Chapter 2 ®)
Introduction to Computational oo
Techniques

Computational techniques are fast, easier, reliable and efficient way or method for
solving mathematical, scientific, engineering, geometrical, geographical and statis-
tical problems via the aid of computers. Hence, the processes of resolving problems
in computational technique are most time step-wise. The step-wise procedure may
entail the use of iterative, looping, stereotyped or modified processes which are
incomparably less stressful than solving problems-manually. Sometimes, compu-
tational techniques may also focus on resolving computation challenges or issues
through the use of algorithm, codes or command-line. Computational technique may
contain several parameters or variables that characterize the system or model being
studied. The inter-dependency of the variables is tested with the system in form of
simulation or animation to observe how the changes in one or more parameters affect
the outcomes. The results of the simulations, animation or arrays of numbers are used
to make predictions about what will happen in the real system that is being studied
in response to changing conditions.

Due to the adoption of computers into everyday task, computational techniques
are redefined in various disciplines to accommodate specific challenges and how they
can be resolved. Fortunately, computational technique encourages multi-tasking and
interdisciplinary research. Since computational technique is used to study a wide
range of complex systems, its importance in environmental disciplines is to aid the
interpretation of field measurements with the main focus of protecting life, prop-
erty, and crops. Also, power-generating companies that rely on solar, wind or hydro
sources make use of computational techniques to optimize energy production when
extreme climate shifts are expected. In this case, engineers, scientists and environ-
mentalist are combining computational and meteorological dataset to address the
challenge of understanding, characterizing, and predicting complex environmental
systems. The most difficult task in computational techniques is understanding the
computer programming language. A programming language is a formal language
that highlights sets of instructions for execution. programming language is grouped
by types namely Array languages, Assembly languages, Authoring languages, Con-
straint programming languages, Command line interface languages, Compiled lan-

© Springer Nature Switzerland AG 2019 19
M. E. Emetere, Environmental Modeling Using Satellite Imaging

and Dataset Re-processing, Studies in Big Data 54,
https://doi.org/10.1007/978-3-030-13405-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13405-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-13405-1_2

20 2 Introduction to Computational Techniques

guages, Concurrent languages, Curly-bracket languages, Dataflow languages, Data-
oriented languages, Decision table languages, Declarative languages, and Embed-
dable languages. Array language is programming language that is used to convert
operations from scalars to vectors, matrices, and higher-dimensional arrays. A typical
example of modern languages that supports array language includes the following:
Fortran 90, Mata, MATLAB, Analytica, TK Solver (as lists), Octave, R, Cilk Plus,
Julia, Perl Data Language (PDL) and the NumPy extension to Python. An assem-
bly language is a group of low-level programming languages used by micropro-
cessors and other programmable devices to implement symbolic representation of
machine code needed to program a given CPU architecture. The type of assembly lan-
guage includes: Complex Instruction-Set Computer (CISC), Reduced Instruction-Set
Computer (RISC), Digital Signal Processor (DSP) and Very Long Instruction Word
(VLIW).

Authoring language is a notation used to control the appearance and functionality
of webpages when displayed in a browser. Example of authoring language are Doc-
Book, DITA, PILOT, TUTOR, Bigwig, Chamilo, Hollywood (Hollywood Designer
graphical interface), Learning management system, SCORM, Web design program,
XML editor and Game engine. Constraint programming is a type of programming
paradigm that displays variable in the form of constraints. Libraries that accepts
constraint programming are Artelys Kalis, C++, Java, Python library, FICO Xpress
module, Cassowary, Smalltalk, Ruby library (LGPL), CHIP V5, Choco, Java library,
Comet, Cream, Java library (LGPL), Disolver, Facile, OCaml library (CCO 1.0),
finite-domain, Haskell library (MIT), Gecode, Google OR-Tools, JaCoP, Java library,
LINDO MonadicCP, Haskell library (BSD-3-Clause) etc. Command line interface
languages are languages that are used to interact with a computer program where
the user issues commands to the program in the form of successive lines of text. The
successive lines of text are called command lines. The command lines are executed
in the shell of operating system. The shell of operating system includes AmigaOS
(Amiga CLI/Amiga Shell), Unix OS (Bourne shell, Almquist shell, Debian Almquist
shell).

