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Preface

Here, we put together basic mathematics concepts and applied
research contents, integrating them for proper understanding
both to the undergraduate and the postgraduate students. In
this book, there are three originalities, and they are related.
First, the foundation theoretical concepts are presented in a
format that makes application very easy to follow. There-
after, the life application problems were presented to enable
the readers see immediately, the application of the theories
learned. Finally, we explain basic data structures that find
application in our life application problems. No book has

presented data structures this way.

We present the content of this book in three parts, namely,
Part I: The Fundamentals, Part II: Expansion and Advanced
Integration Methods, and Part III: Differential Equations and
Numerical Analysis. Part I is all about the fundamental topics
of mathematics. It provides the building bricks or languages
with which all complex forms of mathematics can be built.
For example, Gamma functions and related integrals of chap-
ter 10 can not be taught without a minimum knowledge of
Real Numbers and Functions of Real Variables, Limits, Conti-
nuity and Differentiability, Indefinite, Definite, and Improper
Integrals and Infinite Series discussed in chapters 2,4, 5, and
6 respectively. Or can Differentiation and Integration of Inte-
grals in chapter 11 be taught without a minimum knowledge
of Real Numbers and Functions of Real Variables, Limits,

Continuity and Differentiability, and Indefinite, Definite and
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Improper Integrals? Basically all topics discussed in part II
and IIT required the understanding of all the topics discussed
in part I.

In part II, we discussed techniques useful for differentia-
tion and integration of (complex) integrals as introduced in
Limits, Continuity and Differentiability and Indefinite, Defi-
nite and Improper Integrals of chapters 4 and 5 respectively.
We also discussed here (that is part II) how expansions of
functions that can not be done using Taylor and Maclaurin
expansion techniques can be carried out. Lastly part III is all
about differential equations, which basically consist of ordi-
nary differential equations (ODEs) and the partial differential
equations (PDEs). Since not all equations (algebraic or differ-
ential) can be solved analytically, we presented in this part,
an introduction to numerical analysis, an alternate method
for solving equations.

The unique additional context in this book to teaching
mathematical methods to Computer Science students was dis-
covered during the time Mr. Fatumo and myself were teach-
ing the (2003/2004) 200 level class of Computer Science and
Management Information Science (MIS) students. We real-
ized that as we changed our approach from teaching only ba-
sic mathematics to a mixture of basic mathematics and their
application, the students enjoyed our classes and found their
final examination easier.

The book is basically useful for teaching mathematical
methods and analysis of algorithms to computer science stu-

dents, but note that it can also be generally used as a mathe-
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matics methods textbook for the science and technology stu-
dents, both at the undergraduate and the post-graduate lev-
els.

The German word 'Rigorisum’ employed in this book to
describe Abstract questions after each chapter comes from
the English word rigorous. Furthermore, C programming lan-
guage is the pseudo-code language employed in this book.
This language, just like English, has become a universal pro-
gramming language for scientists across the globe.

The book can be read as follows:

1. An advanced Computer Science (CS) person familiar
with mathematical methods may go straight to study
the life application questions and get back to the ba-
sic mathematical methods discussed in this book, if the

need arises.

2. The chapters has been arranged to allow systematic un-
derstanding of all the topics considered. Therefore, the
book content may be divided into three. Each of these
is ideal for usage as course content per semester.

3. Those who are interested in knowing further details about
the methods discussed in this book should consider the

publications listed under the bibliography section.

Ezekiel F. Adebiyi and Segun A. Fatumo
Ota, September, 2005
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