
                       

                                      
 

  
Abstract— In this work, analytical study of Hall current and Ion-

slip effects on the rate of entropy generation of couple stress fluid is 
considered. The obtained partial differential equations governing the 
flow are reduced to ordinary differential equations by similarity 
variables, semi-analytical solution of the dimensionless nonlinear 
coupled differential equations for velocity, temperature, entropy 
generation and Bejan number are constructed using Differential 
Transform Technique. Effects of Hall current, Ion-slip, couples stress 
and magnetic parameters are presented and discussed graphically. 
From the results it is observed that Hall current and rotation 
parameters enhance secondary velocity, fluid temperature and 
entropy generation. In addition rarefaction and Hartman number 
reduce fluid temperature and entropy generation. 

Keywords—Velocity Slip, Temperature Jump, Hall Current, Ion-
slip, Entropy Generation, Couple Stress Fluid, Differential Transform 
Method 

I. INTRODUCTION 
ecently, the study of Microfluidics has become an 
important area of research due to its wide applications in 
various fields such as physical, biological, chemical, 

engineering, medical etc. This has resulted in various 
theoretical and experimental study of flow through a channel 
of microscale size. Investigation of the flow of fluid through 
microchannels is determined by the Knudsen number, . 
The Knudsen number is the ratio of the molecular mean free 
path  to characteristic length, i.e. For the 
flow within the range of 0.001 < Kn < 0.1, the standard 
Navier–Stokes with slip boundary conditions are applicable 
[1]. 
 Several investigations have been undertaken to determine 
the effect of velocity slip and temperature jump on 
macrochannel system. Hooman [2] considered the effects of 
velocity slip, temperature jump, viscous dissipation, and duct 
geometry on the irreversibility analysis of microscale forced 
convection flow. It was submitted that the obtained results can 
be 
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generalized to the macroscale flow when 0Kn = .  Khadrawi 
and Al-Shyyab [3] analysed the effects of slip velocity and 
temperature jump on heat and fluid flowing axially in micro-
concentric cylinders. Chen and Tian [4] applied lattice 
Boltzmann numerical technique to investigate the fluid flow 
and heat transfer between two horizontal parallel plates with 
velocity slip and temperature jump. Zhenga et al. [5] presented 
velocity slip and temperature jump effects on MHD flow and 
heat transfer over a porous shrinking surface. Adesanya [6] 
studied free convective flow of heat generating fluid with 
velocity slip and temperature jump. In the work it was 
concluded that an increase in the slip parameter enhanced flow 
velocity while fluid temperature is enhanced by temperature 
jump parameter. Other studies on this subject are found in 
Refs. [7-12]. 

In recent years, attention has been devoted to natural 
convection flow with heat transfer. Since then extensions have 
been conducted to include several other phenomena such as 
the effects of magnetic fields for electrically conducting fluid, 
[13-19]. All these investigators assumed small and moderate 
value of magnetic field resulting in unnoticeable impact in the 
flow, however current application of magnetohydrodynamics 
is geared towards strong magnetic fields due to its significance 
in magnetic fusion systems, electrically-conducting 
aerodynamics, energy generators, Hall accelerators and flight 
magnetohydrodynamics. Moreover, investigations have shown 
the significance of the interaction between Coriolis and 
electromagnetic forces in MHD flows. It is noteworthy that 
Coriolis and MHD forces are comparable in magnitude, and 
Coriolis force induces secondary flow in the fluid. Rotating 
MHD flows have important applications in the turbo 
machinery, solidification process in metallurgy and some 
astrophysical problems.  

Nanda and Mohanty [20] considered 
magnetohydrodynamic flow in a rotating channel. Jana et al. 
[21] studied the MHD Couette flow and heat transfer with 
rotation effect. Effects of Hall current on hydromagnetic 
rotating Couette flow was investigated by Ghosh [22]. 

Kn
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Unsteady MHD Couette flow in a rotating system was 
analysed by Seth et al. [23]. Rao and Rao [24] examined the 
MHD flow of Rivlin–Ericksen fluid of rotating second grade 
contained between two infinite parallel. Recently, 
investigations on Hall current and Ion slip effects have been 
conducted by Sandeep [25], Reddya et al. [26], Kumar et al. 
[27] and Opanuga et al. [28-29]. 