Bash, Korn shell, Z shell, C shell, TENEX C, Emacs shell, rc shell rc, Stand-
alone shell and Remote shell), Microsoft Windows (CMD.EXE, Windows Power-
Shell, Hamilton C shell, 4NT, Recovery Console), DOS(COMMAND.COM, 4DOS,
NDOS and GW-BASIC), OS/2 (CMD.EXE, Hamilton C, and 40S2), IBM OS/400
(AS/400 Control Language, iSeries QSHELL) Apple (Apple DOS/Apple ProDOS)
and Mobile devices (DROS, Java ME platform).

Compiled languages is a programming language whose implementations are typ-
ically compilers (translators that generate machine code from source code), and not
interpreters (step-by-step executors of source code). Examples of compiled program-
ming language are ALGOL, BASIC, C, D, CLEO, COBOL, Cobra, Crystal, Eiffel,
Fortran, Go, Haskell, Haxe, JOVIAL, Julia, LabVIEW, G, Pascal, SPITBOL, Visual
Foxpro and Visual Prolog. Embeddable languages are programming language that
supports scripting in real-time systems. Example of embedded language includes
Python, C++ and Java.

2 Introduction to Computational Techniques 21

The utmost goal of researchers or modeler is to develop an experimentally driven
computer model that generates accurate predictions of environmental scenarios e.g.
Numerical Weather Prediction (NWP)model. A typical example of an experimen-
tally driven computer model is the Numerical Weather Prediction (NWP) developed
by the National Oceanic and Atmospheric Administration (NOAA). NWP is a form
of day-to-day weather model data. NWP focuses on taking current observations of
weather and processing these data with numerical computer models to forecast the
future state of weather. In this case, current weather or meteorological observations
serve as input to the numerical computer models through a process known as data
assimilation to produce outputs of temperature, precipitation, and hundreds of other
meteorological elements from the oceans to the top of the atmosphere (NOAA 2018).
The NWP data are Global Ensemble Forecast System (GEFS), Global Forecast Sys-
tem (GFS), Climate Forecast System (CFS), North American Multi-Model Ensemble
(NMME), North American Mesoscale (NAM), Rapid Refresh (RAP) and Navy Oper-
ational Global Atmospheric Prediction System (NOGAPS). The assimilation data of
the NWP is obtained from the Global Data Assimilation System (GDAS). Before
the usage of assimilation data in environmental model, optimum interpolation (OI)
method was used. The OI was introduced by L. S. Gandin (Istvdn et al. 2013). Its
use was discontinued because of the limitation/drawbacks. The variational method
replaced the OI until it was also discontinued mainly because of some programing
and computational difficulties it encountered.

In the early days of understanding the role of computers in fostering research, some
profession e.g. management, economics, biology etc. makes use of statistical pack-
ages only. In recent time, advancement of computers and computer application has
brought about more sophisticated computer packages for solving problems (Emetere
and Sanni 2015). In this chapter, we shall discuss on general outline on computational
techniques, open-software packages and libraries. In science and engineering, com-
putational technique is beyond using computer application. It entails restructuring
related mathematical or physical theories to solve or optimize a specific process.

2.1 General Outline of Computational Techniques

What generally comes to mind when computational technique is mentioned is com-
puter software. Computer software are structured algorithms or codes that implement
aspecific task. Hence, the three broad classification of computer software namely sys-
tem software, application software and programming software. System software are
made-up of operating system (Microsoft Windows, Mac OS X, and Linux) device
drivers (Bios, motherboard drivers, hardware divers, virtual device drivers, sound
cards etc.), servers and software components. Application software (AS) is used for
attaining specific tasks. The types of AS available in the market includes licensed,
sold, freeware, shareware, and open source software. In this chapter, the emphasis
shall be on the open source (since most environmental models are open source).

22 2 Introduction to Computational Techniques

Fig. 2.1 Computational Data mining based IDS
technique for data mining et Bbmssbnbalion of ile wicku based i
(Chandra andChinmayee (._--,,.lz allC epreseniauon or adaid -|......__, paseqaius)
2012)
RAW DATA
DETECTOR
SENSOR
Formatted
N, data Model
DATA WARE
HOUSE
Formatted data Model
Adaptive model generator
Fig. 2.2 Computational Size
te(:hnique for materials Bulk = 100 nm Brush = 10 nm Nanotube = 1 nm
(Korolkovas 2016)
Slow: Self-consistent field
Wi=0 theory
g O m
o Wis1 Tube \G Olecyy,
- theory 6‘0«(\“\'\05 %aw‘;r
o
o
Fast: icle
: : e partic
Wizl D\Ss\p:::amlcs

Programming software are mini-codes or macros used for writing programs through
tools such as editors, linkers, debuggers, compilers/interpreters etc.

