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Abstract
 The genomics and microarray technology played tremendousBackground:

roles in the amount of biologically useful information on gene expression of
thousands of genes to be simultaneously observed. This required various
computational methods of analyzing these amounts of data in order to discover
information about gene function and regulatory mechanisms.

 In this research, we investigated the usefulness of hidden markovMethods:
models (HMM) as a method of clustering   genes thatPlasmodium falciparum
show similar expression patterns. The Baum-Welch algorithm was used to train
the dataset to determine the maximum likelihood estimate of the Model
parameters. Cluster validation was conducted by performing a likelihood ratio
test.

The fitted HMM was able to identify 3 clusters from the dataset andResults: 
sixteen functional enrichment in the cluster set were found. This method
efficiently clustered the genes based on their expression pattern while
identifying erythrocyte membrane protein 1 as a prominent and diverse protein
in  .P. falciparum

 The ability of HMM to identify 3 clusters with sixteen functionalConclusion:
enrichment from the 2000 genes makes this a useful method in functional
cluster analysis for P. falciparum
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Introduction
Technological advancement in bioinformatics such as the high 
through put sequencing technology has resulted in the availability 
of a very large amount of informative data1. Expressions of thou-
sands of genes are now being measured concurrently under various 
experimental conditions using microarray technology. Microarray 
consists of many thousands of short, single stranded sequences, 
each immobilized as individual elements on a solid support, that 
are complementary to the cDNA strand representing a single gene. 
Gene expression measurements can be obtained for thousands 
of genes simultaneously using microarray technology. In a cell,  
genes are transcribed into mRNA molecules which in turn can 
be translated into proteins, and it is these proteins that perform  
biological functions, give cellular structure and in turn regulate 
gene expression2.

Various researches had been carried out on the analysis and  
extraction of useful biological information such as detection of 
differential expression, clustering and predicting sample character-
istics3. One of the important of gene expression data is the abil-
ity to infer biological function from genes with similar expression 
patterns4. Due to large number of genes and complexity of the  
data and networks, research has suggested clustering to be a 
very useful and appropriate technique for the analysis of gene  
expression data which can be used to determine gene coregulation5, 
subpopulation6, cellular processes, gene function7 and understand-
ing disease processes8.

Clustering algorithms as described by9 can either be distance 
based or model based. Distance-based clustering such as the  
k means10 does not consider dependencies between time points 
while the model based approach embeds time dependencies 
and uses statistical models to cluster data. Other approaches 
include Self Organizing Maps11, Principal Component Analysis,  
hierarchical clustering4, graph theory approach12, genetic algo-
rithms and the Support Vector Machine13. These algorithms has 
been successfully applied to various time series data but still have 
various shortcoming such as determining the optimal number of  
clusters and choosing the best algorithm for clustering since 
most of them are based on heuristics. The algorithms are also not  
very effective especially when a particular gene is associated with 
different clusters and performs multiple functions.

This research focuses on clustering of genes with similar expres-
sion patterns using Hidden Markov Models (HMM) for time course 
data because they are able to model the temporal and stochastic 
nature of the data. A Markov process is a stochastic process such  
that the state at every time belongs to a finite set, the evolu-
tion occurs in a discrete time and the probability distribution of  
a state at a given time is explicitly dependent only on the last state 
and not on all the others. This refers to as first-order Markov proc-
ess (Markov chain) for which the probability distribution of a 
state at a given time is explicitly dependent only on the previous 
state and not on all the others. That is, the probability of the next  
(“future”) state is directly dependent only on the present state 
and the preceding (“past”) states are irrelevant once the present 
state is given14. Fonzo et al.14 defined HMM as a generalization 
of a Markov chain in which each (“internal”) state is not directly 

