y, lla; |l < %

To prove Theorem 3.2, we shall first establish the following lemmas.

Lemma 3.3. Let {2, = {x € domL\KerL : Lx = ANx, A € (0, 1]}. Then {2, is a bounded
set in X.

Proof. Let x € (2. We assume that Lx = ANx,0 < A < 1. Then, Nx € ImL = Ker Q and
hence from (A2) there exist 7y € [0, 1] such that |[x"~D(#)| < M;. Then

To
x" D) = x"V(0) — / x"(s)ds
0

IPx|l = [x"~O)] < My + | Nx|; (3.9)
Forx € {,,x e domL \ KerL,then (I — P)x € domL N Ker P
(I — P)x|| = 1K, LU — P)x|| < |KpLx|| <2||Lx|ly <2|INx|h (3.10)

where [ is the identity operator on X.
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Using (3.9) and (3.10) we obtain
Ixl =11Px+ (I — P)x|| < [|[Px|| + I = P)x|| <M+ 3[[Nx| (3.11)

By (A1) and the definition of N, we obtain

1
INx|; < / If (5, x(5), X' (5), ..., x"7D(s5)) + e(s)lds
0

n . (3.12)
< Hailh oo + 1l le lly < D lagllile | +1rlly + lelly
i=1 i=1
Combining (3.11) and (3.12), we obtain
3 +3 + M
e < it Sl £00 3.13)

1 =33 llaills
From (A1) and (3.13), we get

n
X1 < 3M3 Y llailh + 171l + lell,
i=1

Therefore, (2, is bounded in X. [
Lemma 3.4. The set (% = {x € KerL : Nx € ImL} is a bounded set in X.
Proof. Letx € (%, x e dt" !, d e %, t € [0, 1] and QNx = 0. Therefore,

1 T T
/ / / z[f (tl,dtffl,d(n— D" 2, ..., dn — 1)!)+e(rl)]drl~-~dt,,
o Jo 0

1 K ™ T
_/ f f .../Z[f(,hdrln—l’d(n—1)1“*2,...,d(n—1)!)
0 0 0 0

+e(ty)]dr - --dt,dg(s) =0
From (A2) there exists #y € [0, 1] such that |x~D(0)| < M,. Thatis |(n — 1)d < M;. Hence,
Il = Max{iIxlloos - -, 16" lloc} = (I1x" Pl < M1}

Therefore, (2, is bounded in X. [

Lemma 3.5. Let

2 ={xeKerL: x+(1—X1)0Nx =0, 1e[0,1]} (3.14)
and

2 ={xeKerL: = x+(1—-X1N0ONx =0, Ael0,1]} (3.15)
Then Q3+ and §2; are bounded in X provided (3.14) and (3.15) are satisfied, respectively.

Proof. Letx € 2. Then, there exists d € R such that x(t) = d¢"~'. From the first part of
(3.8) we have for |d| > M,,d - ON(d) > 0 and from (3.14) we obtain

(1 —2) ONx = —hx (3.16)
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If A = 0, it follows that Q Nx = 0 and therefore Nx € KerQ = ImL, thatis Nx € () and
by Lemma 3.4 we can deduce that ||x|| < M. However, if > € (0, 1] and |d| > M, then, by
assumption (A3) we obtain

0<(1—MNdONW)=—Ald*> <0

which is a contradiction. Thus, ||x|| = |d| < M,;. Therefore, Q;L is bounded. By a similar
argument we can prove that {2; is bounded in X. [

Theorem 3.3. Let the assumptions (Al)—(A3) hold. Then, problem (1.1)—(1.2) has at least
one solution in X.

