Mathematical Methods and their Applications

Ezekiel F. Adebiyi
Segun A. Fatumo

FIRST EDITION

Ota
2005
Acknowledgments

But there is a Spirit in man and the Inspiration of the Almighty gives them understanding (Job 32,8). To God be the glory for His divine Inspiration to accomplish this book project.

Our profound appreciation goes to the Chancellor, Covenant University, Dr. David Oyedepo for his prayers, warm encouragement all along, and for his earnest desire to ensure that staff and students of the University intensify efforts on research and book writing.

Special gratitude to Prof. (Mrs) Obayan, the Vice Chancellor, the Registrar, Dn. Yemi Nathaniel and Prof. T. S. Ibiyemi, Dean of the College of Science and Technology for their encouragement, support and commitment to excellence in all academic aspects.

We are grateful to all 200 level students 2003/2004 session of department of Computer and Information Sciences of Covenant University, who informed the need to write this book in the first place.

A big thank you to all our colleagues in the department of Computer and Informations Sciences, Covenant University, who supported us in one way or the other.

We owe our families special thanks, for allowing us for many days to work round the clock on the book. Special thanks to Mrs Oluwatoyin Adebiyi for her moral support and “Martha” ministry in ensuring that we are focused to accomplish the task. Finally, we are particularly indebted to the following editorial and production staff of Covenant Univer-

Mathematical Methods and their Applications
sity Press, namely, Dr. M. O. Afolabi, Professor O. Taiwo and Ms Ofure Aito. Their editorial helps have brought this project to fruition.

Ezekiel F. Adebiyi and Segun A. Fatumo
Ota, September, 2005
Preface

Here, we put together basic mathematics concepts and applied research contents, integrating them for proper understanding both to the undergraduate and the postgraduate students. In this book, there are three originalities, and they are related. First, the foundation theoretical concepts are presented in a format that makes application very easy to follow. Thereafter, the life application problems were presented to enable the readers see immediately, the application of the theories learned. Finally, we explain basic data structures that find application in our life application problems. No book has presented data structures this way.

We present the content of this book in three parts, namely, Part I: The Fundamentals, Part II: Expansion and Advanced Integration Methods, and Part III: Differential Equations and Numerical Analysis. Part I is all about the fundamental topics of mathematics. It provides the building bricks or languages with which all complex forms of mathematics can be built. For example, Gamma functions and related integrals of chapter 10 can not be taught without a minimum knowledge of Real Numbers and Functions of Real Variables, Limits, Continuity and Differentiability, Indefinite, Definite, and Improper Integrals and Infinite Series discussed in chapters 2, 4, 5, and 6 respectively. Or can Differentiation and Integration of Integrals in chapter 11 be taught without a minimum knowledge of Real Numbers and Functions of Real Variables, Limits, Continuity and Differentiability, and Indefinite, Definite and
Improper Integrals? Basically all topics discussed in part II and III required the understanding of all the topics discussed in part I.

In part II, we discussed techniques useful for differentiation and integration of (complex) integrals as introduced in Limits, Continuity and Differentiability and Indefinite, Definite and Improper Integrals of chapters 4 and 5 respectively. We also discussed here (that is part II) how expansions of functions that can not be done using Taylor and Maclaurin expansion techniques can be carried out. Lastly part III is all about differential equations, which basically consist of ordinary differential equations (ODEs) and the partial differential equations (PDEs). Since not all equations (algebraic or differential) can be solved analytically, we presented in this part, an introduction to numerical analysis, an alternate method for solving equations.

The unique additional context in this book to teaching mathematical methods to Computer Science students was discovered during the time Mr. Fatumo and myself were teaching the (2003/2004) 200 level class of Computer Science and Management Information Science (MIS) students. We realized that as we changed our approach from teaching only basic mathematics to a mixture of basic mathematics and their application, the students enjoyed our classes and found their final examination easier.

The book is basically useful for teaching mathematical methods and analysis of algorithms to computer science students, but note that it can also be generally used as a mathe-
mathematic methods textbook for the science and technology students, both at the undergraduate and the post-graduate levels.

The German word 'Rigorism' employed in this book to describe Abstract questions after each chapter comes from the English word rigorous. Furthermore, C programming language is the pseudo-code language employed in this book. This language, just like English, has become a universal programming language for scientists across the globe.

