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Abstract— This paper describes our work on mining pollutant 

data to assess air quality in urban areas. Notable aspects of this 

work are that we mine social media and structured data in a 

domain-specific context, incorporate commonsense knowledge in 

mining media opinions and focus on the urban planning domain 

in a multicity environment. The results of mining are useful for 

predictive analysis in urbanization. A significant contribution is 

that we provide useful information on urban health impacts.  

Keywords—Air Pollution, Commonsense Knowledge, Health 

Impacts, Opinion Mining, Predictive Analysis, Urban Planning 

 

I. INTRODUCTION  

The quality of air in urban regions is important with 

respect to health impacts.  A significant aspect of air quality is 

the presence of pollutants and their effects on human health 

[1].  Given this, an important sub-problem in our work is to 

mine real data on pollutants from structured repositories to 

assess air quality. We propose an approach entailing the 

classical data mining paradigms of association rules, 

clustering and classification for this purpose.  

Another important aspect today is public reaction typically 

expressed through social media. Opinions entered by urban 

residents on sites such as Twitter give an idea of user 

satisfaction. This brings us to another interesting sub-problem, 

i.e., mining social media data on pollutants to assess air 

quality. One of the biggest challenges here is to review 

relevant information intuitively as a human would. We thus 

incorporate commonsense knowledge [2] in this process and 

develop domain-specific knowledge bases in order to guide 

the social media mining. We also incorporate lexical databases 

[3] of words with sentiments to mine public opinions.  

The results of these mining processes can be used to help 

urban residents plan lifestyles, assist government bodies in 

urban policies and give inputs to environmental scientists for 

research. Accordingly, we conduct predictive analysis based 

on the results of mining. The broader impact of this work 

includes developing smart cities catering to the smart 

environment characteristic [4] by monitoring air quality, 

enhancing greenness and improving health. Domain KBs 

developed here can be useful in smart governance [4] by 

promoting automation and providing at-a-glance information 

for decision support. To the best of our knowledge, this is one 

of the first works to incorporate structured data mining and 

public opinion mining for urban planning.  

II. MINING STRUCTURED DATA ON POLLUTANTS 

A. Background and Goals 

In the first sub-problem, we focus on mining pollutant data. 
More specifically, we consider fine particle pollutants PM2.5 
(Particulate Matter, diameter < 2.5 µm). Finer pollutants are 
worse as the human respiratory system cannot easily filter them 
[1]. High PM2.5 concentration could cause severe health 
problems; long term exposure to it could lead to cardiovascular 
and respiratory diseases, genotoxicity, mutagenicity and 
cancer.  Since PM2.5 has highly negative effects, it is desirable 
to avoid it, thus it is smart to live in a city with negligible 
PM2.5 concentration [1]. A major source of PM2.5 is traffic in 
urban areas. Hence, we collect real data on traffic conditions 
from structured sources and mine it with the following goals: 

• Analyze the causes of PM2.5 occurrence in air based 
on multicity traffic conditions 

• Predict the impact of PM2.5 presence on air quality 
with respect to health standards 

B. Data and Standards 

We propose to use the AQI (Air Quality Index) by EPA 
(Environmental Protection Agency, USA) [5] as ground truth. 
This is because it is a widely accepted global standard and is 
recommended by experts in Environmental Management for 
health impacts. This is shown in TABLE I. For example, an 
index of 401-500 implies that PM2.5 concentration is between 
350.5 and 500 µg/m3. This is “Hazardous” for health. Note that 
color coding is significant (e.g., green: good, red: unhealthy). 

The structured data sources for PM2.5 used here are from 
WHO (World Health Organization) [6] and World Bank [7]. 
The time frame of this data is mainly the last ten years and the 
geographic scope is worldwide. Attributes analyzed are: 
Region, Income Group, Diesel Consumption, Gasoline 
Consumption, Road Density, Cars per k people, Vehicles per k 
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people, Vehicles per km and PM2.5 Range (µg/m3). Region is 
the area analyzed, e.g., East Asia, Middle East etc. Income 
Group is categorical: it considers OECD (Organization for 
Economic Cooperation & Development) countries and others.  

