
Contents lists available at ScienceDirect

Data in Brief

Data in Brief 19 (2018) 2163–2177
https://d
2352-34
(http://c

n Corr
journal homepage: www.elsevier.com/locate/dib
Data Article
Data on the rheological behavior of cassava
starch paste using different models

Modupe Elizabeth Ojewumi n, Kayode Gbolahan Oyeyemi,
Moses Eterigho Emetere, Joshua Olusegun Okeniyi
Covenant University, P.M.B 1023, Km 10, Idiiroko. Canaan Land, Sango Ota, Ogun State, Nigeria
a r t i c l e i n f o

Article history:
Received 30 April 2018
Received in revised form
21 May 2018
Accepted 27 June 2018
Available online 30 June 2018
oi.org/10.1016/j.dib.2018.06.112
09/& 2018 The Authors. Published by Else
reativecommons.org/licenses/by/4.0/).

esponding author at: Chemical Engineerin
a b s t r a c t

Proper selection of rheological models is very important in flow
characterization. These models are often used to evaluate
parameters that help in the characterization of food samples.
Rheological models also provide flow predictions for extreme
conditions where the flow nature of the fluid cannot be deter-
mined, hence the need for appropriate selection of rheological
models. The principal aim of this study is to suggest a rheolo-
gical model that best characterize the rheological behavior of
native cassava starch and to determine the effect of state vari-
ables like temperature and concentration on the accuracy of
rheological models. Five rheological models (i.e. Herschel-
Bulkley model, Robertson-Stiff model, Power-law model, Bing-
ham plastic model and Prandtl-Eyring model) were selected for
this study and these models were modified into statistical
models by the inclusion of the error variance (ε). The least-
square method was used in evaluating the various model para-
meters for each model. From this study, it was seen that the
Herschel-Bulkley model and the Robertson-Stiff model most
accurately described the rheological patterns in cassava starch
production. The sensitivity analysis of the different rheological
models also shows that the accuracy of the Herschel-Bulkley
model, Robertson-Stiff model and Power-law model is not sig-
nificantly affected by variations in temperature and concentra-
tion of the cassava starch. However, it was observed that the
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Bingham plastic model and Prandtl-Eyring model gave less
accurate predictions at higher concentration and lower tem-
perature respectively. A lot of the industrially accepted models
such as the Bingham plastic model may not necessarily be the
best model for characterization cassava starch production as
shown in this study, hence rheological model optimization is
recommended for further study.
& 2018 The Authors. Published by Elsevier Inc. This is an open

access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Specifications Table
ubject area
 Chemical Engineering

ore specific subject area
 Rheology

ype of data
 Table, graph, figure

ow data was acquired
 Laboratory and Modelling

ata format
 Raw, filtered and Analyzed data

xperimental factors
 Statistical modelling was used.

xperimental features
 Five rheological models (i.e. Herschel-Bulkley model, Robertson-Stiff

model, Power-law model, Bingham plastic model and Prandtl-Eyring
model) were selected for this study and these models were modified into
statistical models by the inclusion of the error variance (ε).
ata source location
 Ogun State, Nigeria

ata accessibility
 Data set is with this article
D

Value of the data

� The dataset will help to investigate the rheological properties of cassava starch.
� Data will assist in developing best model for cassava starch characterization using Statistical

optimization of five rheological models.
� Effect of state variables like temperature and concentration on the accuracy of rheological models

will be determined using the dataset.
1. Data

Dataset provided in this work revealed that investigations of rheological measurement does not
only involve flow behaviour of liquids, but also on solids deformation behaviour. This research
work examines the rheological behavior of native cassava starch as well as the factors affecting the
rheological behavior of cassava starch. Rheological characterization using rheological models as
well as sensitivity analysis of these models were also examined. The model specification of this
project was limited to models that relate shear stress to shear rates.