The book can be read as follows:

1. An advanced Computer Science (CS) person familiar with mathematical methods may go straight to study the life application questions and get back to the basic mathematical methods discussed in this book, if the need arises.

2. The chapters has been arranged to allow systematic understanding of all the topics considered. Therefore, the book content may be divided into three. Each of these is ideal for usage as course content per semester.

3. Those who are interested in knowing further details about the methods discussed in this book should consider the publications listed under the bibliography section.

Ezekiel F. Adebiyi and Segun A. Fatumo
Ota, September, 2005

Mathematical Methods and their Applications
Contents

Acknowledgments ... i
Preface ... iii

I The Fundamentals .. xxvii

1 Basic Data Structures ... 1
 1.1 Index .. 2
 1.2 Trie ... 5
 1.3 Linked list ... 7
 1.4 Hash table ... 17
 1.5 Suffix trees ... 19
 1.6 Suffix array .. 36
 1.7 Directed Acyclic Word Graph 37

2 Real Numbers and Functions of a Real Variables 39
 2.1 Real Numbers ... 39
 2.2 Fundamental Laws governing Operations with Real Numbers 41
2.3 Inequalities ... 43
2.4 Functions of Real Variables 57
2.5 Rigorism Questions 70
2.6 Life Application Questions 71

3 Vector Algebra .. 77
3.1 Basic Vectors and Components 79
3.2 Addition and Subtraction of Vectors 80
3.3 The Vector Product 84
3.4 Scalar Product 90
3.5 Triple Products of Vectors 92
3.6 Vector equation of lines and planes 94
3.7 Cylindrical and Spherical Coordinate Systems 103
3.8 Rigorism Questions 106

4 Limits, Continuity and Differentiability 109
4.1 Limits ... 109
4.2 Continuity of Functions 113
4.3 Differentiability 118
4.4 Derivative .. 121
4.5 Derivatives of Trigonometric Functions 123
4.6 Rule of Differentiation 127
4.7 Rolle's theorem and finding Maxima and Minima 131
4.8 The First Mean-Value Theorem 134
4.9 Higher Order Derivatives and Leibnitz's Formula 137
4.10 Rigorism Questions 141
CONTENTS

5 Indefinite, Definite and Improper Integrals
5.1 The Definite Riemann Integral 148
5.2 Some Properties of Definite Integral 156
5.3 Evaluation of Integrals 157
5.4 The Mean Value Theorem 178
5.5 Improper Integrals 182
5.6 Rigorism Questions 191

6 Infinite Series
6.1 Sequences and Series of Constants 195
6.2 Fundamental Theorems of Series 199
6.3 Convergence of Series 202
6.4 Absolute Convergence of Series 206
6.5 Sequence and Series of functions 216
6.6 Power Series 218
6.7 Theorem on Power Series 220
6.8 Taylor and Maclaurin Series 225
6.9 Expansion of certain Complex Functions 235
6.10 Application of Taylor’s expansion 236
6.11 Rigorism Questions 238
6.12 Life Application Questions 241

7 Complex Numbers
7.1 The Complex Number System 249
7.2 The Representation of Complex Numbers 250
7.3 Fundamental Operation with complex Numbers 258
7.4 De Moivre’s Theorem and its Application 261
7.5 Roots of complex numbers 265

Mathematical Methods and their Applications
7.6 The n-th Root of unity 266
7.7 Dots and cross Product 267
7.8 Rigorism Questions 268

8 Partial Differentiation 271
 8.1 Function of a function 274
 8.2 Higher Partial Derivatives 275
 8.3 Total Derivative 278
 8.4 Total differential Coefficient 280
 8.5 Implicit Function 281
 8.6 Higher Total Derivatives 282
 8.7 Homogeneous Functions 283
 8.8 Euler’s Theorem on homogeneous function 284
 8.9 Change of Variables 286
 8.10 Taylor Theorem for function of two indepen-
 dent variables 287
 8.11 Maxima and Minima 289
 8.12 Rigorism Questions 296

9 Matrix Operation 299
 9.1 Basic Definition and operation 299
 9.2 Elementary Row and Column Operations 300
 9.3 Determinant of a square Matrix 307
 9.4 Solution of a set of linear equations (The direct
 approach) 310
 9.5 Gaussian Elimination Method for solving a set
 of Linear equation 312
 9.6 Eigenvalues and Eigenvectors 314