TABLE I. AQI STANDARDS FOR HEALTH BASED ON PM2.5 

AQI Category Index Value 

Breakpoints 

(mcg/m3, 24-

hour average ) 

Good 0-50 0-12 

Moderate 51-100 12.1-35.4 

Unhealthy for 

sensitive 

groups 

101-150 35.5-55.4 

Unhealthy 151-200 55.5-150.4 

Very Unhealthy 201-300 150.5-250.4 

Hazardous 
301-400 250.5-350.4 

401-500 350.5-500 

C. Approach and Experiments  

We propose an approach of combined analysis with classical 
mining paradigms. We deploy Apriori for association rules, k-
means for clustering and decision trees for classification.   

We mine association rules with Apriori, as we need to study 
potential impact of parameters on each other. For this, we 
discretize numeric data with equal frequency binning. After 
discretizing continuous data into ranges, we assign categorical 
values to a few variables, e.g., “high”, “low” etc. for gas 
consumption using domain-specific mapping [5]. After running 
experiments with Apriori, we get useful inferences. There are 
rules showing that income groups could influence other traffic 
conditions. This is reasonable as economic conditions affect 
traffic facility construction. It is also found that high diesel 
consumption is not directly related to high concentration of 
PM2.5 in air. Examples of interesting rules are shown below.  

Region=Europe & Central Asia Vehicles_Per_KM=VERY 

LOW => PM25_Class=GOOD    conf:(1) 

 

Gasoline_Consumption=VERYLOW Road_Density=VERY 

LOW Cars_Per_K_People=LOW => 

PM25_CLASS=MODERATE conf: (0.91) 

 

The terms GOOD and MODERATE, pertain to the PM2.5 

ranges with respect to their impact on air quality index (see 

TABLE I). For example, PM2.5 class = GOOD implies that the 

resulting AQI category is good since its index value is in the 

safe range of 0-50, which occurs with PM2.5 concentration of 

0.0 to 12.0 µg/m3. Likewise, we can interpret the other ranges. 
 

Clustering is performed with k-means, an algorithm well-suited 
to numerical attributes, as found in this data set. We disregard 
the Region attribute here to avoid obvious clusters. An example 
of experimental results with clustering is shown in TABLE II. 
The numbers in brackets are the number of items in each 
cluster. We note a few interesting observations as listed next. 

• Cluster 0 has relatively low traffic indicators, yet its 

PM2.5 range is not within safe standards  

• Income of Cluster 0 is the lowest 

• Cluster 2 has the highest PM2.5 concentration, yet it 

is not the highest traffic indicator 

• Countries in Cluster 2 may have other significant 

PM2.5 sources or poor regulation of car emission 

• Cluster 1 and cluster 3 both have the PM2.5 within 

safe standards and are OECD countries 

 
TABLE II PARTIAL SNAPSHOT OF CLUSTERING 

 

 
 

In these observations, it is signficant that high gas consumption 
does not associate with high PM2.5 concentration. In fact, 
medium gas consumption is associated with higher PM2.5 
concentration. With further analysis, this  can be reasoned as: 

• High gas consumption usually associates with better 

economic conditions and better pollutant regulations 

• The Income attribute is also significant  

• High income groups & high gas consumption groups 

have better regulatory facilities, so PM2.5 

concentration does not rise much 

 
Decision tree classification is conducted with J4.8, the Java 
version of the classical C4.5 algorithm, to inductively learn a 
decision tree from categorical attributes. This is useful because 
we aim to learn potential causes of the PM2.5 range, which 
thus forms the classification target. Mapping from numeric to 
categorical attributes is done in a manner similar to that for 
association rules. A partial snapshot of results is shown below. 
It is found that the Region attribute has the strongest influence 
here. It is also discovered that PM2.5 pollution is highly 
associated with local conditions.  

Region = East Asia & Pacific 

|   Gasoline_Consumption <= 427.7 

|   |   IncomeGroup = High income: nonOECD: '(18.43-

21.755]' (2.0) 

|   |   IncomeGroup = High income: OECD: '(21.755-inf)' (2.0) 

|   |   IncomeGroup = Low income: '(18.43-21.755]' (2.0/1.0) 

|   |   IncomeGroup = Lower middle income: '(11.98-15.12]' 

(2.0) 

|   |   IncomeGroup = Upper middle income 

|   |   |   Diesel_Consumption <= 114.38: '(21.755-inf)' (2.0) 

|   |   |   Diesel_Consumption > 114.38: '(11.98-15.12]' (2.0) 

|   Gasoline_Consumption > 427.7: '(-inf-5.845]' (5.0) 
 