Rheological properties measurement of materials must be subjected to a precised, controlled and
quantifiable strain over a given time and the material parameters such as modulus, hardness, visc-
osity, stiffness, strength or toughness are determined by considering the subsequent forces [1,2].
Rheological measurements show how materials react under defined conditions- its performance
during practical processing such as mixing, sheeting, binding, baking and proofing [3–8]. In recent
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Nomenclature

A Model parameter for Roberston-Stiff,
Prandtl-Eyring fluid model

B Model parameter for Roberston-Stiff,
Prandtl-Eyring fluid model

f(γ, β) General expression for rheological models
Matlab Matrix Laboratory Software
M Number of model parameters
N Number of data points
R2 Coefficient of determination
RMS Residual Mean Square in Ibf2/100ft4

RSS Residual Sum of Square in Ibf2/100ft4

m value of model parameter
ε Random error in Ibf/100 ft2

τ Shear stress in Ibf/100 ft2

τ0 Yield stress in Ibf/100 ft2

μp Plastic viscosity, Ibf s/100 ft2

γ Shear rate in s�1

γo Yield shear rate
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times, the utilization of starch has grown frommere domestic use to highly intensive industrial use. It
is used either in its native form or after chemical or physical modifications. Starch is not only a basic
food in the human or animal diet; it is also broadly used as raw material in the food industry as well
as textile, paper and other industries. Starch is mostly in granular form and has different shapes and
sizes depending on its botanical source [9]. Starch is a glucose polymer comprising macromolecules of
amylopectin and amylose [10,11]. Texture is an essential factor in consumers’ perception of food
quality and has been studied for several years. Rheological profiling offers an unparalleled insight into
the textural, handling, stability and appearance characteristics of starch-based products. Starch
functions by building structures in a formulation or recipe. It is the presence of such structures that
imparts texture, handling, suspending and appearance attributes to a formulation. The importance of
rheological models in the characterization of food behavior cannot be over emphasized. Rheological
models are used, together with experimental data, to estimate values of parameters that help char-
acterize the rheological behavior of a food samples. One such model is that of Herschel Bulkley model
which has been used extensively to characterize foods that exhibit yield stress. Rheological models
sometimes called Flow models, this can also be used to derive expressions for volumetric flow rates
and velocity profiles in tube and channel flows, and in the analysis of heat transfer phenomenon.
Quite a number of these models can be encountered in rheology literature [12]. The applied force is
essential for letting the fluid to flow because of fluid friction and this friction has to be overcome
before the fluid can flow. Rheological models give a surmised description of fluids by communicating
the mathematical relationship between shear stress and shear rates [13]. Mathematical model is
regarded as a decision tool that assists decision makers in effectively dealing with complex issues
such as rheology and oil spillage on soil surfaces. Such information can be key in decision-making for
further experiments and can enable the development of robust and reliable protocols for chemical
synthesis, analytical methods or biological assays [14].

There are different models used to measure rheological properties. This research work used
models such as power law model, Herschel-Bulkley model, Bingham Plastic model, Prandtl-Eyring
model and Robertson-Stiff model. This work did not explain all the available testing methods and
general reviews of rheology [15–17]. A lot of work has been done on rheological testing of foods
[12,18–21] and cereal products [22–25].
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2. Experimental design, materials and methods

Cassava starch tubers were purchased from the local market.
2.1. Flow properties measurement

The sample solution was prepared by dissolving the required quantity based on the required
composition needed. 20.00, 30.00, 40.00, 50.00 g of the cassava starch powder was carefully weighed
with the aid of a weighing balance and was dissolved in a 400ml of clean warmwater inside a 600ml
beaker until a solution was formed so as to make a reconstituted product. The sample was transferred
into the temperature controlled water bath in order to form an aqueous gel which was later placed in
a cold water bath (4 °C) medium so as to facilitate the drop in the temperature of the gel to 70, 60, 50,
40 and finally 30 °C. The Ofite viscometer was used in determining the flow characteristics in terms of
shear rate and shear stress. A bob of radius 1.8415 cm was used at speeds of 3, 6, 30, 60, 100, 200, 300
and 600 rpm to effectively determine the dial deflection so as to evaluate the shear stress and shear
strain.

