Development Communication in Action

Building Understanding and Creating Participation

Andrew A. Moemeka

University Press of America
Chapter 12

Audience Participation and Message Effectiveness in Radio Broadcasting for Health Education: A case-study from Nigeria

Andrew A. Moemeka

This study examines the impact of participation on the effects of rural radio broadcasting on rural communities in Nigeria. It provided the opportunity to scientifically test the variable ‘participation’ as a key element in the success of development communication. The findings uphold the claim that target audience participation is positively related to the effectiveness of rural radio broadcasting. It also shows that physically taking part in an activity (physical participation) has the potential of radiating into the lives and actions of non-participants who are physically and/or emotionally near to the physical participant. Hence it supports the theoretical perspective of radiational participation.

Preamble
The prevalence and incidence of illness in rural communities are generally caused by communicable diseases - dysentery, measles, diarrhoea, typhoid fever, etc. These, of course, have their origins in unsanitary surroundings, poor eating habits and lack of proper medical care. The primary strategy for preventing the diseases, by modern methods, is to try to stop the chain of transmission with actions that would prevent the carrier from reaching and infecting others.
In many developing societies, sanitation and immunization are usually the first steps taken in attempts at reducing the danger and spread of such diseases. Because such preventive actions are novel methods of dealing with illnesses in rural communities, their acceptance has to be induced by information and nurtured by communication. But to be successful, such non-formal educational activities geared towards knowledge acquisition and utilization of modern health-care practices must take the socio-cultural contexts of the rural communities into account. For as Pettegrew (1988) has noted, "health communication dynamics are not embodied sufficiently or convincingly in only 'information versus persuasion' perspectives. All communication is contextually bound in situation and culture that, to a large extent, pre-determine health outcomes." Of course, Pettegrew was re-echoing in more forceful terms the observation by Gerbner and his associates (1982) to the effect that "the success or failure of educational and informational health campaigns depends largely on the broader cultural context in which they are injected." Appropriate utilization of cultural data, or what Tulloch & Lupton (1997, p. 92) have called "'just right' cultural effect" would eliminate the risk of semantic 'noise' therefore ensure efficient transfer of knowledge to attitudes and behavior.

The very essential cultural data that should be seriously taken into account include folk medicine and native curing practices, social organization of the family, education and literacy, religion and basic value system. Insufficient, or worse still, lack of, knowledge about these cultural data invariably affects the ability of modern medical personnel to win the attention of, let alone, the acceptance of modern medical and health-care practices by, rural inhabitants.

Knowledge of such cultural values and contexts cannot be fully taken into account by modern health personnel or by communication specialists unless there is effective interaction between them and the inhabitants of rural communities. Such interactions do obtain under the traditional delivery system where those who heal the sick are both physicians and therapists, as well as social norms protectors, concerned not only with the health of the individual but also with the welfare of the entire community. Under modern methods, this very necessary interactive atmosphere is almost non-existent. Yet it is inevitable for successful health education in the rural communities. This study will show that the creation of this enabling interactive atmosphere is not impossible when using modern medical methods; that it has as much impact under modern as it has under traditional method. The direct exchange of ideas can necessarily depend on modern communication; it has to be the mass "information" on the mutual exchange of ideas.

Literature Review

The medical (health) care, (Lynch 1980: 143, particularly associated with demographic structural variables etc) and cultural behaviors, knowledge about, and impact and/or how this behavior has since been affected by medical endeavors. Different approaches of over-riding predictive reality, and Mainman (1975) and Friedman (1983) hold that motivational factors are highly predictive. Brown (1978) discuss in detail the provision and utilization of health care. In particular, hold that life patterns of specific societies determine the health behaviors.

These studies were mainly over-riding predictive reality, and the motivation of the health personnel to care, attitude formation, behavior, and effective exchange of ideas and behavior toward health beliefs, through cultural change, religious beliefs, and attitudes of their dysfunction. These have been in use for centuries and behavior is to quietly or subtly discussed. The import of Lynch's...
Audience Participation and Message Effectiveness

... and immunization are tending the danger and spread of disease and their acceptance has to be encouraged, "health communication" or convincingly in only some. All communication is that, to a large extent, Ettedghew was re-echoing in her and his associates (1982) educational and informational to broader cultural context in view of cultural data, or what "just right" cultural effect" can therefore ensure efficient further.

... and medical and social contexts cannot be fully parallel or by communication between them and the context do obtain under the cover of, knowledge about these modern medical personnel to sense of modern medical and religious beliefs, concerned also with the welfare of the groups, this very necessary. Yet it is inevitable for communities. This study will have an interactive atmosphere is not methods; that it has as much rational method. The direct exchange of ideas consequent upon such interactions, do not always necessarily depend on, but are positively facilitated by, the impact of modern communication channels, that is, the mass media. However, it has to be the mass media turned from being instruments for "dumping information" on the people to being instruments for ensuring "enhancing mutual exchange of ideas and acquisition of knowledge".

Literature Review

The medical (health) care predisposition of individuals (Maykovich, 1980: 143), particularly of rural inhabitants, is almost invariably associated with demographic factors (age, sex, marital status, etc), social structural variables (education, race, occupation, income, family size, etc) and cultural beliefs (attitudes towards health and health services, knowledge about diseases, etc). Which of these wields the greatest impact and/or how the relationship among them affects health-seeking behavior has since been the subject of many scientific research endeavors. Different researchers have emphasized different factors as over-riding predictors of medical-care utilization. For example, Becker and Mainman (1975), Green (1959 & 1974), Hart, et al (1980), DiMatteo and Friedman (1982), stress psychological factors; Gochman (1971), Rosenstock (1969) and Vincent (1971) give the pride of place to motivational factors. Very specially relevant to this study is the cultural perspective. Brownlee (1978), Kleinman (1978) and Nall & Spielberg (1978) discuss in different contexts the impact of culture on health-care provision and utilization. Bullough (1974) and Snow (1974), in particular, hold that the socio-cultural values, norms, perceptions and life patterns of specific societal groups serve as unifying factors affecting the health behaviors of members of the groups.