Mathematical Methods and their Applications
9.7 Canonical Bases 325
9.8 Functions Of Matrices 334
9.9 Differentiation and Integration of Matrices 340
9.10 The Matrix Equation \(AX + XB = C \) 341
9.11 Rigorism Question 342
9.12 Life Application Questions 348

II Expansion and Advanced Integration Methods 355

10 Gamma Functions and Related Integrals 357
 10.1 The Gamma Function 357
 10.2 The Beta Function 367
 10.3 Relation between the Gamma and Beta Functions 369
 10.4 The Psi(Digamma) Function 371
 10.5 Rigorism Questions 374
 10.6 Life Application Questions 378

11 Differentiation and Integration of Integrals 381
 11.1 Differentiation of Indefinite Integrals .. 381
 11.2 Differentiation of Definite Integrals .. 384
 11.3 Integration of a Definite Integral 388
 11.4 Rigorism Questions 390

12 Complex Variables 393
 12.1 Functions, Limits and Continuity 393
 12.2 Differentiation and the Analytic Functions 416
 12.3 Integration and Analytic Functions 429
12.4 Taylor and Laurent Series 442
12.5 The Residue Theorem and its Applications ... 455
12.6 Rigorism Questions 482
12.7 Life Application Questions 484

13 Fourier and Mellin Transforms 489
 13.1 Introduction 489
 13.2 Fourier Series 490
 13.3 Fourier series under a different Interval ... 502
 13.4 Sum of functions series 506
 13.5 Cosine and Sine Series 512
 13.6 Integration and Differentiation of a Fourier series 515
 13.7 Complex Fourier series 520
 13.8 The Parseval Theorem 522
 13.9 Fourier's Integral Theorem 523
 13.10 Properties of the Fourier Integral 528
 13.11 Some special functions and their transforms 531
 13.12 Fourier cosine and sine transforms 539
 13.13 Convolution and the Convolution theorem 541
 13.14 Table of Fourier integrals for some standard
 functions 546
 13.15 Mellin Transform 548
 13.16 Fast Fourier Transform and Its Applications 548
 13.17 Rigorism Questions 551
 13.18 Life Application Questions 555

14 Numerical Integration 559
 14.1 Rectangular Rule 560
14.2 MidPoint Rule 561
14.3 Trapezoidal Rule 565
14.4 Simpson’s Rule 567
14.5 Application of Simpson’s Rule 568
14.6 Series Expansion Method 570
14.7 A little Numerical Analysis 571
14.8 Rigorism Question 572

III Differential Equations and Numerical Analysis 575

15 Ordinary Differential Equations (ODE) 577
15.1 Introduction 577
15.2 Formation of ODEs 580
15.3 First Order Equations 582
15.4 Linear Equations 602
15.5 Linear homogeneous equations with constant coefficients 604
15.6 Linear inhomogeneous constant coefficient equations 609
15.7 Nonlinear Second Order Differential Equations 621
15.8 Simultaneous Equations 624
15.9 The Laplace Transformation 626
 15.9.2 Laplace transformation of functions 627
 15.9.6 Inverse Transforms 633
 15.9.8 Transforms of differential coefficient 637
List of Tables

1.1 The T_{leaf} and T_{branch} tables of fig. 1.15 representing the suffix trees (fig. 1.14) for $S = abab$. 26

3.1 Rectangular, Cylindrical and Spherical Conversion table 105

5.1 Short list of Indefinite Integrals of elementary functions 147

9.1 An efficient manner for storing a sparse matrix. 349

10.1 Expected values of $\frac{F(n)}{n}$ defined in lemma 53 for different values of a’s and n’s. 378

10.2 Observed values of $F(n)/n$. 379

13.1 Fourier integrals for some standard functions . 547
13.2 Mellin integral for some standard functions. . 549

15.1 A short list of Laplace transforms of common functions 632
16.1 Eigenvalues \(w \) and its corresponding eigenfunctions. ... 665