2.2. Statistical evaluation of rheological models

The least square method was used in evaluating model parameters for each model based on the
data obtained from the rheological experiment. This method was chosen due to the following
assumptions:

I. The scatter follows a Normal distribution
II. Errors are random errors that are independent and identically distributed with mean of zero and

variance, σ2.

Considering P number of data points (τi,γi), least-square is expressed mathematically in Eq. (1)
below.

RSS ðmÞ ¼
XP

i ¼ 1
ðτi� f ðγi; mÞÞ2 ¼ A2 ð1Þ

RSS (m) representing the residual sum of squares.
A represents random errors.

m representing the value(s) of model parameters that gives minimum RSS (also called Least-Square
estimators). m has to be determined such that RSS (m) will be minimum. Therefore, for the sum of
squares to be minimum the partial differential δRSSðlÞ

δl ¼ 0. The experimental data were fitted to the
models using the method above on MATLAB 8.0 to obtain model curve-fits, their corresponding
model parameters, residual plots, RMS and RSS values which are necessary for model optimization.

2.3. Preparation of starch from the cassava roots

The cassava tubers purchased were peeled and washed thoroughly. After which the roots were
crushed and grinded in the market using a local grinder. The grinded cassava was then soaked in
water and screened by passing it through a screening bag to remove the shafts and other unne-
cessary products. The filtrate was then allowed to settle for a period of one and a half days, after
which the solution was dewatered by a simple process of decantation. The resulting product was
starch of a moisture content of 36.5%.

2.4. Determination of moisture content of starch

The moisture content was evaluated using [26–28]. 2.00 g of the starch was weighed into two
different empty Petri dishes. The dishes were then placed into an oven at 150 °C for 4 h. The dried
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starch was immediately transferred into a desiccator until it cooled, and it was then weighed. The
weight-loss expressed as a percentage was taken as the percent moisture. The result was obtained as
the average of the two independent determinations from both samples.

%Moisture¼ W1�W2
W3

� 100% ð2Þ

where:

W1¼ weight of sample 7 Petri dish before drying (g)
W2 ¼ Weight of sample 7 Petri dish after drying (g)
W3 ¼ Weight of sample (g)
3. Rheological experiment

20.00, 30.00, 40.00, 50.00 g of the cassava starch was carefully weighed with the aid of a weighing
balance and was dissolved in a 400ml of clean warm water inside a 600ml beaker until a solution was
formed so as to make a reconstituted product. The sample was transferred into the temperature con-
trolled water bath in order to form an aqueous gel which was later preferably placed in a cold water bath
(4 °C) medium so as to facilitate the drop in the temperature of the gel to 70, 60, 50, 40 and finally 30 °C.
The Ofite viscometer was used in determining the flow characteristics in terms of shear rate and shear
stress. A bob of radius 1.8415 cm was used at speeds of 3, 6, 30, 60, 100, 200, 300 and 600 rpm to
effectively determine the dial deflection so as to evaluate the shear stress and shear strain.

3.1. Determination of gelatinization temperature

A thermometer was inserted into the beaker before placing it into the water bath. The solution was
stirred continuously until its colour became milky and thickened. This is the gel point and the
temperature at this point was read off as the gelatinization temperature. This was done for each
starch concentration.
4. Rheological model optimization

Residual mean squares, Residual sum of squares and Coefficient of determination used as statis-
tical tools to evaluate the error variance for each model.

(i) RMS¼ RSS
Degreeoffreedom ¼ RSS

N�M

RMS representing the residual mean squares
N representing the number of data
M representing the number of parameters in a model

(ii) R�squared¼ 1� RSS
TSS

RSS representing the Residual sum of squares.
TSS representing the Total sum of squares.

iii) Residuals¼ τ�τ0

τ representing the observed values.
τ0 representing the predicted values.

The residual plot is a graph showing the residuals vs the independent variable (γ).



Fig. 2. Residual plot of the Bingham plastic model.