observable (hidden) but produces (“emits”) an observable random 
output (“external”) state, also called “emission” state. Schliep  
et al.9 proposed a partially supervised clustering method to account 
for horizontal dependencies along the time axis and to cope with 
the missing values and noise in time course data. This approach 
used k means algorithm and the Baum welch algorithm for param-
eter estimation. Further analysis on the cluster was done with the  
Viterbi algorithm which gives a fine grain, homogeneous decom-
position of the clusters. The partial supervised learning was 
done by adding labeled data to the initial collection of clusters.  
Ji et al.15 developed an application to cluster and mine useful bio-
logical information from gene expression data. The dataset was 
first normalized to a mean of zero and variance of one and then  
discretized into expression fluctuation symbol with each sym-
bol representing either an increase, decrease or no change in the  
expression measurement. A simple HMM was constructed for 
these fluctuation sequences. The model was trained using the  
Baum-Welch EM algorithm and the probability of a sequence given 
a HMM was calculated using the forward-backward algorithm. 
Several copies of the HMM was made so that each copy repre-
sent a single cluster. These clusters were made to specialize by  
using a weighted Baum-Welch algorithm where the weight is  
proportional to the probability of the sequence given the model.  
The Rand Index and Figure of Merit was used to validate the  
optimal number of cluster results.

Geng et al.16 developed a gene function prediction tool based on 
HMM where they studied yeast function classes who had suffi-
cient number of open reading frame (ORF) in Munich Information 
Center for Protein Sequences (MIPS). Each class was labeled as 
a distinct HMM. The process was performed on three stages; the 
discretization, training and inference stages and data used for this 
analysis was the yeast time series expression data. Lees et al.17 pro-
posed another methodology to cluster gene expression data using 
HMM and transcription factor information to remove noise and 
reduce bias clustering. A single HMM was designed for the entire 
data set to see if it would affect clustering results. Each path in the 
HMM represents a cluster, transition between states in a path is 
set to a probability of 1 and transition between states on different 
path is set to a probability of 0. Genes were allocated to clusters 
by calculating the probability of each sequence produced by the 
HMM. Clusters were validated using the likelihood ratio test which 
computes the difference in the log-likelihood of a complex model 
to that of a simpler model. Zeng and Garcia-Frias18 implemented 
the profile HMM as a self-organizing map, this profile HMM is 
a special case of the left to right inhomogeneous HMM which is 
able to model the temporal nature of the data. This makes it very  
useful for real life applications. The profile HMM is trained 
using the Baum-Welch algorithm19 and clustering was done using 
the Viterbi algorithm and the algorithm was implemented on the 
fibroblast and the sporulation datasets. Beal et al.20 implemented  
the Hierarchical Dirichlet Process Hidden Markov Model (HDP-
HMM) for clustering gene expression data with countably infinite 
HMM. Gibbs sampling method was used to reduce the time com-
plexity of the inference. The data used for the implementation was 
derived from Lyer et al.21 and Cho et al.22 which was normalized and 
standardized to a log ratio of 1 at time t = 1. Baum Welch algorithm 
was used for Estimation Maximization. In this work, we adopted the 

Page 3 of 12

F1000Research 2017, 6:1706 Last updated: 19 SEP 2017



work of Lee et al.17 and applied HMM on the Plasmodium falci-
parum RNA-seq dataset.

Materials and methods
In this work, data was extracted and normalized to a mean of 1 
and standard deviation of 0. Discretization was done on the data 
to improve the clustering results. The HMM forward-backward 
algorithm and Baum-Welch training algorithm was implemented 
to cluster the gene expression data. Genes were then assigned  
to cluster using the forward algorithm and inference was done 
by obtaining functionally enriched genes in the cluster set using  
FunRich tool. The data used was published by 23, they used the 
Illumina based sequencing technology to extract expressions 
of 5270 P. falciparum genes at seven different time points every 
8hrs for 42hrs. The clustering algorithms was implemented by  
first randomly initializing all the HMM parameters, then, forward 
algorithm was implemented to calculate the forward probabili-
ties of the observation and Baum-Welch algorithm was used for  
data fitting, then the likelihood of each HMM was calculated 
iteratively until the optimal likelihood is obtained. This process  
is repeated for all the different sized HMMs used.