Thus, we have analyzed the causes of PM2.5 occurrence in air 
based on traffic conditions, which caters to the first goal of this 
sub-problem. The results of this are used for predictive analysis 
to address the second goal, i.e., predicting the health impact of 
PM2.5 on air quality, as elaborated in Section IV. 
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III. OPINION MINING ON POLLUTION FROM SOCIAL MEDIA 

A. Motivation and Problem Defintion 

Opinion mining or sentiment analysis deals with automated 
discovery of knowledge about public reactions from sites such 
as weblogs, review pages etc. This is important to assess user 
satisfaction. It motivates us to mine social media based on 
entries relevant to our issue, i.e., pollution and air quality. We 
focus on Twitter here, since it is a micro-blogging site with 
concise information. Thus, the goals of this sub-problem are: 

• Analyze tweets on pollutants and related terms to 
discover knowledge useful in air quality assessment 

• Use the discovered knowledge to predict potential 
health impacts in the context of urban planning   

B. Proposed Methodology 

We propose a two-phase approach for opinion mining. Phase 1 

involves developing domain-specific knowledge bases 

(domain KBs) bootstrapped from Commonsense Knowledge 

(CSK). These provide the background knowledge to classify 

domain specific information. This background knowledge 

comprises the concepts and instances (named entities) within 

our domain. Phase 2 involves a domain-specific tweet crawler 

using the background knowledge of phase 1 (e.g., spotting 

concepts and instances in a tweet), and analyzing sentiments 

in the crawled tweets, followed by data visualization.  
 

1) Developing Domain-Specific Knowledge Bases: We 

propose using domain KBs to employ background knowledge 

like an expert. The KB creation is outlined in the steps below. 

a) Harnessing Commonsense Knowledge: Humans 

possess the ability to tell apart relevant content (in our case, 

relevant tweets) due to CSK. On the other hand, machines do 

not possess such knowledge. We propose to provide this 

background commonsense knowledge through a large, 

automatically mined commonsense knowledge repository, 

WebChild [2], which contains commonsense facts about 

concepts. WebChild provides a mapping from a domain to 

concepts and commonsense properties of these concepts.  

b) Slicing WebChild: WebChild comprises a large list of 

domains (illustrated in TABLE III) however, we require a subset 

of these domains. We thus manually specify a smaller list of 

WebChild domains that are relevant to our context (urban 

planning). This is depicted in TABLE IV. It is conceivable to 

automate this process via a probabilistic domain classifier [1, 

8] to derive a subset of domains, but would be an overkill for 

our usecase herewith. Thus, are now left with a slice of 

WebChild that contains concepts relevant to urban planning.  

c) Curating the sliced WebChild: The selected domains 

provide us with a list of concepts for the given domain (e.g., 

pollutant for the domain environment). The sliced WebChild 

can be incomplete or noisy for certain concepts. We curate 

this slice of WebChild by designing a smart GUI (see Fig. 1) 

that assists the curator by automatically proposing relevant 

attribute values. For example, using the WebChild knowledge, 

the GUI knows that small is a size and that a pollutant is 

comparable to a toxin. Fig. 1 shows an example of curation for 

the concept pollutant in the domain environment. As discussed 

in [8], this curated knowledge about our urban planning 

domain is used to propose relevant Wikipedia categories. 

These Wikipedia categories lead to the Wikipedia entries 

where the categories appear, enabling the compilation of 

encyclopedic entries for concepts, e.g., PM2.5.  

d) From domain KB to tweets: We propose a mapping 

from Commonsense Concept Classes � Wiki Categories � 

Wiki entries � Hashtags to set the stage for mining social 

media [8]. In essence, we spot the presence of a domain 

relevant encylopedic entry (e.g., PM2.5) or a domain relevant 

commonsense concept (e.g., pollutant) in a tweet’s hashtag 

which highlights the main topic or subject of a tweet. If there 

is an overlap of the tweet’s hashtag in our domain vocabulary, 

we consider that the tweet is relevant to our domain. As 

explained in [8], it is conceivable to make a more 

sophisticated model (e.g., a language model over our domain) 

that estimates whether a given tweet can be generated by the 

language model representing the big context (urban planning). 