Fig. 3. Experimental data and fitted Power-law flow curve.

Fig. 4. Residual plot of the Bingham plastic model.

Fig. 1. Experimental data and fitted Bingham plastic flow curve.
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Fig. 6. Residual plot of the Herschel-Bulkley model.

Fig. 5. Experimental data and fitted Herschel-Bulkley flow curve.
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4.1. Model curve-fits and their corresponding residual plot analysis

4.1.1. Bingham plastic (τ ¼ τo þ μp γ)
Experimental data was fitted into the Bingham plastic model and the corresponding model

parameters were evaluated. Fig. 1 represents the fitted model while Fig. 2 represents the corre-
sponding residual plot. The model parameters τo and μp were found to be

τo ¼ 9.8566 Ibf/100 ft2 (Yield stress)
μp ¼ 0.0647 Ibf s/100 ft2 (Plastic viscosity)

From the above plot it can be clearly seen that the Bingham plastic model gives a very poor fit to
the experimental data.

Observations from the residual plot show that the residual do not follow a random distribution or
pattern and almost all the residuals are far away from the reference line (residual ¼ 0) indicating a
poor fit. Residuals between shear rate of 102.18 s�1 to 510.9 s�1 lie above the reference line (residual
¼ 0), that is there are positive residuals while the rest of the residual point lie below the reference
line indicating negative residuals.

4.1.2. Power-law model (τ ¼ K γ n)
The power law model gave a better fit than the Bingham plastic model as illustrated in Fig. 3,

which shows the fitted power-law model. The model parameter K, γ, n were evaluated and found to
be:

K ¼ 1.2831 lbf s/100 ft2 (Consistency index) which depicts the thickness of the fluid.
n ¼ 0.5789 (Flow index) indicates that the fluid is Pseudo-plastic i.e. no 1



Fig. 8. Residual plot of the Robertson-Stiff model.

Fig. 7. Experimental data and fitted Robertson-Stiff flow curve.

Fig. 9. Experimental data and fitted Prandtl-Eyring flow curve.
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Fig. 4 illustrates the residual plot of the power-law model. It can be observed from the plot that the
scatter follow a random distribution along the entire range of shear rates. It can also be seen that
compared to the Bingham plastic model the residual points of the power-law model are closer to the
reference line (residual ¼ 0). Both points indicating that the model gives a good fit.



Fig. 10. Residual plot of the Prandtl-Eyring model.

M.E. Ojewumi et al. / Data in Brief 19 (2018) 2163–2177 2171
4.1.3. Herschel Bulkley model (τ ¼ τo þ K γn)
The Herschel-Bulkley model which is just a modification of the power-law model by the inclusion

of the yield stress (τo). From Fig. 5, it can be observed that the Herschel-Bulkley model gave a very
good fit with model parameters:

τo ¼ 1.6825Ibf/100 ft2 (Yield stress)
K¼ 0.9893Ibf.s/100 ft2 (Consistency index)
n ¼ 0.6138 (flow index)

Although the fitted flow curves of both the power-law and the Herschel-Bulkley look alike,
dissimilarities can be seen in their residual plots (see Fig. 6).

Fig. 6 shows the residual plot of the Herschel-Bulkley model. It can be ascertained from the plot
that the scatter follow a random distribution along the entire range of shear rates. It can also be seen
that compared to the Bingham plastic model and the power-law model, the residual points of the
Herschel-Bulkley model are closer to the reference line (residual ¼ 0). Also since the Herschel-
Bulkley model gave better predictions than the power-law model throughout the entire range of
shear rate (especially at higher shear rates), the Herschel-Bulkley can therefore be depended upon to
give accurate predictions at higher shear rates outside the range used in this project (Fig. 7).

4.1.4. Robertson-Stiff model (τ ¼ A (γoþ γ)B)
Robertson-Stiff model is quite different from the other models being the only model with the yield

shear rate (γo). The model parameters were evaluated to be:

A ¼ 1.1314 Ibf s0.4026/100 ft2 (the unit of A depends on the value of B)
B ¼ 0.5974
γo ¼ 5.1561 s-1

Although the fitted flow curves for Robertson-Stiff, power-law and the Herschel-Bulkley model all
look similar, dissimilarities can be seen in their residual plots (see Fig. 8).