17.1 The forward difference table for \(f(x) = e^x \) with
\(h = 0.2 \) ... 689

17.2 The difference table for the function \(f(x) \) defined in the table above. 692

17.3 The trace out table to find \(f(1.6) \) 694

17.4 The trace out table to find \(f(-3) \) 695

17.5 The trace out table to find \(f(0.2) \) 696

17.6 The trace out table to find \(f(3.1) \). 697

17.7 The trace table required using the Gregory-
Newton backward difference formula of (17.34)
to find \(f(4.4) \). ... 699

17.8 The trace tables required using the Gregory-
Newton backward difference formula of (17.34)
to \(f(7) \). ... 700

17.9 Complete iterations of the method applied in
example 17.5.1 ... 703

17.10 Exact solution table for \(y = 2x + e^{2-x} \) 704

17.11 Complete iterations of the iteration that began
in equation (17.57). .. 705

17.12 Supplementary table for the iteration that be-
gan in equation (17.57). ... 706

17.13 Iterative display of the exact solution of (17.58)
using the integrating factor (I.F) 707

17.14 The Euler's solution for equation (17.58). 708

Mathematical Methods and their Applications
17.15 Comparing the Exact and the Euler-Cauchy solutions. .. 711
17.16 Suppl. table for comparing the Exact and the Euler-Cauchy solutions.................. 712
17.17 Comparing the Exact and the Euler solutions. 713
17.18 Suppl. table for comparing the Exact and the Euler solutions. 714
17.19 Comparing the Euler and the Euler-Cauchy solutions. 715
17.20 Suppl. table for comparing the Euler and the Euler-Cauchy solutions.................. 716
17.21 An auxiliary table for solving the problem of example 17.5.5 719
17.22 Comparing the Runge-Kunta, the Euler-Cauchy, and the Euler methods error % s. 720
17.23 A finite difference table. .. 723
Mathematical Methods and their Applications

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>A Sample trie</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>A singly linked list</td>
<td>8</td>
</tr>
<tr>
<td>1.3</td>
<td>A doubly linked list</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>A circular linked list</td>
<td>8</td>
</tr>
<tr>
<td>1.5</td>
<td>A binary tree and its representation</td>
<td>9</td>
</tr>
<tr>
<td>1.6</td>
<td>Linked list insertion</td>
<td>11</td>
</tr>
<tr>
<td>1.7</td>
<td>Linked list deletion</td>
<td>12</td>
</tr>
<tr>
<td>1.8</td>
<td>Adding to a singly linked list with head ‘h’</td>
<td>13</td>
</tr>
<tr>
<td>1.9</td>
<td>Data structure definition for ELEMENT that define the singly linked list used in fig. 1.8 above</td>
<td>14</td>
</tr>
<tr>
<td>1.10</td>
<td>Dynamic creation of a binary tree node</td>
<td>15</td>
</tr>
<tr>
<td>1.11</td>
<td>Add a node to the binary tree</td>
<td>16</td>
</tr>
<tr>
<td>1.12</td>
<td>Data structure definition for the binary tree node</td>
<td>17</td>
</tr>
<tr>
<td>1.13</td>
<td>A hashing scheme</td>
<td>20</td>
</tr>
<tr>
<td>1.14</td>
<td>a) The suffix trees for $S = abab$, b) another one for $S = GTATCTAGG$</td>
<td>21</td>
</tr>
</tbody>
</table>
1.15 The suffix trees for \(S = abab \) following the \(T_{branch} \) and \(T_{leaf} \) representation above. The first child references are represented by the vertical arcs, and the branchbrother and the leaf references are represented by the horizontal arcs. 26

1.16 The sequence of \(\Sigma^+ \) -Trees for \(S = abab \). \(ST_5 \) is the suffix trees required. 32

1.17 Kurtz[32] modified version of McCreight Algorithm for constructing a suffix trees \(ST \). ... 33

2.1 A simple graph relating some circular functions. 50

2.2 One dimensional display of Linear inequalities of one variable. 51

2.3 Two dimensional display of Linear inequalities in (a) one variable and (b) two variables ... 52

2.4 Two dimensional display of two linear inequalities in two variables. 53

2.5 Two dimensional display of four linear inequalities in two variables. 54

2.6 The feasible region of solution. 56

2.7 Graphs of \(y = x^3 \) and \(y = x^2 \) in the \(x - y \) plane. 63

2.8 a) The function \(y = e^{ax} \cos bx \) in the \(x - y \) plane, b) the function \(y = \sin x \) in the \(x - y \) plane. .. 66