These studies would seem to indicate that perception of symptoms and the motivation to seek medical care are all functions of learning and attitude formation, both of which are acquired through relevant education and effective exchange of ideas. The implication is that positive attitude and behavior towards modern health practices are possible mainly through cultural change. But folk health beliefs and behaviors, like religious beliefs, are very impervious to rational arguments or to proofs of their dysfunctions. This is mainly because they are rooted in time and have been in use for generations. The best way to deal with such beliefs and behavior is to recognize and appreciate them for what they are and quietly or subtly dispel their ascribed "unchangeability" status through discussion and the provision of relevant information. Herein lies the import of Lynch's (1969) observation that cultural change can best be
realized if health personnel understand their own culture as well as the culture of those individuals to be influenced, and that cultural change occurs more rapidly when the individuals who are experiencing the change feel a need for the particular change, realize some advantages in it, and can actively participate in planning and effecting the change.

While it is true that effective health education can be carried out using the interpersonal method of communication, it is generally held that where large population concentrations and/or widely-scattered sparse populations are the target, it is better to use technological channels and modern methods of communication (supplemented with interpersonal methods). (See, for example: Schramm, 1964; UNESCO, 1965; McAnany, 1973; Jamison & McAnany, 1978; Perraton, 1981; Somavia, 1981; Mkapa, 1982; Mustafa, 1983; Perrett, 1983; Moemeka, 1981, 1985, 1987 and 1989). As far as the rural communities are concerned, the only modern medium of mass communication that has the potential of helping to create the interactive climate in which medical personnel, development communicators and rural inhabitants can learn from and appreciate one another's cultural values is the radio. This is because it is the cheapest of the three most popular mass media-radio, television and newspaper - and consequently it is widely owned even in rural communities. It is also flexible enough to meet unique situations of operations that usually arise within rural communities.

This is the rationale behind the call for the establishment of rural or local radio stations in rural communities to help facilitate community development (Moemeka, 1981). But such local or rural stations must be structured to take into full account the socio-cultural context of the people (Moemeka, 1983). When the radio is localized in a rural community access and participation are made possible for the people. The physical and emotional interaction and exchange of ideas which the usually participatory nature of localized radio ensures, provide the opportunity for appreciating the health needs of rural inhabitants; for understanding the good intention of health-care and mass media personnel; for leading the rural communities to recognizing the advantages of modern health-care practices; and for the rural audiences to fully participate, along with health-care personnel and development communication agents, in the planning, production and the presentation of radio programs dealing with healthcare practices in the context of the rural communities.

Two basic models of the use of radio for rural development have been identified (Moemeka, 1987: 32). The first is the extension of the program operations to the rural areas while keeping the center of operations solid. Rural (or Local) Radio (Broadcasting under this study) is that which gives practical application to Community Responsibility in Broadcasting under the constraints of cultural content and operating within the socio-cultural conditions as obtained in the station. It provides economic and physical participation.

In Africa, as a whole, rural development projects have mainly been based on the more visible than on the more invisible. Radio Broadcasting through the radio stations and projects through the radio stations and beam operations and well-acknowledged capacity of the medium to guarantee the utilization of the medium (Greenholm, 1973; Merriam, 1986). This is a well-acknowledged capacity of the medium to guarantee the utilization of the medium (Greenholm, 1973; Merriam, 1986). This is a well-acknowledged capacity of the medium to guarantee the utilization of the medium (Greenholm, 1973; Merriam, 1986). This is a well-acknowledged capacity of the medium to guarantee the utilization of the medium (Greenholm, 1973; Merriam, 1986).
own culture as well as the
, and that cultural change
who are experiencing the
realize some advantages in
effecting the change.

1cation can be carried out
it is generally held
use technological channels
ontrolled with
y, 1978; Perraton, 1981;
Perrett, 1983; Moemeka,
he rural communities are
communication that has the
rural inhabitants can learn
values is the radio. This is
radio, it is widely owned even in
meet some unique situations of

The establishment of rural or
help facilitate community
ural stations must be
context of the
lized in a rural
d for the people.
exchange of ideas which the
radio ensures, provide the
ural inhabitants; for
th-care and mass media
ties to recognizing the
and for the rural audiences
personnel and development
uction and the presentation
ctices in the context of the

In Africa, as in most of the developing world, the use of radio for
rural development in general and for health education in particular, has
mainly been based on the Rural Broadcast Programming model rather
than on the more appropriate interactive and audience-oriented Rural
Radio Broadcasting model. A number of health education projects
through the radio (as well as a number of integrated rural development
projects through other electronic media) organized from centralized
stations and beamed to rural audiences far removed from the center of
operations and who had no control whatsoever over the content and
timing of the radio programs have been studied (AEGES, 1975;
Greenholm, 1975; Hall, 1972; Contractor, et al, 1985; Starosta and
Merriam, 1986). The studies show, unmistakingly, that the
well-acknowledged versatility, pervasiveness and general accessibility
capacity of the radio and other electronic media do not necessarily
guarantee the utilization of particular program contents (Heshmat, 1967:
677). This is especially so under the rural broadcast programming
strategy, where target audiences are hardly ever involved in the
determination of program topics, content and timing, and are rarely
involved in program production and presentation.
Purpose and Rationale

The question that immediately comes to mind is this: Would there have been positive difference if the organizers of these projects had used the Rural Radio Broadcasting model? Finding an answer to this question is part of the reason for this study. The Mobile Rural Radio Broadcasting project of the Broadcasting Corporation of Oyo State, Nigeria is used as the project case. The mobile station popularly known as "Radio O-Y-O On-the-Move" was established with the expressed intention of helping in the development of the rural communities in the State. The station was very specifically asked to pay particular attention to the improvement of the health of the people, that is, to provide a climate in which medical care, sanitation and nutrition could improve. The station moved from village to village, broadcasting one day at a time from each of the village.