Definitions and notation
HMMs can be viewed as probabilistic functions of a Markov  
chain24 such that each state can produce emissions according to 
emission probabilities.

Definition 1. (Hidden Markov Model). Let O = (O
1
,…) be a 

sequence over an alphabet ∈. A Hidden Markov Model λ is deter-
mined by the following parameters:

•   S
i
, the states i = 1, … N

•   π
i
, the probability of starting in state S

i
,

•   α
ij
, the transition probability from state S

i
 to state S

j
, and

•   �b
i
(ω), the emission probability function of a symbol ω ∈ Σ in  

state S
i
.

Definition 2. (Hidden Markov Cluster Problem). Given 
a set O = {O1, O2,…, On} of n sequences, not necessarily of  
equal length, and a fixed integer K ≪ n. Compute a partition  

C = (C
1
, C

2
,…, C

k
) of O and HMMs λ

1
,…, λ

k
 as to maximize the 

objective function 

                          
( ) ( )=1= |

k i
kk O Ci k

f c L O λ∏ ∏ ε                         
(1)

Where L(Oi | λ
k
) denotes the likelihood function for generating 

sequence Oi by model λ
k
:

Data preprocessing
The preprocessing was done in two stages. The first stage was the 
normalization and the second stage was discretization. The normal-
ization was done with the R statistical package using the normalize 
library. Normalization removes static variation in the microarray 
experiment which affects the gene expression level. Normalization 
also helps in speeding up the learning phase. Missing values are 
also removed during normalization. Discretization was done by 
converting the time points to symbols depending on whether the 
expression value has increased, decreased or not changed. This is 
done by using the equation below.

                 

1

1

1

0

1

2

i i

ii i

ii

if E E a

S if E E a

if E E a

+

+

+

 − <
= − ≥


− ≥                   

(2)

Where:

S
i
 = fluctuation level between time i and i + 1

E
i
 = expression level at time point i

L = number of time points.

a = threshold value between timepoints.

HMM for clustering gene expression data
In this work, we implemented a model-based HMM clustering 
algorithm where a cluster represents a path in the HMM model. 
Therefore, as the number of cluster increases, the number of 
paths through the model increases and the HMM becomes larger 
and larger. The number of hidden state is the number of clus-
ters multiplied by the sequence length. Research has also shown  
that HMM that transverse from left to right best models time series 
data, therefore HMM moves from only right-to-left. The structure 
of the HMM is shown in Figure 1.

Figure 1. HMM design from cluster 2 to w. The number 0, 1, and 2 represents the emmission symbols at each state.
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The left to right model has the property that, as the time increases, 
the state transition increases, that is, the states moves from left to 
right. This process is conveniently able to model data whose prop-
erties change over time.

The forward algorithm calculates the forward probabilities of 
a sequence of observation. This is the probability of getting a 
series of observation given that the HMM parameters (A, B, π) are  
known. This computation is usually expensive computationally. 
The time invariance of the probabilities can however be used to 
reduce the complexity of this algorithm by calculating the prob-
abilities recursively. These probabilities are calculated by comput-
ing the partial probabilities for each state from times t = 1 to t = T.  
The sum of all the final probabilities for each states is the prob-
ability of observing the sequence given the HMM and this was 
used in this research to compute the likelihood of a sequence given  
the HMM. The algorithm is in 3 stages and illustrated as follows:

Initialization stage 
This initializes the forward probability, which is the joint probabil-
ity of starting at state and initially observing O

1
.