Computational techniques may be seen as a very broad concept in modern
research. The early type of computational technique is termed computer aided alge-
braic systems. In this technique, algebraic related problems are solved using algo-
rithms, codes, charts and special syntaxes. However, as research expanded, there
were need for more application software for special task. In environmental mod-
elling, there are general and specific application software. The general application
software performs tasks as speculated by the modeler discretion. Example of general
application software in environmental modelling includes MATLAB, MATHCAD,
Origin, Homer, GNU plot, FreeMat, Octave, Microsoft Excel, Magma, Maple, R
package, Mathematical, SageMath, PolyMath, SMath, COMSOL etc. The various
computational techniques are shown pictorially in Figs. 2.1 and 2.2.

2.1 General Outline of Computational Techniques 23

Flg' 2'3. Pictorial . Conceptual design I4
illustration of computational

technique

Modelling
Physical, mathematical, computational, and
operational, economical

Simulation
Experimental, analytical, and computational

Analysis
Photography, visual-tape, and
computer graphics, visual reality

Design I
Testing I

The specific application software (Captera 2017) for environmental modelling
includes SimaPro or GaBi (for assessing Carbon Footprints), Qual2K (river and
stream water quality and process interaction model), Hec-HMS (for hydrologic mod-
eling system), WaterCAD (for designing and planning hydrologic systems), ADORA
or AERMOD (for monitoring air pollution), EMEX (for managing incidents and track
corrective and preventative actions), Enviro (for gathering, managing, and display-
ing lab and field data for water, soil, and air), SmartData (for investigating environ-
mentally contaminated sites), Accuvio (for monitoring carbon print and greenhouse
gases) etc. In recent time, it has been proven that some environmental application
software has their flaws (Patwardhan 2016). This development is quite worrisome
because beginners and young professionals in environmental studies may be building
on faulty foundation.

Based on the aforementioned, environmental scientists are advised to use either
the general application software or adopt open-source application/library to prevent
uncontrollable error-prone analysis/research. The outline of the computational tech-
nique will be explained using the pictorial illustration in Figs. 2.1, 2.2 and 2.3.

The fabrication stage is referred as the developmental procedures where the mod-
eler or researcher decides on what kind of computational technique would be appro-
priate for the model. Most modeler at this stage decides to adopt mathematical
methods. Mathematical method is a tool for solving abstract and real problems.
Mathematical method is fondly used in science, engineering, social science and
humanities. The list of method that are usually considered in mathematical meth-
ods includes: Infinite series, power series, Complex numbers, Integral transform,
Wavelet transform, Fourier transform spectroscopy, Harmonic analysis, Linear alge-
bra, Partial differentiation, Multiple integrals, Vector analysis, Fourier series and

24 2 Introduction to Computational Techniques

transforms, Ordinary differential equations, Calculus of variations, Linear function,
Quadratic function, Cubic function, Quartic function, Cabibbo-Kobayashi-Maskawa
matrix, Density matrix, Fundamental matrix, Fuzzy associative matrix, Gamma
matrices, Gell-Mann, Hamiltonian matrix, Wall polynomial, Wangerein functions,
Weber function, Weierstrass function, Weisner’s method, Whittaker function, Wil-
son polynomial, Irregular matrix, Overlap matrix, S-matrix, State transition matrix,
Substitution matrix, Z-matrix, Quintic function, Sextic function, Tensor analysis,
Special functions, Schubert polynomial, Schur polynomial, Selberg integral, Shef-
fer polynomial, Slater’s identities, Stieltjes polynomial, Stieltjes—Wigert polynomi-
als, Stromgren function, Struve function, Legendre function, Bessel function, Her-
mite function, Laguerre function, Partial differential equations, Functions of a com-
plex variable, Integral transforms, Gamma function, Barnes G-function, Beta func-
tion, Digamma function, Polygamma function, Incomplete beta function, Incomplete
gamma function, K-function, Multivariate gamma function, Student’s t-distribution,
Probability and statistics, Two-sided Laplace transform, Mellin transform, Laplace
transform, Fourier transform, Fourier series, Sine and cosine transforms, Hartley
transform, Short-time Fourier transform, Celine’s polynomial, Charlier polynomial,
Pafnuty Chebyshev, Chebyshev polynomials, Painlevé function, Painlevé transcen-
dents, Poisson—Charlier polynomial, Pollaczek polynomial, Cyclotomic polyno-
mials, Rectangular mask short-time Fourier transform, Gegenbauer polynomials,
Gottlieb polynomial, Gould polynomial, Gudermannian function, Chirplet trans-
form, Fractional Fourier transform (FRFT), Hankel transform, Hall polynomial,
Hall-Littlewood polynomial, Hankel function, Heine functions, Racah polyno-
mial, Riccati-Bessel function, Riemann, zeta-function, Rodrigues formula, Roger-
s—Askey—Ismail polynomial, Rogers—Ramanujan identity, Rogers—Szegd polynomi-
als, Hermite polynomials, Heun’s equation, Horn hypergeometric series, Hurwitz
zeta-function, Boubaker polynomial etc. However, some modeler would want to
generate their own brand of mathematical methods.