The health programs were directed at informing and educating the rural communities of the benefits of modern medical-care practices, clean/healthy environments and nutritious diets, and communicating with them on how best to achieve a change in behavior from time-honored traditional methods to the modern. In specific terms, the radio programs were mainly directed at getting the people to use, in large numbers and regularly, the modern medical facilities provided in the villages; getting them to dig pit-latrines and refuse-dumps (composts) as well as to build huts for their domestic animals to sleep in instead of bringing them into the house at night; and to develop the habit of eating fruits and vegetables. The type of programs ranged from straight talks through dramatic sketches and play-lets; interpretation and application of adages, folk songs and ballads to story-telling; questions and answers, interviews and discussions. The programs were produced not just in the local language - Yoruba - but in the specific dialect of each participating target audience. The choice of topics for the programs, the basic themes, the timing for production and presentation, and the format and style of presentation were decided upon in pre-production meetings attended by members of the community, radio personnel, health assistants, medical personnel and, when available, agricultural extension agents.

A second reason (one which follows directly from the first) for this study is to test empirically if the participation and interaction made possible by Rural Radio Broadcasting can make a difference in the acquisition of knowledge about, and adoption and utilization of, modern health-care practices. The concept of participation has been mentioned and upheld (see, for example: Freire, 1970; Schramm & Lerner, 1976; Rogers 1977; Chikulo, 1978; Naraula & Pearce, 1979). It test the potential of positive behavior change.

Hypothesis

Target audience to the effect of programs

Operationalization

The study revolves around two independent variables: Participation and Policy. The second issue is also of two types: Physical-Physically and Mental-Mentally.

Participation

Physical-Physically the mobile radio station manages the activities of the participants. Setting up the site for meeting for program production format and managing, in program can be done.

Radiational- Accepting behavior of physical and personal change.

accordingly solely as a behavior of physical and personal change radio messages)

Operationalization

The study revolves around two independent variables: Participation and Policy. The second issue is also of two types: Physical-Physically and Mental-Mentally.

Participation

Physical-Physically the mobile radio station manages the activities of the participants. Setting up the site for meeting for program production format and managing, in program can be done.

Radiational- Accepting behavior of physical and personal change.

accordingly solely as a behavior of physical and personal change radio messages)
What comes to mind is this: Would there have been organizers of these projects had a model? Finding an answer to this question forms the heart of this study. The Mobile Rural Radio Broadcasting Corporation of Oyo State, the mobile station popularly known as the Mobile Rural Radio, was established with the expressed consent of the rural communities in the state. They asked to pay particular attention to the welfare of the people, that is, to provide a means of communication and the distribution of information. The people, in turn, specified that information and education could improve the quality of their lives. In their specific terms, the people wanted to achieve a change in behavior from the traditional to the modern. In particular, they wanted people to use, in large numbers, the health services provided in the villages; they wanted to develop the habit of eating nutritious diets, and they wanted to receive education and be informed about modern medical-care practices, nutritious diets, and the benefits of modern medical facilities provided in the villages. They also wanted the rural stations to help them develop the habit of eating nutritious diets, and to develop the habit of eating nutritious diets. Programs were produced not just in the specific dialect of each participating village, but also in the dialects of other villages. These programs were designed to be culturally sensitive to the needs of the people, and to be relevant to the local situation.

Hypothesis

Target audience participation is positively related to the effectiveness of rural radio broadcast programs on (health) behavior change.

Operationalization

The study revolves around two basic variables. The first is the independent variable - Participation - which is divided into two types: Physical and Radiational. The second is the dependent variable - Effectiveness - which is also divided into two types: Cognitive and Behavioral. Behavior is examined with reference to modern medical care, sanitation, and nutrition, which are treated as the indicators of Behavioral Effectiveness.

Participation

Physical-Physically taking part in some or all of the activities of the mobile radio station in any of the villages. Such action include: setting up the site for the rural broadcast, running errands, helping in program planning, for program content determination and production format and styles, being a program artiste, helping in studio managing, in program production and in program presentation.

Radiational- Accepting the demands of the radio messages and behaving accordingly solely as a result of witnessing or experiencing the change in behavior of physical participants (without physically participating personally and without explicit action on the part of physical participants urging one to change behavior in accordance with the demands of the radio messages).
Development Communication in Action

Effectiveness
Cognitive- Being aware of the demands, recommendations and suggestions of the radio messages, and understanding the implications of their contents.

Behavioral- implementing on personal and family levels the demands, recommendations and suggestions of the radio messages on the expected behavior on –

(i) Medical care, which was measured by the frequency of taking treatment from dispensaries and/or maternity-homes, undergoing periodic medical checkup, and registering wife for ante-natal and natal care;
(ii) Sanitation, which was focused on environmental hygiene. This was measured by the frequency with which both the house and the immediate surroundings were cleaned; keeping domestic animal away from humans at night; and having a systematic and hygienic method of disposing household refuse;
(iii) Nutrition, which was measured by the frequency of eating of vegetables (bitter-leaf, okro, water-leaf, green, etc) and fruits like banana, paw-paw, melon, oranges etc, - all of which are sufficiently produced in practically all the rural communities but are generally sold off to urban dwellers.

Methodology
Sampling
A multi-stage sampling procedure was used. It involved selecting villages, then houses within the villages, and finally respondents from the houses. The simple random technique was used at the first two stages and purposive sampling at the third. The villages were grouped into two. Those villages from which the radio station did broadcast (and therefore whose members were provided with access for participation in the station's program activities) were grouped as Broadcast Villages. Those villages which did not have the opportunity of having the station broadcast from within them, and therefore did not have access for participation, were grouped as Listener Villages. From each group, fifteen villages were randomly selected based on similarity on the following variables: Medical facilities, population, major occupation, number of secondary schools, number of primary schools and number of radio sets. Sample villages from the Broadcast village group served as the Experimental group; while those served as the Control group. Using 400 sample houses were randomly selected from each house, one respondent was respondent purposively selected on the basis of power and authority to make decisions. Typically rural community setting, persons were the heads of the family.