                         
( ) ( )1 1ii i

b O i Nα π= ≤ ≤

Induction stage

      

( ) ( ) ( )1
1

1 , 1 1
N

i i ij j t
i

t t b O t Tα α α +
=

 
 + = ≤ ≤ −
  
∑

This is the joint probability of observation and state 3 at time  
t + 1 via state at time t (i.e. the joint probability of observing o at 
state 3 at time t+1 and form state and time t). This is performed at 
all states and is iterated for all times from t = 1 to T-1.

Termination stage 
This computes all the forward variables, which is the P(o|M).

                                    
( ) ( )

1
|

N

i
i

P o M Tα
=

= ∑

Where:

α
ij
 = transition from state i to j

b
i
(o) = probability of emitting a symbol in a particular state

t = time

M = model

α
i
 = forward variable of state i

π = probability of starting at a particular state

The backward algorithm like the forward algorithm calculates  
backward probabilities instead. The backward probability is the 
probability of starting in a state at a time t and generating the rest 
of the observation sequence O

t + 1
,…, O

T
. The backward probabil-

ity can be calculated by using a variant of the forward algorithm. 

Therefore, instead of starting at time t = 1, the algorithm starts at 
time t = T and moves backwards from O

T
 to O

t + 1
. In this work, 

the backward algorithm was used alongside the forward algorithm 
to re-estimate the HMM parameters. This algorithm also involves 
three steps and is illustrated below.

Initialization 
This is the initial probability of being in a state S

i
 at time T and gen-

erating nothing. The value of this computation is usually 1.

                     
( ) 1, 1i T i Nβ = ≤ ≤

Induction 
This step calculates the probabilities of partial sequence observa-
tion from t+1 to end given state at time t and the model λ.

      
1 1

1
( ) ( ) ( ) 1, 2, ,1.

N

i ij j t t
j

t b O j t T T …β α β+ +
=

= = − −∑

Termination 
It calculates all the backward variables which is the P(O

t+1
, …, 

O
T
|Q

1
 = S

i
).

                        

1
, ,1 1( | ) ( )

t

T i it
T

P O O Q S t… β
=

+ = = ∑

Where:

α
ij
 = transition from state i to j

b
j
(o) = probability of emitting a symbol in a particular

β
t
(j) = backward variable of state i in time t

The Baum-Welch algorithm, sometimes called the forward- 
backward algorithm makes use of the results derived from this algo-
rithm to make inference. The Baum-Welch algorithm is a special 
form of the Expectation Maximization algorithm used for finding 
the maximum likelihood estimate of the parameters of the HMM. It 
was used in this work to train the various sized HMM parameters.

The E part of the algorithm calculates the expectation count for 
both the state and observation. The expectation of state count is 
denoted by γ

t
(i). It is the probability of being in state at time t giving 

observation sequence and the model.

                       1

( ) ( )( | )
( )

( | ) ( ) ( )
N

iit
t

i jj

t b tP q i
i

P o t b t

αλ
λ α

=

=
γ = =

∑
               

(3)

The expectation of transition count is denoted by ε
ij
(t). it is the prob-

ability of being in state S
i
 at time t and state S

j
 at time t + 1 given  

an observation sequence and the model.

1
1

11 1

( ) ( 1) ( )
( ) ( , | , )

( ) ( 1) ( )
N N

i ij j j t
tij t

i ij j j ti i

t b t b o
t P q i q j o

t b t b o

α α
ε λ

α α
+

+
+= =

+
= = = =

+∑ ∑   (4)

Based on the expectation probabilities, we can now estimate the 
parameters that will maximize the new model. This is the M step 
of the algorithm.
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The new initial probability distribution can be calculated as  
follows.
                                            

(1)iγπ =′
                                         (5)

The re-estimated transition probability distribution is also  
calculated as follows: 

                                          

1

1
1
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it

t

t

ε
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−
=
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Finally, the new observation matrix is calculated using the formula 
below 
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The pseudo code of the training algorithm is represented below: 

i.	 Begin with some randomly initialized or preselected 
model, π

ii.	 Run O through the current model to estimate the 
expectations of each model parameter using the forward 
backward algorithm.

iii.	 Change the model to maximize the values of each path 
using the new π′, α ′

ij
 and b′

i
(t).

iv.	 Repeat until change in log likelihood is less than a 
threshold value or when the maximum number of 
iterations is reached.