Secondly, the modeler choose what kind of programming language would be
appropriate to solve the mathematical method that has been adopted. The com-
mon programming language used in research in modern times include: Python, Q#
(Microsoft programming language), C, C—, Java, C++, C#, MATLAB, Mathcad,
Visual Fortran.

Visual FoxPro, JavaScript, JCL, Jython, MATH-MATIC, Visual J++, Visual J#,
Mathematica etc. Few researcher or modeler used one or more of the aforementioned
programming language.

As shown in Fig. 2.3, itis mandatory for the researcher or modeler computationally
validate the solved problem using dataset. If the modeler is not satisfied with the
outcome, he checks his computational procedures once more until he/she can figure-
out how to obtain an accurate outcome. Once the modeler is satisfied with the testing
of the computational work, he moves on to the prototyping of the computational
work. Most modeler stops at the testing stages because of funds or technical know-
how. The prototype is sent to research centers or industries for feedback purposes.

2.1 General Outline of Computational Techniques 25

Once the feedback comes out from the sources, the modeler goes on to the designing
stage. At this point the computational work comes out as a licensed or open-source
application. The modelling, analysis and simulation stages are performed by the
end-users.

2.2 Open Source Scientific Packages

The open source scientific packages are generally referred to as computer software
that are licensed either under the free software licenses or the open-source licenses.
However, the term ‘open-source’ may not necessary be without financial involvement
as there are commercial open-source applications that are linked to business models
e.g. AdaControl, Sun Studio, Dolibarr, Openbravo, EyeOS, Kaltura, LucidWorks,
Zenoss Core, OrangeHRM, Qt, Talend Open Profiler etc. The idea of the open source
can be illustrated as shown in Fig. 2.4. The most important factor of the open source
is the possibility of low transaction costs which may only occur if the supportive
library of the open source application is not available on the local computer.

There are notable scientific open source software applications that have gained
relevance in its application in environmental studies. Tabula is a scientific package
that allows users to extract data from pdf into a CSV spreadsheet using a simple and
easy-to-use interface. This package is particularly useful when there is large data
in the pdf format. However, the shortcoming of this software is that the processing
speed is slow. Dakota is another freely available engineering software framework
for large-scale optimization and uncertainty analysis. Dakota software’s advanced

Fig. 2.4 The ideals of open
source (Wilbanks 2013)

26 2 Introduction to Computational Techniques

parametric analyses enable design exploration, model calibration, risk analysis, quan-
tification of margins and uncertainty with computational models. This features are
very important in environmental engineering because it helps to improve on the accu-
racy of predictions. The summarized list of scientific software includes, 3D Slicer,
AMPHORAZ2, Ascalaph Designer, Bioconductor, BioModels Database, Biskit, Brian
Simulator, ChemTool, Cn3D, DataMelt, EMBOSS, Emergent, GenMAPP, GENltle,
GIMIAS, Gnaural, Gwyddion, HMMER, ImageJ, InVesalius 3, LabKey, MDynaMix,
OpenMS, OsiriX Imaging Software, PathVisio, QuteMole, RasMol and OpenRas-
Mole, RDQA, Spatiotemporal Epidemiological Modeler (STEM), UGENE, Virtual
Cell (VCell), XDrawChem, ZygoteBody etc.

In recent times, researchers or modelers seek to build their own open source
application. Ibrahim (2010) in his blog simplified the foundational requirements to
begin open source project with six salient questions i.e.

i. Can we financially sponsor the project? Do we have an internal executive cham-
pion?
ii. Is it possible to join efforts with an existing open source project?
iii. Can we launch and maintain the project using the OSS model?
iv. What constitutes success? How do we measure it?
v. Will the project be able to attract outside enterprise participation (from the start)?
vi. Is there enough external interest to form and grow a developer community?