Research Design
A posttest-only control group experimental design (Cuba, 1963: 8) was used. This design was selected because it eliminates the effect of the self-report of the respondent and stimulus, provided proper random assignment to experimental and control groups, and assumed to be comparable. To validate proof. Based on this, subjects would then be attributed to the activities of the radio station.

Even though we used the posttest-only control group experimental design, we made use of the advantage of records kept at the station before the study began. We used records information to determine whether the activities of the station were effective as far as medical care was concerned. We compared level of correspondence between utilization records kept at the station with the self-report of the respondents. To check for utilitarian records, we set up a comparison validation proof. Based on this, subjects would then be attributed to the activities of the radio station.

400 sample houses were randomly selected from each house, one respondent was respondent purposively selected on the basis of power and authority to make decisions. Typically rural community setting, persons were the heads of the family.

Audience
Using the Experimental group; while those served as the Control group. Using 400 sample houses were randomly selected from each house, one respondent was respondent purposively selected on the basis of power and authority to make decisions. Typically rural community setting, persons were the heads of the family.

1. modern houses: cement
2. semi-modern houses: mud
3. traditional houses: mud

400 sample houses were randomly selected from each house, one respondent was respondent purposively selected on the basis of power and authority to make decisions. Typically rural community setting, persons were the heads of the family.

1. modern houses: cement
2. semi-modern houses: mud
3. traditional houses: mud

Research Design
A posttest-only control group experimental design (Cuba, 1963: 8) was used. This design was selected because it eliminates the effect of the self-report of the respondent and stimulus, provided proper random assignment to experimental and control groups, and assumed to be comparable. To validate proof. Based on this, subjects would then be attributed to the activities of the radio station.

Even though we used the posttest-only control group experimental design, we made use of the advantage of records kept at the station before the study began. We used records information to determine whether the activities of the station were effective as far as medical care was concerned. We compared level of correspondence between utilization records kept at the station with the self-report of the respondents. To check for utilitarian records, we set up a comparison validation proof. Based on this, subjects would then be attributed to the activities of the radio station.

400 sample houses were randomly selected from each house, one respondent was respondent purposively selected on the basis of power and authority to make decisions. Typically rural community setting, persons were the heads of the family.

1. modern houses: cement
2. semi-modern houses: mud
3. traditional houses: mud

Research Design
A posttest-only control group experimental design (Cuba, 1963: 8) was used. This design was selected because it eliminates the effect of the self-report of the respondent and stimulus, provided proper random assignment to experimental and control groups, and assumed to be comparable. To validate proof. Based on this, subjects would then be attributed to the activities of the radio station.

Even though we used the posttest-only control group experimental design, we made use of the advantage of records kept at the station before the study began. We used records information to determine whether the activities of the station were effective as far as medical care was concerned. We compared level of correspondence between utilization records kept at the station with the self-report of the respondents. To check for utilitarian records, we set up a comparison validation proof. Based on this, subjects would then be attributed to the activities of the radio station.

400 sample houses were randomly selected from each house, one respondent was respondent purposively selected on the basis of power and authority to make decisions. Typically rural community setting, persons were the heads of the family.

1. modern houses: cement
2. semi-modern houses: mud
3. traditional houses: mud

Research Design
A posttest-only control group experimental design (Cuba, 1963: 8) was used. This design was selected because it eliminates the effect of the self-report of the respondent and stimulus, provided proper random assignment to experimental and control groups, and assumed to be comparable. To validate proof. Based on this, subjects would then be attributed to the activities of the radio station.

Even though we used the posttest-only control group experimental design, we made use of the advantage of records kept at the station before the study began. We used records information to determine whether the activities of the station were effective as far as medical care was concerned. We compared level of correspondence between utilization records kept at the station with the self-report of the respondents. To check for utilitarian records, we set up a comparison validation proof. Based on this, subjects would then be attributed to the activities of the radio station.

400 sample houses were randomly selected from each house, one respondent was respondent purposively selected on the basis of power and authority to make decisions. Typically rural community setting, persons were the heads of the family.

1. modern houses: cement
2. semi-modern houses: mud
3. traditional houses: mud

Research Design
A posttest-only control group experimental design (Cuba, 1963: 8) was used. This design was selected because it eliminates the effect of the self-report of the respondent and stimulus, provided proper random assignment to experimental and control groups, and assumed to be comparable. To validate proof. Based on this, subjects would then be attributed to the activities of the radio station.

Even though we used the posttest-only control group experimental design, we made use of the advantage of records kept at the station before the study began. We used records information to determine whether the activities of the station were effective as far as medical care was concerned. We compared level of correspondence between utilization records kept at the station with the self-report of the respondents. To check for utilitarian records, we set up a comparison validation proof. Based on this, subjects would then be attributed to the activities of the radio station.
the demands, recommendations and understanding the implications of the radio messages on the expected

measured by the frequency of taking medical checkup, and registering wife for

was used. It involved selecting villages, and finally respondents from the

Research Design

A posttest-only control group experimental design (Campbell & Stanley, 1963: 8) was used. This design has been shown to be superior to other designs because it eliminates the problem of interaction between testing and stimulus, provided proper randomization has been done. With random assignment to experimental and control groups, the subjects were assumed to be comparable. Table (12.2) would seem to provide a validation proof. Based on this, any difference or differences among the subjects would then be attributed to the relationship between the subjects and the activities of the radio station or the research treatment.