For global optimal results, this algorithm is usually iterated depend-
ing on the size of the dataset.

Results and discussion
Likelihood estimation
After implementing the HMM algorithms, the discretized data was 
parsed into the program. The dataset was trained using HMMs with 
cluster size from cluster 2 to 10. The likelihood of each HMM was 
calculated using likelihood ratio test and three clusters were identi-
fied. The likelihood ratio test of the dataset from cluster 2 to 10 
is shown in Table 1 below. A positive LRT show that increasing 

the number of parameters is still worthwhile while a negative LRT 
shows that increasing the parameter would not give a better model. 
From the calculations below, the optimal number of clusters in the 
dataset based on the likelihood ratio test is 3. The log likelihoods  
of each cluster is also illustrated in Figure 2 below. It shows  
that the log likelihood increases with more parameters added ini-
tially but from cluster 3, there was no significant increase in log 
likelihood showing that the optimal number of clusters has been 
attained.

Clustering results
The dataset was trained using the Baum-Welch algorithm and the 
probability that an observation sequence belongs to a cluster was 
calculated using the forward algorithm. Genes with discretized 
value of zeros were also removed. After the likelihood ratio test 
was calculated and the optimal number of clusters found, each  
data was then separated into clusters using the forward algorithm. 
The first cluster consists of 502 genes, the second cluster had  
481 genes and the third cluster had 668 genes. These results are 
represented in the Figure 3.

Table 1. Table showing LRT calculations. The LRT becomes 
negative after three (3) clusters giving the optimal number as 3.

K Log Likelihood LR (Likelihood 
Ratio)

LRT(Likelihood 
Ratio Test)

2 -143.34

3 -102.28 41.06 7.02E+01

4 -95.62 6.66 1.42E+00

5 -89.17 6.45 1.00E+00

6 -86.89 2.28 -7.34E+00

7 -84.8 2.09 -7.72E+00

8 -8.44E+01 0.38 -1.11E+01

9 -8.27E+01 1.71 -8.48E+00

10 -8.10E+01 1.75 -8.40E+00

Figure 2. Log likelihoods for different numbers of clusters. The log likelihood values increase with the number of clusters sizes. After 3 
clusters, there is not a significant increase in the log likelihood.
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Functional-induced/determined clustering of plasmodium 
falciparum protein by the algorithm
Erythrocyte membrane protein1(pfEMP1) –Clusters 1 and 2 
The clustering algorithm efficiently clustered the differentially 
expressed genes into 3 clusters based on their functions. It is 
noteworthy that the most abundant genes are the erythrocyte  
membrane protein 1 (PfEMP1). The proteins are grouped in clus-
ter 1 and cluster 2. PfEMP1 is an ubiquitously expressed pro-
tein during the intraerythrocytic stage of the parasite growth that 
determined the pathogenicity of P. Falciparum25. The virulence of  
P. falciparum infections is associated with the type of P. falci-
parum PfEMP1 expressed on the surface of infected erythro-
cytes to anchor these to the vascular lining. PfEMP1 represents  
an immunogenic and diverse group of protein family that  
mediate adhesion through specific binding to host receptors25. 
The Var genes encode the PfEMP1 family, and each parasite  
genome contains ~60 diverse Var genes. The differential  
expression of the proteins in this family has been reported 
to determine morbidity from P. falciparum infection26. This  
differential expression during infection and among patients could 
have accounted for its clustering into 2 different clusters by  
the algorithm.