In this article, the objective is the application of first 
and second laws of thermodynamics in the analysis of the 
influence of velocity slip, temperature jump, Hall current and 
rotation parameters on the flow of couple stress fluid. In 
literature, several investigations regarding the factors 
responsible for entropy generation have been reported, see 
Refs. [30-34]. Couple stress fluid irreversibility due to the 
effects of Hall current, Ion slip, velocity slip and temperature 
jump have not been accorded the required attention in spite of 
its wide application, hence this study addresses the noticed 
gap.  

In this analysis, Zhou method [35] is used to obtain 
the solution of the velocity and temperature profiles due to 
its simplicity and rapid convergence to the exact, where it 
exists. This technique has been widely applied to solve 
various linear and nonlinear models by several authors [36-
40]. 

II. PROBLEM FORMULATION 
 Consider the fully developed steady flow of viscous, 
incompressible couple stress fluid in a micro-porous-channel 
in the presence of transverse magnetic field. A Cartesian 
coordinate system is taken such that the x-axis is along the 
lower plate in the flow direction while the y-axis is 
perpendicular to the channel plates.  The plates are heated 
asymmetrically with the cooler one ( )y h= −  maintained at 

a temperature 1T while the hotter plate ( )y h= + is at 

temperature 2T where ( )2 1T T> .  In addition, assumption of 
relatively high electron-atom collision frequency is taken so 
that the influence of Hall current and ion slip are upheld. The 
fluid is rotating with an angular velocity *Ω about the normal 
to the plate. The governing equations for the continuity, 
momentum and energy are [41]: 
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The appropriate boundary conditions for the velocity slip and 
temperature jump at the fluid–wall interface [42-43] are given 
as  
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Using these transformation variables 
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equations (1-4) yield the following dimensionless form; 
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and the dimensionless boundary conditions are  
, , , 1;

0, 1 , 1
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In Equations (7-10), primes denote the derivatives with respect 
to η  
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III. DIFFERENTIAL TRANSFORMATION METHOD OF 
SOLUTION 

 The basic operations and properties of differential transform 
method, which are relevant to the problem solved in this paper 
are summarized in the table that follows: 

Table 1: Operations and Properties of Differential 
Transform Method 

Original function Transformed function 
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To apply Differential Transform Method (DTM) to 
the problem in view, the basic properties of DTM which are 
outlined in Table 1, are invoked appropriately on equations 
(7)-(9). Doing this, one obtains the following recurrence 
relations: 
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where ( )F k , ( )G k  and ( )kΘ  are the transformed 
functions of ( )f y , ( )g y and ( )yθ  respectively. These are 
given by 
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We choose the following initial conditions: 
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By substituting equations (15) into equations (12)-(14), we can 
determine the values of ( )F k , ( )G k  and ( )kΘ  for 

0,1, ,k =  recursively. The values of ( )F k , ( )G k  and 
( )kΘ  for 0,1, ,k =  are now substituted back into 

equations (15) to obtain the series solutions in the form: 
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Where the value of n  is determined by convergence.  
 We next invoke the transformed form of boundary 
conditions on (17) to determine the values of all the unknown 
coefficients stated in (16). Taking the values of the parameters  
Coding equations (12-16) in symbolic Maple software yields 
the approximate solution. The results are presented in Figures 
1-4.  

A. Entropy Generation Analysis 
The local entropy generation expression for the flow is given 
as, Bejan [44]
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The Bejan number can be written as  

1 2

1

1 ,   .
1s

N NBe
N N
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                                       (21)                                                                               

      In equation (21), Bejan number ranges from 0 to1. Note 
that 0Be = represents the limit at which fluid friction 
irreversibility dominates entropy generation, while 1Be =
corresponds to the dominance of heat transfer irreversibility 
over fluid friction irreversibility and 0.5Be =  is the case 
when heat transfer and fluid friction entropy generation rates 
are equal. 