From Fig. 8 it can be seen that the scatter of the residual plot follows a random distribution along
the entire range of shear rates. The residual points are also close to the reference line (residual ¼ 0).
The model also gives a good fit.

4.1.5. Prandtl-Eyring model (τ ¼ Asinh-1(γ=B)
Fig. 9 represents the fitted flow curve for the Prandtl-Eyring model. The model parameter A and B

where estimated thus:

A ¼ 26.7032
B ¼ 159.0655
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Although it can be observed from the fitted flow curve that the model does not fit the data
accurately, this model however fits better than the Bingham plastic model.

Fig. 10 shows the residual plot for the Prandtl-Eyring model. From this plot it can be seen that the
scatter are not randomly distributed, and the residual points are far away from the reference line
(residual ¼ 0). This suggests that the model does not accurately give a good fit. However in com-
parison with the Bingham plastic model, the residual points of the Prandtl-Eyring model are closer to
the reference line (residual ¼ 0). This indicates that the Prandtl-Eyring model gives a much better fit
than the Bingham plastic model.
5. Sensitivity analysis

Sensitivity analysis was carried out on each model using the multiple-factor-at-a-time approach
(MFAT). The influence of state variables like concentration and temperature on the accuracy of the
Bingham Plastic model was examined. Fig. 14 shows the result when the sensitivity analysis at
constant concentration and varied temperature was carried out on the Bingham plastic model
(Tables 1–11).
Table 2
Sensitivity analysis of the Bingham plastic model at constant concentration.

Bingham plastic model 50 g/L concentrationTemperature °C

RSS Ibf2/100ft4 RMS Ibf2/100ft4 R2 Evaluated parameters

70 138.2484 23.0414 0.9626 τo ¼ 9.8566 Ibf/100 ft2

μp ¼ 0.0647 Ibf s/100 ft2

60 181.5753 30.26255 0.9596 τo ¼ 9.8566 Ibf/100 ft2

μp ¼ 0.0647 Ibf s/100 ft2

50 253.0253 42.17088333 0.9555 τo ¼ 9.8566 Ibf/100 ft2

μp ¼ 0.0647 Ibf s/100 ft2

40 264.9318 44.1553 0.9621 τo ¼ 9.8566 Ibf/100 ft2

μp ¼ 0.0647 Ibf s/100 ft2

30 287.4594 47.9099 0.9672 τo ¼ 9.8566 Ibf/100 ft2

μp ¼ 0.0647 Ibf s/100 ft2

Table 1
Result summary of rheological optimization using least-square method at 700 C and 50 g/L.

Model RSS Ibf2/100ft4 RMS Ibf2/100ft4 R2 Evaluated parameters

Bingham Plastic 138.2484 23.0414 0.9626 τo ¼ 9.8566 Ibf/100 ft2

μp ¼ 0.0647 Ibf.s/100 ft2

Power-law 3.6559 0.6093 0.999 K ¼ 1.2831 Ibf s/100 ft2

n ¼ 0.5789
Herschel-Bulkley 0.661 0.1322 0.9998 τo ¼ 1.6825 Ibf/100 ft2

K ¼ 0.9893 Ibf s/100 ft2

n ¼ 0.6138
Robertson-Stiff 1.0001 0.2 0.9997 A ¼ 1.1314 Ibf s0.4026/100 ft2

B ¼ 0.5974
γo ¼ 5.1561 s-1

Prandtl-Eyring 89.9357 14.9893 0.9757 A ¼ 26.7032
B ¼ 159.0655



Table 4
Sensitivity analysis of the power-law model at constant concentration.