Apart from clustering cell adhesion proteins into a sub-cluster, 
the algorithm also clustered the proteins involved in actin bind-
ing, transmembrane transportation and ATP binding. While the 
genes involved in ATP binding a largely conserved with their func-
tions yet to be experimentally determined, the transport proteins  
are bet3 transport protein and aquaporin. Aquaporin is a  
membrane spanning transport proteins that is essential in the main-
tenance of fluid homeostasis and transport of water molecules  
and it has been identified as good therapeutic target27. Bet3  
transport protein on the other hand is involved in the transport of 
proteins by the fusion of endoplasmic reticulum to Golgi transport 
vesicles with their acceptor compartment28.

The second cluster also has sub-cluster of PfEMP1 with other sub-
clusters for GTP and ATP binding /ATP-dependent helicase activity 
as well as structural components of ribosome and ubiquitin pro-
tein ligase activity. Apart from PfEMP1, other sub-clusters are 
involved in protein turnover-protein synthesis and degradation29.  
These include the RNA helicases that prepare the RNA for trans-
lation and initiate translation, the ribosomal and GTP binding  
proteins that are integral part of the ribosome assembly involved 
in translation and the ubiquitin-conjugating enzymes are carry  
out the ubiquitination reaction that targets a protein for degradation 
via the proteasome30–32.

The genes coding for proteins involved in catabolic activi-
ties such as breakdown of proteins and hydrolysis of lipids are  
clustered in cluster 3. This cluster also included sub-clusters for 
genes involved in motor activity and DNA structural elements. 
The DNA structural elements include histone proteins and tran-
scriptional initiator elements which are involved in epigenetic  
control of gene expression33. The ability of P. falciparum to grow 
and multiply both in the warm-blooded humans and cold-blooded 
insects is known to be under tight epigenetic regulation and it  
has been suggested as a good therapeutic target25.

Functional annotation
The Functional Enrichment analysis tool was used to determine 
functionally enriched genes in each cluster. Each cluster was loaded 
separately based on their unique gene identifier. Genes are matched 
against the UniProt background database or by using a custom  
database that allows users load their own predefined Gene  
Ontology Term (GOTerm). We used the custom database and 
loaded annotations downloaded from PlasmoDB for our functional 
enrichment. The result of the 3 clusters is summarized in Table 2.  
FunRich was only able to identify 164 of the 502 genes in  
cluster 1. Cluster 1 has five functional annotations, 7.3% of the 
genes are functionally annotated with cell adhesion molecule, 

Figure 3. clustering results showing all the genes in each cluster. The x-axis shows the likelihood of each genes in each of the cluster 
and the y-axis shows the total number of genes in each cluster.
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Table 2. Functional annotation of each clusters. Cluster 1 has four GO annotations, cluster 2 
has five and cluster 3 has seven functional annotations.

CLUSTERS GO-ANNOTATION GENE ID NUMBER OF GENES

Cluster 1 Cell adhesion molecule, receptor activity PFD0005w 
PFD1015c 
PFE0005w 
PFD0635c 
PFD1005c 
PFF0845c 
PF07_0048 
PF07_0049 
PF07_0050 
MAL7P1.55 
MAL7P1.56 
PF08_0142

12

Acting binding PFE0880c 
PFE1420w

2

Transporter activity PFD0895c 
PF08_0097

2

ATP binding PFB0115w 
PFD0365c 
PFD0735c 
PFF0390w 
PF07_0074 
PF08_0101

6

Cluster 2 Structural constituent of the ribosome PFB0455w 
PFB0830w 
PFB0885w 
PFC0200w 
PFC0290w 
PFC0295c 
PFC0300c 
PFC1020c 
PFD0770c 
PFD1055w 
PFE0185c 
PFE0300c 
PFE0350c 
PFE0845c 
PFE0975c 
PFF0700c 
PFF0885w 
PF07_0043 
PF07_0079 
PF07_0080 
PF08_0039 
PF08_0075