IV. RESULTS AND DISCUSSION 
In this present work, analysis of Hall current and ion-

slip effects on the rate of entropy generation of couple stress 
fluid through a microchannel in the presence of an induced 
magnetic field is governed by some thermophysical 
parameters such as Hall current parameter ( )m , rotation 

parameter ( )2K , rarefaction ( )vknβ , wall-ambient 

temperature difference ratio (WTDR) ( )ξ  and Hartmann 

number ( )H . The influence of the parameters at different 

values on fluid velocity ( )( ), ( )f gη η , temperature profile

( )θ η , entropy generation expression ( )Ns  and Bejan 

number ( )Be are presented in Figures 1-4 by fixing the 
parameters

0.5,Pr 0.71, 2,Re 2, 0.05,vBr a knβ= = = = =  

ln 1.667, 1= Ω =  .   
Figures 1A and 1B represent the influence of Hall 

current on fluid velocity ( )( ), ( )f gη η . It is clear that 

primary velocity ( )( )f η reduces as Hall parameter increases 

whereas secondary velocity ( )( )g η increases. This 
observation reveals that Hall current tends to speed-up 
secondary fluid velocity, which agrees with the fact that the 
presence of Hall parameter ( )m  suppresses the resistive 
influence of the magnetic field. Figures 1C and 1D depict the 

effect of rotation parameter ( )2K on fluid velocity. It is 

noticed that primary fluid velocity ( )( )f η  decelerates while 

secondary fluid motion ( )( )f η accelerates with rising values 

of ( )2K . This is consistent with the known fact that rotation 

accelerates secondary flow while inhibiting primary flow 
field. This accelerating impact of rotation is only dominant in 
the region close to the plate whereas it has a reverse effect on 
secondary fluid velocity in the region away from the plate. 
Coriolis effect is attributed to this phenomenon.  
              In Figure 1E it is noticed that fluid velocity reduces 
but rises in Figure 1F as rarefaction parameter increases.   The 
observed increase in the motion of fluid in Figure 1F is linked 
to the rising values of Knudsen number ( )kn which tends to 
enhance fluid velocity as a result of the reduction in fluid-wall 
interaction. Effect of Harman number on fluid velocity is 
depicted in Figures 1G and 1H. It shows that fluid motion is 
accelerated in Fig. 1G while it reduces in Fig. 1H. This is 
known to have resulted from the Lorentz force which usually 
inhibits fluid motion in electrically conducting fluid. 
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Fig 1A: Primary velocity for different m  
 

 
Fig 1B: Secondary velocity for different m  
 
 

 
Fig 1C: Primary velocity for different K  
 

 
Fig 1D: Secondary velocity for different K  
 

 
Fig 1E: Primary velocity for different vknβ  
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   Fig 1F: Secondary velocity for different vknβ  

 

 
Fig 1G: Primary velocity for different H    
 

 
Fig 1H: Secondary velocity for different H  

 
       In Figure 2A and 2B, effects of Hall current and 

rotation parameters on fluid temperature are presented. It is 
evident that temperature profile is enhanced as Hall and 
rotation parameters increase. As submitted above the 
inclusion of Hall current parameter ( )m in the flow has a 
significant impact on fluid temperature because  magnetic 
effect is subdued.  In Figures 2C and 2D, rarefaction and 
magetic field effects on fluid temperature are represented. 
Fluid temperature is raised in Figure 2C whereas it is 
depreciates in Figure 2D. The increase registered in Figure 
2C is due to a rise Knudsen number (Kn), which increases 
rarefaction and hence fluid-wall interaction decreases. It is 
interesting to observe that fluid temperature increases 
significantly in Figure 2E as wall-ambient temperature 
difference ratio increases. 