Power-law model 50 g/L concentrationTemperature °C

RSS Ibf2/100ft4 RMS Ibf2/100ft4 R2 Evaluated parameters

70 3.6559 0.6093 0.999 K ¼ 1.2831 Ibf s/100 ft2

n ¼ 0.5789
60 5.7666 0.9611 0.987 K ¼ 1.5111 Ibf s/100 ft2

n ¼ 0.5697
50 3.1803 0.5301 0.9994 K ¼ 1.7794 Ibf s/100 ft2

n ¼ 0.5629
40 7.415 1.2358 0.9989 K ¼ 1.7685 Ibf s/100 ft2

n ¼ 0.5786
30 5.3505 0.8917 0.9994 K ¼ 1.6044 s/100 ft2

n ¼ 0.6076

Table 5
Sensitivity analysis of the power-law model at constant temperature.

Power-law model 70 °C TemperatureConcentration g/L

RSS Ibf2/100ft4 RMS Ibf2/100ft4 R2 Evaluated parameters

50 3.6559 0.6093 0.999 K ¼ 1.2831 Ibf s/100 ft2

n ¼ 0.5789
75 12.4135 2.0689 0.9984 K ¼ 2.0729 Ibf s/100 ft2

n ¼ 0.5655
100 12.7359 2.1226 0.9994 K ¼ 2.4644 Ibf s/100 ft2

n ¼ 0.6119
125 24.255 4.0425 0.9993 K ¼ 4.0425 Ibf s/100 ft2

n ¼ 0.5689

Table 3
Sensitivity analysis of the Bingham plastic model at constant temperature.

Bingham plastic model 70 °C TemperatureConcentration g/L

RSS Ibf2/100ft4 RMS Ibf2/100ft4 R2 Evaluated parameters

50 138.2484 23.0414 0.9626 τo ¼ 9.8566 Ibf/100 ft2

μp ¼ 0.0647 Ibf s/100 ft2

75 302.7926 50.4654 0.9618 τo ¼ 15.3025 Ibf/100 ft2

μp ¼ 0.0947 Ibf s/100 ft2

100 720.1774 120.0296 0.9672 τo ¼ 20.8591 Ibf/100 ft2

μp ¼ 0.1580 Ibf s/100 ft2

125 1493.3 248.8857 0.9541 τo ¼ 29.9058 Ibf/100 ft2

μp ¼ 0.1909 Ibf s/100 ft2
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Table 6
Sensitivity analysis of the Herschel-Bulkley model at constant concentration.

Herschel-Bulkley model 50 g/L concentrationTemperature °C

RSS Ibf2/100ft4 RMS Ibf2/100ft4 R2 Evaluated parameters

70 0.661 0.1322 0.9998 τo ¼ 1.6825 Ibf/100 ft2

K ¼ 0.9893 Ibf s/100 ft2

n ¼ 0.6138
60 2.2883 0.4577 0.9995 τo¼ 2.0336 Ibf/100 ft2

K ¼ 1.1324 Ibf s/100 ft2

n ¼ 0.6085
50 1.0119 0.2024 0.9998 τo ¼ 1.6396 Ibf/100 ft2

K ¼ 1.4561 Ibf s/100 ft2

n ¼ 0.5897
40 2.0358 0.4072 0.9997 τo ¼ 2.0358 Ibf/100 ft2

K ¼ 1.3242 Ibf s/100 ft2

n ¼ 0.6175
30 0.6807 0.1361 0.9999 τo ¼ 2.2074 Ibf/100 ft2

K ¼ 1.2596 Ibf s/100 ft2

n ¼ 0.6403

Table 7
Sensitivity analysis of the Herschel-Bulkley model at constant temperature.