22

Cell adhesion molecule receptor activity PFA0005w 
PFD0020c 
PFD0615c 
PFD0625c 
PFD0995c 
PFF0010w 
PFF1580c 
MAL7P1.50 
PF07_0051 
PF08_0103 
PF08_0107 
PF08_0140

12
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CLUSTERS GO-ANNOTATION GENE ID NUMBER OF GENES

ATP binding and ATP dependent in a 
helicase activity

PFB0860c 
PFD0245c 
PFD1060w 
PFE1390w 
PF08_0042

5

Ubiquitin protein ligase activity PFC0255c 
PFE1350c 
MAL8P1.23

3

GTP binding PFC0565w 
PFE1215c 
PFE1435c 
PFF0625w

4

Cluster 3 Cysteine-type peptide activity PFB0330c 
PFB0335c 
PFB0340c 
PFB0345c 
PFB0350c 
PFB0360c 
PFD0230c

7

Endopeptidase activity PFA0400c 
PFC0745c 
PFE0915c 
PFF0420c 
PF07_0112 
MAL8P1.14 
2

6

Hydrolase activity PFC0065c 
PFE0910w 
PFD0185c 
PF07_0040

4

ATP binding, action binding and monitor 
activity

PFE0175c 
PFF0675c

2

DNA binding PFD0325w 
PFE0305w 
PF07_0035

3

Unfolded protein binding PFF0860c 
PFF0865w

2

DNA binding, protein heterodimerization 
activity

PFE0595w 
PF07_0103

2

receptor activity, 1.2% are annotated with acting binding, 1.2% 
with transporter activity and 3.7% with ATP binding as shown 
in Figure 4. The remaining genes has no GO functions. We can  
deduce that since these genes are in the same cluster, they are likely 
to have functions as the genes with GO annotation.

In cluster 2, FunRich was able to identify 308 genes. In cluster 2, 
7.1% of the genes are functionally annotated with the structural con-
stituent of the ribosome, 3.9% with cell adhesion molecule receptor 
activity, 1.6% with ATP binding and ATP-dependent in a helicase 
activity, 1.0% with ubiquitin protein ligase activity and 1.3% with 
GTP binding which gives a total of five functional annotations 

as shown in Figure 5. The rest of the genes in cluster 2 are also  
predicted to have similar functions as with the genes with known 
GO annotation.

In cluster 3, FunRich was able to identify 249 of the 668 genes 
in the cluster set. This cluster has the largest GO annotation as it 
is enriched with seven functions. 2.8% of the genes are enriched 
with cysteine-type peptide activity, 2.4% with endopeptidase activ-
ity, 1.6% with hydrolase activity, 0.8% with ATP binding, action 
binding and monitor activity, 1.2% with DNA binding, 0.8% 
with unfolded protein binding and 0.8% with DNA binding, pro-
tein heterodimerization activity as shown in Figure 6. We can 
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Figure 4. Functional annotation of cluster 1. The x-axis shows the percentage genes in the cluster with specific functional annotation while 
the y-axis shows the function of these genes.

Figure 5. Functional annotation of cluster 2. The x-axis shows the percentage genes in the cluster with specific functional annotation while 
the y-axis shows the function of these genes.
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Figure 6. Functional annotation of cluster 3. The x-axis shows the percentage genes in the cluster with specific functional annotation while 
the y-axis shows the function of these genes.

also deduce that in cluster 3, the genes with unknown functions 
are also predicted to have the same functions as with the known  
ones.

Conclusion
Clustering has been found to be a very useful technique in analyz-
ing gene expression data. It has the ability to display large datasets 
in a more interpretable format. Several approaches have been devel-
oped to cluster gene expression data. The HMM has a better advan-
tage over them because of its strong mathematical background and 
its ability to model gene expression data successfully. The HMM 
algorithms were implemented to perform cluster analysis on the  
P. falciparum gene expression dataset. 2000 genes were used and  
3 clusters were identified. Sixteen major functional enrichment 
were identified for the clusters.
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