TABLE III. POTENTIAL LIST OF DOMAINS (PARTIAL SNAPSHOT) 

acoustics administration agriculture anatomy animals 

archery architecture Art astrology aeronautics 

biology banking buildings chemistry  cinema … 

 

TABLE IV. CURATED LIST OF RELEVANT DOMAINS FOR KB SLICING 

environment transport buildings vehicles town_planning 

 

 

 
Fig. 1. Example of populating domain specific KB  
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Note that besides being useful in opinion mining from social 

media, domain KBs can be helpful in broader settings. This 

includes giving inputs to smart cities for smart environment 

and smart governance; utility in machine learning to automate 

various learning processes; and providing domain knowledge 

to mine visual commonsense from multimodal content [4, 8]. 
 

2) Building a Sentiment Analyzer: Using the domain KBs, 

NLP and other resources, the analyzer is built as follows. 

a) Tweet Collection with Hashtags: To collect tweets, we 

use a Twitter API and a script written in Python. The Twitter 

API gives us access to user tweets using the OAuth, while the 

Python script collects tweets with keyword combinations and 

hashtags. These hashtags are derived from domain KBs, 

currently using the domain-specific commonsense concepts 

and encyclopedic entities as a dictionary. We have a tunable 

support threshold, the higher the support sup (at least sup 

number of dictionary entries are expected in the tweet), the 

higher the accuracy and lower the coverage. As described in 

[8], an alternative approach is to construct language models 

over domain-specific data to estimate the likelihood of the 

language model to generate the tweet. This step is crucial in 

filtering tweets and collecting only pertinent ones. For 

example, from 750 million tweets, we got 2.5 million urban 

domain-specific tweets, with sup being set to 1.  

b) Storage and Cleaning: Once pertinent raw tweets are 

collected, the file is downloaded, converted into CSV and 

imported to a MySQL database for further computation. The 

data on tweets is then cleaned before further processing. 

Unnecessary characters, hashtags, usernames are removed. 

Any duplicate posts such as retweets and identical tweets are 

removed as well. It is important to clean the tweets to enhance 

classification accuracy by removing unwanted details that do 

not contribute to sentiment analysis. Consequently, any URLs 

in tweets are also removed. It is possible to design a more 

complex system that deeply analyzes the content of URLs. 

However, our design decision was simplicity and efficiency, 

as this is a pre-processing step. Also, we do not want URL 

content to affect polarity classification through sentiwords.  

c) Text Processing of Tweets: We use a sentence level 

model for processing (not document level) because Twitter is 

a microblogging site where a tweet is at most 140 characters, 

therefore a sentence level model is preferable over a document 

level model. Text processing of tweets is conducted with 

TextBlob, a Python library that provides a consistent API for 

common NLP tasks including part-of-speech tagging, noun 

phrase extraction, classification, translation and more.  

d) Polarity Classification with Sentiwords: The 

Sentiwords lexicon is used to analyze sentiments expressed in 

tweets. Sentiwords are words pertaining to emotions. We use 

SentiWordNet 3.0 from LREC [3] for this purpose. The 

sentiwords are mapped to the content of the tweet to determine 

whether it is closest to expressing a positive or negative or 

neutral sentiment. Thus, the polarity of tweets is classsified 

into one of the three categories and used for further analysis.  

e) Analysis and Visualization: The information about the 

polarity of each tweet is computed and stored in a json file. A 

Python script is written to aggregate this information, thus as 

an output, we get a set of positive, negative and neutral tweets. 

Using this polarity information, we plot graphs with the given 

data (discussed in the next section). Graph plotting is done 

using IPython Notebook. The plotted results displayed in 

graphical form allow users to see public reaction at-a-glance.  

 

C. Experiments and Observations 

We summarize our experiments pertaining to tweets in South 

East Asia on pollution caused by peatland fires [9]. We briefly 

explain the background for our experiments here. Peatlands 

have vast organic matter due to low decomposition of plant 

residue. Indonesia has the most peatlands in South East Asia. 