Even though we used the posttest-only experimental design, we had the advantage of records kept at the Maternity Homes and Dispensaries before the study began. We used these as pre-treatment utilization information to determine whether or not the radio programs were effective as far as medical care was concerned, and tried to infer the truth of the self-report of the respondents on Sanitation and Nutrition from the level of correspondence between the pre-treatment and post-treatment utilization records kept at the medical facilities. [See Table (12.1) for details of the records]. In addition, we counted the number of existing pit-latrines and domestic animal huts. Altogether there were 36 and 29 respectively in the Broadcast Village group and 30 and 34 in the Listener Village group. We also checked on the distribution and sale of fruits and vegetables which the villages produce in very large quantities. Very few of these were sold in the local/village markets. The rest (about 95%) were set up for sale along the major roads where civil servants and the well-to-do that use the roads regularly could buy them.
The experimental group (Broadcast Villages) received the research treatment which is having the radio station broadcast from within their community thus providing access for direct participation in the program activities of the station. The control group (Listener Villages) did not receive the treatment, and therefore did not have direct access for participation in the program activities. However, they listened to the same radio program content as did subjects of the experimental group.

It is important to state here that the study population is one homogenous community with friendships and relationships cutting across our artificially decided line of distinction. Some Listener Village members visiting friends and/or relations in the Broadcast Villages did participate in the radio program activities, and did report their participation when they were interviewed. This is why the Listener Village category under the T-Tests (pp. 236 & 237) scored more than zero on participation.

Measurement

A questionnaire containing 24 questions majority of which were open-ended was used. The questions ranged from those dealing with demographics to those dealing with involvement with the activities of the radio stations, specific role/roles played, the relevance of the content of the radio messages, recall of specific radio programs and program artistes, definite behavior changes as a result of the radio messages and/or as a result of behavior changes in neighbors, co-workers, friends, etc who participated in the radio station's activities, and reasons for behavior change in those who did not physically participate.

Examples of questions include: What specific role or roles did you play in the radio station’s activities? (This was to help identify participation). Can you recall one program that you listened to? How relevant was the content of that program to the community's health problems? How has your behavior changed with particular reference to Medical care, to Sanitation and to Nutrition? What impact did your physical participation in the radio station's activities have on your behavior change? If you did not physically participate in the radio station's activities, were you explicitly or verbally persuaded by anyone, especially those who physically took part in the station's activities, to accept and behave according to the demands of the radio programs? If you did not physically participate, and you were not verbally persuaded to change, why did you change? (This was part of the questions to help identify the presence or not of radiation).

Because of the very high interviewing was done face-to-face sample respondents were farmers who, invariably, were at home. The problem contacting the research enthusiasm of the villagers to combined to produce a response of 400 respondents agreed to be, and from the Broadcast Village group. The demographic characteristics Table (12.2). It clearly shows that because of the very high interviewing was done face-to-face sample respondents were farmers.

Result and Analysis

The objective of this study had many development communication audiences in development factor/element in the success of this study was that such a claim for a mobile rural radio station (Radio Oxygen Mobile) mobile rural radio project Hypothesis was that target audience participation effectiveness of rural radio health behavior change.

Three different statistical tests reach a conclusion on the correlation O-Y-O Mobile rural radio project or not our hypothesis is supported.

- determination of the participation variable, to participation, and to
- determination of the demographic and other variables.
Because of the very high rate of illiteracy in the village, the interviewing was done face-to-face. And because about 90% of the sample respondents were farmers, petty traders, fishermen and craftsmen who, invariably, were at home in late evenings, interviewers had little problem contacting the respondents. A further help here was the enthusiasm of the villagers to talk about the project. These factors combined to produce a response/return rate of 98.75%. Thus 395 of the 400 respondents agreed to be, and were, interviewed. Of these, 194 were from the Broadcast Village group and 201 from the Listener Village group. The demographic characteristics of the respondents are shown in Table (12.2). It clearly shows that the groups were evenly matched.

Result and Analysis

The objective of this study has been to validate or invalidate the claim by many development communication specialists that participation of target audiences in development communication activities is a key factor/element in the success or effectiveness of such activities. The contention was that such a claim could be tested using the activities of a mobile rural radio station (Radio O-Y-O on-the-Move) charged with the task of helping to improve the health of rural communities. Hence our hypothesis states that—

Target audience participation is positively related to the effectiveness of rural radio broadcast programs advocating health behavior change.

Three different statistical analysis methods were used in trying to reach a conclusion on the correct impact of participation in the Radio O-Y-O Mobile rural radio project, and therefore in determining whether or not our hypothesis is supported. They involve taking the following steps:

- determination of the appropriateness of the indicators of the participation variable used in the study, that is, their relationship to participation, and to one another. [Table (12.3) – Correlation Matrix];

- determination of the relationship between participation and the demographic and effectiveness variables. [Table (12.4) – Correlation Matrix];
determination of the contribution of participation (controlling for no other variable) to behavioral effectiveness, and its contribution, (controlling for demographic variables and cognitive effectiveness) [Table (12.5) - Regression Analysis].

determining if there is a difference on the effectiveness of the radio programs between the Experimental Group (the Broadcast villages) that received the research treatment - Participation - and the Control Group (the Listener villages) that did not. [Table (12.6) - T-Test]; and

determining if there is a difference on effectiveness of the programs between members of the Experimental Group -the Broadcast villages who did not physically participate, and members of the Control Group - the Listener villages - none of who participated. [Table (12.7) - T-Test].

Table 12.1: Utilization of Medical Facilities. Average No. of Patients per year

<table>
<thead>
<tr>
<th>Type of Service</th>
<th>B/V</th>
<th>L/V</th>
<th>% Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registered pregnant Women</td>
<td>20</td>
<td>21</td>
<td>60</td>
</tr>
<tr>
<td>Deliveries</td>
<td>12</td>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td>Cases referred to Hospital</td>
<td>14</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Dispensary treatments</td>
<td>63</td>
<td>62</td>
<td>100</td>
</tr>
<tr>
<td>Children registered for regular check-ups</td>
<td>10</td>
<td>12</td>
<td>100</td>
</tr>
</tbody>
</table>

B/V = Broadcast Village Group; L/V = Listener Village Group

*Most of these were unregistered pregnant women who had developed serious complications.
section

intribution of participation (controlling
to behavioral effectiveness, and its
g for demographic variables and
[Table (12.5) – Regression Analysis].
a difference on the effectiveness of the
Experimental Group (the Broadcast
he research treatment - Participation –
the Listener villages) that did not.