2.9 Graph of \(x - [x] \) for \(-3 \leq x \leq 3 \) 67

3.1 a) \(\vec{AB} \) b) \(\vec{BA} = -\vec{AB} \) 78

3.2 The vector \(\vec{U} + \vec{V} \) is defined to be the vector \(\vec{OP} \). 81

Mathematical Methods and their Applications
3.3 The vector $\vec{U} + \vec{V}$ is defined to be the vector \vec{OP}. 82
3.4 Associative law 83
3.5 $(\vec{U} \times \vec{V})$ 85
3.6 $(\vec{V} \times \vec{U})$ 86
3.7 the projection of \vec{V} onto \vec{U} 91
3.8 The area of the parallelepiped defined by \vec{U}, \vec{V} and \vec{W}. 94
3.9 The graph of $O\vec{W} = O\vec{U} + U\vec{W}$ 95
3.10 Graphical representation of the perpendicularity of \hat{n} and $U\hat{V}$. 99
3.11 Rectangular, cylindrical and spherical coordinate systems. 103
3.12 a) Converting Rectangular to Cylindrical Coordinate, b) Converting Spherical to Cylindrical coordinate .. 104

4.1 The graph showing $f(x)$ for $x \leq 1$ and $f(x) = \frac{1}{2}$ for $x > 1$. 111
4.2 a) The function $y = x^2$ in the $x - y$ plane, b) The function $f(x) = \frac{1}{x}$ also in the $x - y$ plane. 115
4.3 Graphical definition of differential coefficient of $f(x)$ with respect to x. 119
4.4 a) A maximum function, b) A minimum function 132
4.5 a) The function $y = |x|$ in the interval $-a \leq x \leq a$, b) Parallel tangents at maximum and minimum points. 133
4.6 Continuous and differentiable function at interval $a \leq x \leq b$. 135

Mathematical Methods and their Applications
5.1 The area bounded by \(y = 3x^2 + 14x + 15 \), the
\(x \)-axis and the ordinates at \(x = -1 \) and \(x = 2 \). 148

5.2 The graph relating Riemann integral to the
area under a continuous curve. 150

5.3 Another graph relating Riemann integral to the
area under a continuous curve. 152

5.4 An odd function, such that \(\int_{-a}^{a} f(x) \, dx = 0 \). 154

5.5 a) \(F(k, \phi) \) at \(k = \sin \alpha, \alpha = 0, \pi/4, \pi/2 \) and
\(0 \leq \phi \pi/2 \), \(E(k, \phi) \) at \(k = \sin \alpha, \alpha = 0, \pi/4, \pi/2 \) and \(0 \leq \phi \pi/2 \). 174

7.1 Argand diagram for \(P(z) \) and its conjugate \(P(\bar{z}) \). 252

7.2 a) Equal vectors \(\overrightarrow{OP} \) and \(\overrightarrow{AB} \), b) Parallelogram
law for vector addition. 257

7.3 Stereographic projection: The mapping of the
plane to the sphere. 258

10.1 Gamma function and its reciprocal for \(-4 \leq \)
\(x \leq 4 \). 358

10.2 The behaviour of Psi (digamma) function for
\(-4 \leq x \leq 4 \). 372

12.1 a) A curve between points \(P \) and \(Q \) in the \(z \)-
plane, b) The same curve between \(P \) and \(Q \) but
in the \(\omega \)-plane (another plane). 400

12.2 a) The function \(y = mx \) in the \(z \)-plane, b) The
transformed version of \(y = mx \) in the \(w \)-plane,
where \(w = \frac{1}{\bar{z}} \). 402
12.3 a) The function $x^2 + y^2 = a^2$ in the z-plane,
b) The function $x^2 + y^2 = a^2$ in the w-plane,
where $w = \frac{1}{z}$.

12.4 a) Lines $u = c_1$ and $v = c_2$ in the w plane,
b) Corresponding curves in the z-plane, where

$w = z^2$.

12.5 z complete circuit around the origin.

12.6 A branch point at $z = i$.

12.7 Branch points at $z = \pm i$.

12.8 Branch lines for $w = f(z) = (z^2 + 1)^{\frac{1}{2}}$.

12.9 Real axis at $z = 0, \pm 2\pi, \pm (2/3)\pi, \pm (2/5)\pi, \ldots$.

12.10 a) Region $|z| < 2$, b) Region $1 < |z| < 2$.