Proof. As a consequence of Theorem 3.2, we only show that all the conditions of
Theorem 3.1 are fulfilled. Let £ be a bounded subset of X such that | J;_, 1 C £ where
(s = .Q;’ if (3.14) holds or {23 = (25 if (3.15) holds. It is easily seen that conditions (i) and
(i) of Theorem 3.1 are satisfied if we use Lemmas 3.3 and 3.4. To verify the third condition
we apply the invariance under a homotopy property of the degree. Let

Hx,A\)==FAx+ (1 —X)ONx
andlet : ImQ — KerL be the identity operator. By Lemma 3.5 we know that H(x, 1) # 0
for (x,A) € KerL N af2 x [0, 1]. Therefore,
deg (ONlkerr, 2N KerL,0) =deg (H(-,0), 2N KerL, 0)
=deg (H(-,1),2N KerL,0)
=deg (I, 2N KerL,0) = %1
This proves Theorem 3.3. [

Next, we consider Case 2. By using the same procedure as in the proof of Lemma 3.1 and
3.2, we can prove the following lemma.

Lemma 3.6. If « =0, fol s"dg(s) #0, g(1) =1, g(0) =0, then

(i) KerL ={x edomL : x =d, deR, tel0,l1]}

(ii) ImL = {y € Z : [y [7"-- [ y(@)dty - -dt, — [y [3 [7- [ y(x)dr - - d,
dg(s))

(iii) L : domL C X — Z is a Fredholm operator of index zero and furthermore, the linear
continuous projection Q : Z — Z can be defined as

n! 1 ™ (%)
Qy=]—|:/ / / y(zdzy -+ - dr,
1— [, s"dg(s) LJo Jo 0

1 s Tn (2]
_/ / / / y(‘[l)dt1~--d‘[ndg(s)i|
0o Jo JO 0

(iv) The linear operator K, : ImL — domL N Ker P can be written as
t Tn v}
pr:/ / / y(fl)dr]"'d‘[n
0 Jo 0

IKpylloo < llylli, forall yeImL

and
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Theorem 3.4. Ler f : [0, 1] x R* — N be a continuous function. Assume that the condition
(Al) in Theorem 3.2 holds as well as the following two additional conditions

(A4) There exists a constant M| > 0 such that for any x € domL, if x(t) > M for all
t €10, 1], then,

1 T 123 1 K T %)
// / y(tl)dtl---drn—/// / (@t - - dradg(s) # 0.
0 0 0 0 0 0 0

(A5) There exists a constant M, > 0 such that for d € R, if |d| > M, then either
d-QONd)>=0 or d-QON() <0.

Then for every e(t) € L'[0, 1] the boundary value problem (1.1)— (1.2) has at least one

solution in C"~'[0, 1] provided Yoillailh < %

Proof. Let (2| be defined as in Lemma 3.3. We prove that (2| is bounded in X. If x € (2,
then following the procedure in the proof of Lemma 3.3, there exist #y € [0, 1] such that
|x(t0)] < M. Then, from x(0) = x(to) — [, x'(s)ds we get

X)) < M + 1%l
Since x'(0) = x”"(0) = - - - = x*2(0) = x"~D(0) = 0 we derive

%" Nloo < llx" 1 < 1x" lloo

5 Moo < X" < 11Xl

-1
[ Plloe < IxP11 < 1™ oo

IPx] = 1x(O)] < M + ¥l < M + X" lloo < -+ < M+ [[x™]y

(3.17)
=M+ |[Lx|ly =M+ |[Nx]
where P : X — X is defined as Px = x(0)
(I = P)xll = IK,L(I = P)x|| < ||K,Lx|l < [[Lx]| < [[Nx]|| (3.18)
and from (3.17) and (3.18) we obtain
lxll < [I1Px|l + I — P)x|l =< M +2|[Nx| (3.19)
By (A1) and the definition of N we obtain
1
Nl = [ 1 (5560 X6 2 6) el
0
< D laililx e + 17l + lelly (3.20)

i=1

n
<Y llaillilixll + 1l + llells

i=1
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From (3.19) and (3.20) we obtain
207l + 2llells + M
xll = 7
1=2%70 llailh
The remainder of the proof of Theorem 3.4 is similar to the proof of Theorem 3.2. [

Theorem 3.5. Let the assumptions Al, A4 and A5 hold. Then problem (1.1)- (1.2) has at
least one solution in X.

Proof. The proof follows the same steps as in Theorem 3.3. [
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