Pollutants due to these fires also affect neighboring countries, 

e.g., Malaysia and Singapore. Thus, Indonesian Peatland Fires 

(IPFs) are considered to be an international problem in 

Environmental Management. Pollution caused by airborne 

particulates is of primary concern. Studies show that rhinitis, 

asthma, and respiratory infections increase when particulate 

concentration is of hazardous level [10]. Singapore has built 

an air quality system called Pollutant Standards Index (PSI), 

which incorporates six pollutants: sulphur dioxide (SO2), 

particulate matter (PM10), fine particulate matter (PM2.5), 

nitrogen dioxide (NO2), carbon monoxide (CO) and ozone 

(O3). The Singapore national environment agency publicly 

publishes the PSI level hourly through websites (e.g., 

haze.gov.sg). Twitter is one of the most visited social media 

sites. People get the information about PSI levels through this, 

and more importantly, express their reaction to the daily PSI 

level and air quality. We thus use this Twitter data in the 

experiments shown here.  Note that it is important to conduct 

this analysis, since it also has the broader impact of catering to 

smart cities. Public opinion expressed through social media is 

useful for the smart governance characteristic. Also, counter-

balancing the effect of hazards to maintain public health and 

safety is important in the smart environment characteristic.  
 

In the experiments shown here, we collect pertinent tweets 

using hashtags and store them in a MySQL database.  Based 

on KB knowledge, some hashtags used in collection of these 

tweets are: CO2, clean air, air pollution, Singapore, climate 

change, etc. The tweet collection parameters are as follows: 
 

i) q=air+pollution+singapore+%22air+pollution%22+%23 

singapore;  This shows the query used 

ii) lang= en; This is the language, which in our case is 

English 

iii) count =100;  The number of tweets to return per page, up 

to a max of 100 

iv) until =2015-10-01;  Returns tweets generated before the 

given date. 

v) since_id= ?      Returns results with an ID greater than (i.e., 

more recent than) the specified ID. 
 

These tweets are limited by geographical range, in our case, 

Singapore (though we consider a multicity context, tweets are 

collected from Singapore for experiments here; yet they reflect 

reactions of people in other cities also, constituting multicity 
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analysis). The date range for these tweets is the end of October 

to the first week of December, 2015. The tweets are then 

fetched from the table one by one for cleaning. Fig. 2 shows a 

code snippet of the functions used for cleaning the tweets.  
 

Once the cleaning is completed, the clean tweets undergo 

classification either as positive, negative or neutral tweets.  

These results of sentiment analysis are then visualized by 

graphical plotting as the last step of the analyzer. Fig. 3 shows 

an example of visualization. This provides an at-a-glance view 

of mining public opinion in the area.  
 

 
Fig. 2. Code snippet of functions for cleaning tweets 

 

 
Fig. 3. Example of visualizing opinion mining results 

 

From this figure, it appears that policies to counter-balance the 

effect of pollution seem fairly satisfactory since 61% of users 

have expressed positive sentiments. However, there is scope 

for improvement due to 25% of the users being neutral and 

14% being negative. This opinion mining thus provides useful 

inputs to government bodies in urban planning and also to 

prospective residents and environmental scientists.   
 

IV. PREDICTIVE ANALYSIS AND DISCUSSION 

Results from the mining can be used for predictive analysis in 

Environmental Management, more specifically urban planning. 

To demonstrate this, we develop a prototype prediction tool. 

Programming for this tool is done in Java. We summarize the 

evaluation herewith. Sample executions are shown in Figs. 4 

and 5. Users enter input conditions and the tool estimates the 

range of PM2.5 based on health impacts. We use terms “very 

good”, “moderate” etc. to describe PM2.5 safety range as per 

the chance of affecting public health based on AQI (see TABLE 

I). For example in Fig. 4, if a user enters East Asia & Pacific 

with gas consumption: 582, vehicles per k people: 700, high 

income OECD group, road density: 11, vehicles per km: 20, 

diesel consumption: 467 and cars per k people: 550, the tool 

predicts that PM2.5 range is “very good”. It means that, as 

learned by mining over existing data, the PM2.5 range for the 

given user entry is predicted as 0 - 12.0 µg/m3, which is within 

safe limits for good health. Similarly, we can interpret Fig. 5.  
 

Many experiments are conducted with the prototype tool and 

useful predictions are obtained. This tool is evaluated by 

scientists in Environmental Management who consider it to be 

helpful in urban planning. For example, government bodies 

can get an idea of how PM2.5 concentration is affected by 

change in traffic conditions with respect to health impacts. 

This can help them plan policies. Residents can estimate air 

quality based on various inputs to plan their current lifestyles 

and prospective future moves. 