Herschel-Bulkley model 70 °C TemperatureConcentration g/L

RSS Ibf2/100ft4 RMS Ibf2/100ft4 R2 Evaluated parameters

50 0.661 0.1322 0.9998 τo ¼ 1.6825 Ibf/100 ft2

K ¼ 0.9893 Ibf s/100 ft2

n ¼ 0.6138
75 3.0026 0.6005 0.9996 τo ¼ 3.3595 Ibf/100 ft2

K ¼ 1.4439 Ibf s/100 ft2

n ¼ 0.6142
100 2.9597 0.5919 0.9999 τo ¼ 3.1689 Ibf/100 ft2

K ¼ 1.9776 Ibf s/100 ft2

n ¼ 0.6416
125 2.0358 0.4072 0.9997 τo ¼ 3.1894 Ibf/100 ft2

K ¼ 3.4542 Ibf s/100 ft2

n ¼ 0.5908

Table 8
Sensitivity analysis of the Robertson-Stiff model at constant concentration.

Robertson stiff model 50 g/L concentrationTemperature °C

RSS Ibf2/100ft4 RMS Ibf2/100ft4 R2 Evaluated parameters

70 1.0001 0.2 0.9997 A ¼ 1.1314 Ibf s0.4026/100 ft2

B ¼ 0.5974
γo ¼ 5.1561 s-1

60 2.4003 0.4801 0.9995 A ¼ 1.3364 Ibf s0.4026/100 ft2

B ¼ 0.5877
γo ¼ 5.02071 s-1

50 1.2291 0.2458 0.9998 A ¼ 1.6428 Ibf s0.4026/100 ft2

B ¼ 0.5746
γo¼ 3.1561 s-1

40 2.9577 0.5915 0.9996 A ¼ 1.5688 Ibf s0.4026/100 ft2

B ¼ 0.5962
γo ¼ 4.8712 s-1

30 1.2911 0.2582 0.9999 A ¼ 1.4448 Ibf s0.4026/100 ft2

B ¼ 0.6230
γo ¼ 4.3726 s-1
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Table 11
Sensitivity analysis of the Prandtl-Eyring model at constant temperature.

Prandtl-Eyring model 70 °C TemperatureTemperature °C

RSS Ibf2/
100ft4

RMS Ibf2/
100ft4

R2 Evaluated
parameters

50 89.9357 14.9893 0.9757 A ¼ 26.7032
B ¼ 191.6690

75 230.7298 38.455 0.9709 A ¼ 37.9289
B ¼ 145.7596

100 404.8721 67.4787 0.9816 A ¼ 70.7152
B ¼ 197.3360

125 613.7895 102.2982 0.9811 A ¼ 76.8097
B ¼ 148.2323

Table 10
Sensitivity analysis of the Prandtl-Eyring model at constant concentration.

Prandtl-Eyring model 50 g/L concentrationTemperature °C

RSS Ibf2/100ft4 RMS Ibf2/100ft4 R2 Evaluated parameters

70 89.9357 14.9893 0.9757 A ¼ 26.7032
B ¼ 191.6690

60 110.5825 18.4304 0.9754 A ¼ 28.5214
B ¼ 146.8925

50 130.4108 21.7351 0.9771 A ¼ 31.3211
B ¼ 138.9497

40 170.0923 28.3487 0.9757 A ¼ 36.7871
B ¼ 159.6589

30 171.7857 28.631 0.9804 A ¼ 44.1196
B ¼ 191.6690

Table 9
Sensitivity analysis of the Robertson-Stiff model at constant temperature.

Robertson stiff model 70 °C TemperatureConcentration g/L

RSS Ibf2/100ft4 RMS Ibf2/100ft4 R2 Evaluated parameters

50 1.0001 0.2 0.9997 A ¼ 1.1314 Ibf s0.4026/100 ft2

B ¼ 0.5974
γo ¼ 5.1561 s-1

75 4.9243 0.9849 0.9994 A ¼ 1.7902 Ibf s0.4026/100 ft2

B ¼ 0.5871
γo ¼ 5.9465 s-1

100 3.9647 0.7929 0.9998 A ¼ 2.2377 Ibf s0.4026/100 ft2

B ¼ 0.6260
γo ¼ 4.0409 s-1

125 13.9958 2.7992 0.9996 A ¼ 3.7744 Ibf s0.4026/100 ft2

B ¼ 0.5799
γo ¼ 3.0094 s-1
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