12.11 a) Non-overlapping simple closed curves C_1,
C_2, $C_3, \ldots C_n$, b) Region form by the functions
y $= x^2$ and $y^2 = x$.

12.12 a) Overlapping simple closed curves C_1 and
C_2, b) Simple closed curve C, point $z = a$ inside and outside C.

12.13 The annulus or annular region between concentric circles C_1 and C_2 of radius R_1 and R_2.

12.14 Analytic continuation of an analytical function $f(z)$ inside some circles of convergence C_1,
C_2, $C_3, \ldots C_n$.

12.15 A simple closed contour, small enough to
avoid any other poles of $f(z)$.

12.16 A simple closed curve C with singularities
a, b, c, \ldots

12.17 Contour C with multiple poles.
12.18 Residues at some given poles for function defined at (12.188). 466
12.19 a) Contour C with radius R formed by the line from $-R$ to $+R$ and the semicircle Γ above the x-axis, b) A unit circle C with center at the origin. 468
12.20 A rectangle region C having vertices at $-R$, R, $R + \pi i$, and $-R + \pi i$ 473
12.21 A square C_N region......................... 478

13.1 $f(x) = 0$ for $-\pi < x < 0$ and $f(x) = 1$ for $0 < x < \pi$. 493
13.2 a) $f(x) = x$ in the range $-\pi < x < \pi$ but extended to satisfy the periodic relation $f(x + 2\pi k) = f(x)$, b) $f(x)$ defined in (13.21) and also extended to satisfy the periodic relation $f(x + 2\pi k) = f(x)$. 497
13.3 a) $f(x) = e^x$ in the range $-\pi < x < \pi$ but extended to satisfy the periodic relation $f(x + 2\pi k) = f(x)$, b) $f(x) = x$ in the range $-1 < x < 1$, but also extended to satisfy the periodic relation $f(x + 2) = f(x)$ 504
13.4 The Sawtooth wave function $f(x) = x + \pi$. 507
13.5 The Partial sums $S_n(x)$ of (13.59). 508
13.6 The rectangular or periodic square wave function 509
13.7 The first three partial sums of the $f(x)$ given in (13.65). 511
13.8 a) \(f(x) = x^2 \) in the range \(0 < x < 2 \) but extended to satisfy the periodic relation \(f(x + 4k) = f(x) \), b) \(f(x) = x^2 \) in the range \(0 \leq x \leq \pi \) but also extended to satisfy the periodic relation \(f(x + 2\pi k) = f(x) \). \hspace{1cm} 514

13.9 a) \(f(t) = 1 \) for \(-a/2 < t < a/2\), \(f(t) = 0 \) otherwise, b) An amplitude spectrum of \(f(t) \) of (13.108) \hspace{1cm} 526

13.10 \(f(t) = 1 \) for \(0 < t < a \), and zero otherwise. \hspace{1cm} 527

13.11 a) Continuous amplitude \(|F(\omega)| \) for \(f(t) \) of (13.113), b) Continuous phase spectrum \(\phi(\omega) \) for \(f(t) \) of (13.113). \hspace{1cm} 528

13.12 The function \(f_k(t - a) \) in (13.135) \hspace{1cm} 534

13.13 The triangle function \hspace{1cm} 539

14.1 a) An area defining the values \([x, f(x)]\), b) Approximating an area by a set of rectangles. \hspace{1cm} 560

14.2 Midpoints of subintervals in interval \([a, b]\). \hspace{1cm} 561

14.3 Another approximation of an area by a set of rectangles. \hspace{1cm} 562

14.4 Mid-points of subintervals in \([1, 2]\). \hspace{1cm} 565

14.5 Sub-interval of interval \([a, b]\) for Trapezoidal rule. 565

14.6 a) Trapezoidal rule: Interval with \(h = 3/2\), b) Trapezoidal rule: Interval with \(h = 3/4\), c) Trapezoidal rule: Interval with \(h = 3/8\), and d) Trapezoidal rule: Interval with \(h = 1/2\). \hspace{1cm} 568

14.7 Partition of interval \([a, b]\) into an even number \(N \) of equal subintervals. \hspace{1cm} 568