 

 
Fig. 4. Evaluation example with good PM2.5 range 

 

 
Fig. 5. Evaluation example with moderate PM2.5 range 

 

Likewise, the polarity classification of tweets on air quality is 

also very useful in predictive analysis. As an output of the 

social media mining, the tweets are stored in a database along 

with their polarities. Visualization of opinion mining results is 

also stored. This serves as the basis to perform predictive 

analysis. For example, in the specific scenario here, it enables 

studying the correlations between users’ sentiments and the 

actual PSI (Pollutants Standards Index) level.  
 

Furthermore, this helps predict potential concern of users 

given certain PSI levels (based on opinion mining of existing 

data and correlation). In other words, if a particular PSI level 

is maintained, it helps estimate whether user sentiments would 

be positive, negative or neutral. This predictive analysis is 

useful in urban planning by allowing government bodies to 

estimate public opinion in advance while making regulations. 

It helps in catering to the satisfaction of current and future 

residents.  It also provides inputs to environmental scientists 

for research, e.g., factors leading to PSI and potential 

measures for improvements from a health standpoint. 
 

61%14%

25%

Tweets Polarity

positive

negative

neutral
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V. RELATED WORK 

Applied data mining research appears in many fields today as 

the amount of available data increases and there is also a need 

to automate analysis from a domain perspective, e.g., in 

Environmental Management [11]. In urban planning, mining 

is applied in calibration of cellular automata transition rules 

that potentially relate to theories on relocation [12]. In this 

paper, we address issues that are the not the focus of earlier 

works. We consider fine particle pollutants as these are 

especially harmful due to not being easily filtered by the 

respiratory system. Also, prior research focuses mostly on 

single cities while we consider a multicity global context.  
 

An overview of sentiment analysis appears in [13]. They 

describe approaches for opinion-oriented IR. In SentiWordNet 

3.0, a lexical resource to support sentiment classification is 

developed [3]. It is the result of annotating WordNet synsets 

by degrees of positivity, negativity and neutrality. In [14] they 

use an approach to extract sentiments with polarities for 

specific subjects from a document. They have a syntactic 

parser and sentiment lexicon for finding sentiments in Web 

pages and news. Our work fits in this category, orthogonal to 

the existing literature. We do opinion mining in a domain-

specific context, incorporating commonsense knowledge to 

extract concepts from social media as a human expert would. 

We build domain KBs useful for other tasks as well.  
 

Studies have been conducted on pollutants. Zhou et al. analyze 

relationships of indoor and outdoor pollutant concentration, 

finding that they depend on individuals’ situations [10]. 

Forsyth analyzes articles from representative newspapers in 

affected nations to help provide public opinions to pollutant 

problems [15]. This shows that public reaction is significant to 

develop urban regulations. Our research takes a step ahead and 

mines public reaction from online social media. Since this 

reaction is crucial in the urban planning area, our paper makes 

an important contribution here through public opinion mining.  
 

VI. CONCLUSIONS  

In this paper, we conduct mining on pollutant data from social 

media and structured sources to discover knowledge on air 

quality from a health standpoint. We use association rules, 

clustering and classification to mine structured data from 

global sources on urban air pollution. In social media mining 

we use Twitter, incorporate CSK and build domain KBs to 

guide extraction as a human expert would. We use this domain 

knowledge, lexical databases and text processing for polarity 

classification of tweets and visualize the results. Knowledge 

discovered by mining is useful in predictive analysis. To 

demonstrate this, we build a prototype tool to estimate air 

quality with respect to health standards. This is evaluated by 

domain experts and found useful in urban planning. 

Estimation from predictive analysis can be helpful to 

government bodies for urban polices, residents for lifestyle 

decisions and environmental scientists for further research. 

 

Notable contributions of this work include: mining social 

media and structured data in a domain-specific context; using 

CSK for mining tweets; addressing a multicity environment in 

urban planning; and conducting predictive analysis on air 

quality for human health. Ongoing work includes enhancing 

domain KBs to provide inputs to smart cities, using CSK in 

the automation of learning processes and potentially deploying 

CSK with domain KBs for mining from photo-blogs. Another 

ongoing task is the use of CSK and social media mining to 

automate identification of IMRs (Implicit Requirements) in 

Software Requirement Specifications for inputs to AI tools.  
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