and

a difference on effectiveness of the
bers of the Experimental Group - the
o did not physically participate, and
Group - the Listener villages - none of
le (12.7) - T-Test].

oration of Medical Facilities.
, of Patients per year
ent

<table>
<thead>
<tr>
<th>% Increase</th>
<th>B/V</th>
<th>L/V</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>20</td>
<td>43</td>
</tr>
<tr>
<td>70</td>
<td>26</td>
<td>483</td>
</tr>
<tr>
<td>200</td>
<td>72</td>
<td>217</td>
</tr>
<tr>
<td>110</td>
<td>25</td>
<td>1000</td>
</tr>
</tbody>
</table>

L/V = Listener Village Group

I 229

Table 12.2: Frequency Distribution.
(Demographic Characteristics)

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>Response Details</th>
<th>Listener Village</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N=395)</td>
<td>(N=194)</td>
</tr>
<tr>
<td>Have children in city</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>58.0%</td>
<td>51.5%</td>
</tr>
<tr>
<td>No</td>
<td>42.0%</td>
<td>48.5%</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 49</td>
<td>46.3%</td>
<td>54.1%</td>
</tr>
<tr>
<td>Above 49</td>
<td>53.7%</td>
<td>45.9%</td>
</tr>
<tr>
<td>Have a wife</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>90.1%</td>
<td>90.8%</td>
</tr>
<tr>
<td>No</td>
<td>9.9%</td>
<td>9.2%</td>
</tr>
<tr>
<td>Level of Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-4 years</td>
<td>41.8%</td>
<td>37.6%</td>
</tr>
<tr>
<td>5-8 years</td>
<td>26.1%</td>
<td>26.3%</td>
</tr>
<tr>
<td>Tech/Second.</td>
<td>23.8%</td>
<td>2.7%</td>
</tr>
<tr>
<td></td>
<td>8.4%</td>
<td>11.3%</td>
</tr>
<tr>
<td>Have special Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>17.5%</td>
<td>20.1%</td>
</tr>
<tr>
<td>No</td>
<td>82.5%</td>
<td>79.9%</td>
</tr>
<tr>
<td>Mainly a farmer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>53.7%</td>
<td>53.7%</td>
</tr>
<tr>
<td>No</td>
<td>46.3%</td>
<td>47.3%</td>
</tr>
</tbody>
</table>
Table 12.3
Correlation Matrix for Indicators of Participation.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Participation</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>2. Cognitive</td>
<td>.54</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>3. Age</td>
<td>-.15</td>
<td>.29</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Married</td>
<td>.02</td>
<td>-.11</td>
<td>-.12</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Social Status</td>
<td>.32</td>
<td>-.03</td>
<td>.28</td>
<td>.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Education Children</td>
<td>.08</td>
<td>-.19</td>
<td>.32</td>
<td>.15</td>
<td>.23</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Education</td>
<td>.56</td>
<td>-.27</td>
<td>-.29</td>
<td>-.01</td>
<td>-.62</td>
<td>.27</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Occupation</td>
<td>.24</td>
<td>-.05</td>
<td>.23</td>
<td>.05</td>
<td>-.06</td>
<td>.10</td>
<td>-.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Medical Care</td>
<td>.50</td>
<td>.22</td>
<td>.08</td>
<td>.12</td>
<td>-.16</td>
<td>-.02</td>
<td>-.19</td>
<td>-.19</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Education</td>
<td>.25</td>
<td>.31</td>
<td>-.23</td>
<td>.05</td>
<td>-.05</td>
<td>.02</td>
<td>.35</td>
<td>-.05</td>
<td>.05</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Nutrition</td>
<td>.24</td>
<td>.61</td>
<td>-.38</td>
<td>.11</td>
<td>-.08</td>
<td>-.04</td>
<td>.26</td>
<td>-.12</td>
<td>.09</td>
<td>.27</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

N=395

*p<.01
Table 12.4
Correlation Matrix for Independent, Dependent and Demographic Variables.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>.54</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>.15</td>
<td>-.35</td>
<td>.28</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>.02</td>
<td>.11</td>
<td>-.12</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>.52</td>
<td>-.05</td>
<td>.20</td>
<td>.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>.08</td>
<td>.19</td>
<td>.57</td>
<td>.13</td>
<td>.25</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>.30</td>
<td>.37</td>
<td>-.28</td>
<td>-.01</td>
<td>.02</td>
<td>.22</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>.26</td>
<td>-.36</td>
<td>.25</td>
<td>.07</td>
<td>-.08</td>
<td>.10</td>
<td>-.43</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>.50</td>
<td>.22</td>
<td>.08</td>
<td>.12</td>
<td>-.16</td>
<td>-.62</td>
<td>.19</td>
<td>-.39</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>.29</td>
<td>.31</td>
<td>-.27</td>
<td>.05</td>
<td>-.05</td>
<td>.02</td>
<td>.15</td>
<td>.06</td>
<td>.05</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>.24</td>
<td>.51</td>
<td>-.18</td>
<td>.11</td>
<td>-.08</td>
<td>-.04</td>
<td>.26</td>
<td>-.12</td>
<td>.29</td>
<td>.32</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

N=395
*p<.01
Table 12.5: Regression Analysis: Impact of Participation on Behavioral Effectiveness. (Standardized Coefficient with Metric Coefficient in Parenthesis)