 

 
Fig 2A: Hall current for different ( )θ η  

 
Fig 2B: Rotation parameter for different ( )θ η  
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Fig 2C: Rarefaction for different ( )θ η    

  
Fig 2D: Magnetic field for different ( )θ η  
 

 
Fig 2E: WTDR for different ( )θ η  

 

 
Fig 3A: Hall current for different Ns  
 
Next is the response of entropy generation to variation in 

fluid parameters. In Figure 3A and 3B entropy generation 
rises higher as Hall current and rotation parameter increase. 
This is expected since increase in these parameters raise 
fluid temperature as depicted in Figures 2A and 2B. This 
increase resulted in the disorderliness of fluid particles 
leading to entropy production. On the other hand fluid 
entropy generation is lowered in Figures 3C and 3D as 
rarefaction and Magnetic field parameters increase.  
Generally, Hartmann number has the effect to suppress fluid 
velocity (see Figure 1C) and then to reduce fluid 
temperature (see Figure 2D). The total effect of this is that 
major part of the fluid becomes practically motionless 
hence the reduction in entropy generation. In Figure 3E, 
increase in the values of wall-ambient temperature 
difference ratio (WTDR) ( )ξ slightly reduce entropy 

generation in the region 1 0.5ξ− ≤ ≤  while there is a rise 
in entropy generation around 0.6 1ξ≤ ≤  
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Fig 3B: Rotation parameter for different Ns  
 

 
Fig 3C: Rarefaction for different Ns  
 

 
Fig 3D: Magnetic field for different Ns    
 

 
Fig 3E: WTDR for different Ns  
 

      Finally, Bejan number response to variation of the 
thermophysical parameters are displayed in Figures 4. In 
convective problem, entropy generation is being promoted by 
both heat transfer irreversibility (FTI) and fluid friction 
irreversibility (FFI). Equation (15) gives the expression for 
calculating fluid irreversibility, however the determination of 
the dominance of either FTI or FFI to total entropy generation 
is given by Bejan number in equation (18). 
       In Figures 4A, 4C and 4E Bejan number reduces at both 
the wall 1η = −  and middle of the microchannel but rises at 
the microchannel wall 1η = with increase in Hall paremeter, 
rarefaction parameter and wall-ambient temperature difference 
ratio. A reverse phenomenon is noticed in Figures 4B and 4D 
as rotation and magnetic parameters are varied. The 
submissions above reveal that both heat transfer and fluid 
friction contribute to entropy generation. 
 

INTERNATIONAL JOURNAL OF MECHANICS Volume 12, 2018 

ISSN: 1998-4448 228



                       

                                      
 

 

 
Fig 4A: Hall current for different Be  
 

 
         Fig 4B: Rotation parameter for different Be  
 

 
         Fig 4C: Rarefaction for different Be  
 

 
       Fig 4E: WTDR for different Be  
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      Fig 4D: Magnetic field for different Be  
 
Conclusions 
 In this article, a mathematical model for the flow of couple 
stress fluid through a microchannel has been developed to 
study the influence of the irreversibility associatied with Hall 
current and Ion-slip. Velocity slip and temperature jump 
boundary conditions are included in the model and the 
velocity and temperature profiles are solved by differential 
transform method, the results are used to determine the 
entropy generation and Bejan number. Results show that Hall 
current and rotation parameter increase entropy generation 
whereas entropy generation is suppressed by rarefaction 
parameter and Hartman number. Furthermore it is shown that 
both fluid friction and heat transfer contributed to entropy 
generation. 
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Nomenclature 
2
0B

 Uniform transverse magnetic field 

,u w
 Velocity components in x  and z directions 

,f g  Dimensionless velocity 

h     Channel width 

,t vf f
 Thermal and tangential momentum accommodation   

coefficients, respectively 

ln  Fluid–wall interaction parameter 

Cp  Specific heat capacity 

K  Rotation parameter 

Re  Reynolds number 

a  Couple stress parameter 

k  Coefficient of thermal conductivity 

kn  Knudsen number 
m  Hall current parameter 

H  Hartmann number 

Pr  Prandtl number 

T  Temperature of fluid 

0T
 Reference temperature 

Pr  Prandtl number 

rB  Brinkman number 

GE
   Local volumetric entropy generation rate  

Be   Bejan number 

Cv  Specific heats at constant volume 

Ns  Dimensionless entropy     generation parameter 
Greek Letters 
ρ  Fluid density 

,t vβ β  Dimensionless variables 

sγ
 Ratio of specific heat 

µ  Coefficient of viscosity 

ξ  Wall-ambient temperature difference ratio 
σ  Electrical conductivity 
Ω   Temperature difference 

*η           Fluid particle size effect due to couple stresses 

         *Ω  Angular velocity 
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