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation</td>
<td>.39*</td>
<td>.25*</td>
<td>.32*</td>
<td>.25*</td>
</tr>
<tr>
<td></td>
<td>(.90)</td>
<td>(.57)</td>
<td>(.74)</td>
<td>(.57)</td>
</tr>
<tr>
<td>Age</td>
<td>-.15+</td>
<td>.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-1.09)</td>
<td>(-.34)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wife</td>
<td>.14+</td>
<td>.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.09)</td>
<td>(1.99)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educated Child in cities</td>
<td>-.10</td>
<td>-.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-.71)</td>
<td>(-.70)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>.13</td>
<td>.15+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.12)</td>
<td>(1.29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>.25*</td>
<td>.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.84)</td>
<td>(.38)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm (Occupation)</td>
<td>-.04</td>
<td>.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-.26)</td>
<td>(.21)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive Effectiveness</td>
<td>.51*</td>
<td></td>
<td>.47*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.83)</td>
<td></td>
<td>(2.60)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>.70</td>
<td>.03</td>
<td>-2.76</td>
<td>-3.15</td>
</tr>
<tr>
<td>R-squared</td>
<td>.15</td>
<td>.28</td>
<td>.45</td>
<td>.48</td>
</tr>
<tr>
<td>N</td>
<td>194</td>
<td>194</td>
<td>194</td>
<td>194</td>
</tr>
</tbody>
</table>

*P < .0001; +P < .05
Audience Participation and Message Effectiveness

Table 12.6
T-TEST
Difference between Experimental Group (Broadcast villages) and Control Group (Listener villages).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Group</th>
<th>Cases</th>
<th>Mean</th>
<th>SD</th>
<th>T/Value</th>
<th>2-tail Probab.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Broadcast</td>
<td>194</td>
<td>1.046</td>
<td>1.507</td>
<td>7.22</td>
<td>.000</td>
</tr>
<tr>
<td>Participation</td>
<td>Listener</td>
<td>201</td>
<td>.209</td>
<td>.588</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive Effectiveness</td>
<td>Broadcast</td>
<td>194</td>
<td>1.294</td>
<td>.629</td>
<td>9.67</td>
<td>.000</td>
</tr>
<tr>
<td>Medical Care</td>
<td>Listener</td>
<td>201</td>
<td>-1.553</td>
<td>1.947</td>
<td></td>
<td>.0000</td>
</tr>
<tr>
<td>Sanitation</td>
<td>Broadcast</td>
<td>194</td>
<td>.815</td>
<td>2.174</td>
<td></td>
<td>.0000</td>
</tr>
<tr>
<td>Nutrition</td>
<td>Listener</td>
<td>201</td>
<td>-7.62</td>
<td>2.291</td>
<td></td>
<td>.0000</td>
</tr>
</tbody>
</table>

Audience Participation and Message Effectiveness
The Correlation Matrix (Table 12.3) on the indicators of the independent variable - participation - show that there is proof of correlation among the indicators and therefore between them and participation. A second matrix (Table 12.4) determines reasonable relationship. It shows strong relation between participation and cognitive effectiveness, and between it and each of the indicators of behavioral effectiveness. The result of these matrices would seem to indicate that participation was appropriately conceptualized and adequately and correctly measured for the purposes of this study.

Table (12.5) provides evidence of substantial contribution by participation to the effectiveness of the radio programs. At p<.0001 participation was B=.39. Controlling for cognitive effectiveness did seem to give more credence to the importance of participation. At p<.0001 the coefficient for participation hardly changed: B=.32. Even when demographic variables are considered together, the contribution is still p<.0001.

T-Test (Table 12.6) of effectiveness occurred, the impact highlighted by the regression group or in the Listener variable between the two group is p<.0000 the impact of participant exclusively in the Broadcaster group where members of the mobile activities of the radio respondents.

The second T-Test (Table 12.7) whether or not there was appears to affirm the non-physical participants and members of the non-statistically significant and other important reasons, the difference in other factor than radiated groups selected on comparability. The result of the relevant characteristic group, were every group was selected in such a way that village groups were relevant of their communities. 94.5% of the Listener contents were relevant. 91.5% of the Listener Village introduced in such a way, it was a custom. Furthermore, the Village group (the Experimental non-participating Listener) were largely similar on the participation. The only difference between the same village group as respondents of the content which there were no physical activities to explain the different
T-Test (Table 12.6) was used to determine where and to what extent effectiveness occurred, that is, whether the contribution of participation highlighted by the regression analysis occurred in the Broadcast village group or in the Listener village group and what difference, if any, there is between the two groups. With differences statistically significant at p<.0001 the impact of participation would seem to have occurred almost exclusively in the Broadcast village group (the Experimental group) where members of the target audience physically participated in the activities of the mobile rural radio station. This confirms the hypothesis.

The second T-Test (Table 12.7) was used in an attempt to determine whether or not there was physical participation radiation effect. The table appears to affirm that there was. The difference between the non-physical participants of the Broadcast village group (Experimental) and members of the non-participating Listener village group (Control) is statistically significant at p<.0001 on all the variables. For a number of important reasons, the differences do not appear to be attributable to any other factor than radiation. Sample villages and sample houses were selected on comparability basis; even though respondents were purposively selected, they were, as shown in Table (12.1) very similar in the relevant characteristics; and all the respondents, irrespective of village group, were exposed to the same radio program content. Both village groups were virtually even on whether the content of the programs were relevant to the socioeconomic and cultural contexts of their communities. 95.3% of the Broadcast Village respondents and 94.5% of the Listener Village respondents indicated that the program contents were relevant. And 91.7% of the Broadcast Villagers as against 91.5% of the Listener Villagers said the new ideas in the programs were introduced in such a way as not to antagonize the people’s tradition and custom. Furthermore, the non-physical participants of the Broadcast Village group (the Experimental Group) and the members of the non-participating Listener Village group (the Control Group) were largely similar on the variable ‘participation’. They did not physically participate. The only difference between them appears to be locational.

The non-physical participants of the experimental group lived in the same village group as those who physically participated, while the respondents of the control group lived in a different village group in which there were no physical participants. This difference would appear to explain the difference in the behavioral effectiveness of the radio

demographic variables and cognitive effectiveness were controlled for together, the contribution of participation was still high: B=.25 at p<.0001.
programs on both groups. Because the physical participants lived among the nonphysical participants, their participation appears to have had a salutary effect on the behavior of the latter. A very high percentage of the experimental group respondents who did not physically participate but had changed their behavior, affirmed that the most important factor that affected their behavior in favor of the recommendations of the radio programs was (for 32%) noticing the change in behavior and health conditions of the physical participants and (for 57%) noticing the same in other non-physical participants who had already informally learned from the physical participants. When, as a result of the physical participation of friends, co-workers, neighbors, etc., in an action program which has led to changes of behavior in these participants, a group of people, without being persuaded or coerced to do so, begin to behave as if they, too, did participate and to change their own behavior accordingly, radiational participation is said to have taken place (Moemeka, 1987).

Discussion
The importance of target audience participation seems to lie mainly in the enhancing climate it creates for exchange of ideas and building of co-orientation, both of which create a sense of self-worth and involvement, and more importantly, commitment to agreed lines of action. Respondents of the experimental group attest to this fact through the emphasis which about 90% of them placed on 'being recognized and trusted enough to be given the opportunity to participate and contribute directly to the welfare of the community'.

In their explanation of why participating was important to them, these respondents referred to, in different words, what one might call the four guiding principles that make for acceptability and effectiveness of most communication content (Cutlip & Center, 1978:355). These are: Identification principle which requires that messages be stated in terms of the interests of the target audience; the Action principle which suggests the provision of a relevant means of solution for any problems identified; Familiarity and Trust principles which recognize the importance of credibility on the part of the communicator in order to enhance the confidence which the target audience may have in the message; and Clarity principle which demands that words, symbols and/or stereotypes that the receiver comprehends and responds to should be employed in order to effectively communicate with him/her. Their participation in the station's activities created the atmosphere in which all the principles obtained, creating a conducive climate for trust, co-operation, co-orientation and, make effectiveness possible.

This effectiveness finds differences between pre-treatment villages. For example, the number 201 in the Broadcast Village group. Domestic animal 34 to 90 respectively. The shift quantify. However, it appeared displayed along the roads had indication of possible increase in the villages). The change in (12.1).

The number of villagers who number that physically partic appear therefore that there was be no radiational participation informal education characteri snow-balling effect (Moemeka the impact of physical participa (1987) have called "mobiliza agents". This has double values and norms for healthy physical environment more con.

This study appears to have participation is a very effec positive behavior change for appear to have added to c Communication which (Reard and under which conditions cc people to adopt healthier lifes promotion and disease preve hearing and learning from a rel in the radio activities can prod the Listener Village group are, of the substantially overwhelm Village group, such moderate The indication therefore would are all that is needed, then Theroux, 1977) which does would suffice; but if substan
physical participants lived among
ticipation appears to have had a
that the most important factor in
teady, in an action program which has
got; (for 57%) noticing the same in
change in behavior and health
construction of self-worth and involvement, bring to agreed lines of
ment of group attest to this fact
90% of them placed on 'being
take the opportunity to participate
of the community'.
participating was important to them,
ent words, what one might call the
acceptability and effectiveness of
these are: that messages be stated in terms
ience; the Action principle which
means of solution for any problems
rt of the communicator in order to
target audience may have in the
ich demands that words, symbols
comprehends and responds to should
communicate with him/her. Their
created the atmosphere in which all
co-operation, co-orientation and relevance of content which helped to
make effectiveness possible.
This effectiveness finds concrete expression in the substantial
differences between pre-treatment and post-treatment conditions in the
villages. For the example, the number of pit-latrines increased from 36 to
201 in the Broadcast Village group, and from 30 to 60 in the Listener
Village group. Domestic animal huts increased from 29 to 400 and from
34 to 90 respectively. The shift in nutrition condition was not easy to
quantify. However, it appeared that more than half of what was usually
displayed along the roads had been diverted to the local markets (an
indication of possible increase in demand and therefore in consumption
in the villages). The change in medical care conditions is shown in Table
(12.1).
The number of villagers who changed in behavior far outweighs the
number that physically participated in the radio programs. It would
appear therefore that there was positive radiation effect. While there can
be no radiational participation without physical participation, it is the
informal education characteristics of radiational participation and its
snow-balling effect (Moemeka, 1987) that helps expedite the spread of
the impact of physical participation thus creating what Rogers and Storey
(1987) have called "mobilization of communities to act as change
agents". This has double effect. It gives local legitimacy to
values and norms for healthy behavior, and it makes the social and
physical environment more conducive for individuals to act positively.
This study appears to have validated the claim that target audience
participation is a very effective ingredient for ensuring substantial
positive behavior change for development purposes. It therefore would
appear to have added to our knowledge of the field of Health
Communication which (Reardom, 1988) is geared towards studying how
and under which conditions communication may persuade and motivate
people to adopt healthier lifestyles and behaviors as a matter of health
promotion and disease prevention. The study also shows that merely
hearing and learning from a relevant radio message without participating
in the radio activities can produce some effective results. The changes in
the Listener Village group are, in themselves, worthwhile. But in the face
of the substantially overwhelming positive changes in the Broadcast
Village group, such moderate changes seem to fall into insignificance.
The indication therefore would seem to be that if simple positive changes
are all that is needed, then the Open Broadcast strategy (Gunter &
Theroux, 1977) which does not require target audience participation
would suffice; but if substantial changes are needed, then the Local
Radio Broadcast strategy (Moemeka, 1981) predicated on the physical participation of target audiences would be a necessity.

References

a, 1981) predicated on the physical lid to be a necessity.

Audience Participation and Message Effectiveness

Chapter 13

Uniculturism and A Lesson in Nation!

Yanan Ju

To discuss national development context and its enterprises healthy, the ill and the enterprises, these enterprises operate oriented games, the ecc struggle from social status, struggling to learn till early as in 1979. This and all Eastern Europea past decade or so. Indeed to Third World countries States of America which seems to have become when compared with loosely, the 1.2 billion Republic of China in 1988.

This essay first att culture in whose context. We will use un

functions of China’s st: enterprises, in the co