The key to open-source development is the ability of the researcher to under-
stand the licenses of the programs he/she will be using to create his/her open source
application. Compatibility issues between licenses can originate when you are trying
to include open source code as a library in your existing project. Hence, it is very
important for a modeler to understand in clear terms the details of each licenses to
avoid copyright infringement. For example, Seher (2017) explained that software
package licensed under an Apache 2.0 license are compatible with software license
of GNU General Public License, version 3 (GPLv3) because Apache 2.0 terms are
covered by GPLv3 because both licenses have same patent usage protection. The
GPLv3 license reads: the source code must be made public whenever a distribution
of the software is made; modifications of the software must be released under the
same license; changes made to the source code must be documented; If patented
material was used in the creation of the software, it grants the right for users to use
it. If the user sues anyone over the use of the patented material, they lose the right
to use the software. However, GPLv2 license is not compatible with Apache 2.0
because of patent grant clause that is missing. License compatibility can therefore
be considered as a subtle danger that must be considered carefully. Some authors
have given insight on how to avoid copyright infringement. For example, Vilimaki
(2005) reported a schematic sketch of license compatibility as presented in Fig. 2.5.

The term derivative work in Fig. 2.5 refers to as everything that uses the source
code in any way possible. For example, Berkeley Software Distribution (BSD) 2-
clause supports derivative work. However, 3-clause of BSD do not support derivative
work because it states “the names of the author and contributors can’t be used to
promote products derived from the software without permission”. This gives rise

2.2 Open Source Scientific Packages 27

Own software Strongly reciprocal Standard reciprocal Permissive
component component (e.g. GPL) component (e.g. LGPL) component (e.g. BSD)

Combined. Derivative Derivative. ‘Combined Derivative Combined

work . work work -work with work work
with strong' *.separation

separation-

. -+ Relicensing possible
‘Reciprocal licensed .. FOSS possible

FOSS ecosystem compatible’ | Proprietary software possible
‘Commercialization possible - - Patent royalties possible

Fig. 2.5 License compatibility issues (Viliméki 2005)

to the question: “what is open source license”. Readers should take a little time
to go through the definition of open source by Open Source Initiative (OSI 2018).
The four component of the open source licenses are: software can be modified, used
commercially, and distributed; software can be modified and used in private; a license
and copyright notice must be included in the software; software authors provide no
warranty with the software and are not liable for anything.

The second key to open-source development is the organization of the new project.
Flory (2018) reported in his article that managing an open source project is a challeng-
ing work, and the challenges grow as the project grows because at every developmen-
tal stages of the project, it is expected that the project meet different requirements and
span multiple repositories. The author gave three tips for organizing an open source
project. The three tips are: bring development discussion to issues and pull requests
(sincerity and transparency is advised); Set up kanban-style project boards (projects
boards are repository boards that are used in a single repository) and Organization
(boards for use in a GitHub organization across multiple repositories); Build project
boards into your workflow. The workflow is pictorially defined in the chart presented
in Fig. 2.6. For in-depth reading, readers are advised to go to the link presented in
the reference section.

The third key to open-source development is the strict adherence of author or
modeler to maintain openness. This process helps expert to modify features in the
project. Sometimes, developers express themselves quite bluntly, so the modeler
must be emotionally balance to take the message and discard the insults. Also, inex-
perience volunteers may cause set-backs in the open source development. In this
case, suggestions or contributions from experts are out rightly not in line of discuss.

28 2 Introduction to Computational Techniques

Open Source
Development Structure

on- Lun.e Standards Base
Communit

Maintainers
& Concurrent Versioning Syste
Project
Managers
L
5
-
Contributors 2
Bugazilla
Relgalse Reviewers Testers
Technicians
Fig. 2.6 Open source development structure (Tom 2004)
Fig. 2.7 Single vendor open Copyright
source projects (Matthias
2013) Owner
Contributor v Contributor
- 0SS
Project

The ability of the modeler to decipher between useful and wasteful contributions is
very important for the onward progress of the open source project.

Matthias (2013) stated clearly that open source software is not only about pro-
gramming code but it is a carefully organized process that is hinged on a systematic
order. In the light of his explanation, Matthias (2013) identified four main organiza-
tions within the open source community namely: single vendor open source projects;
development communities; user communities; and open source competence centers.
The pictorial chart that explicitly describes the mode of operations is presented in
Figs. 2.7, 2.8, 2.9 and 2.10.

In environmental research, there are about a thousand open-source scientific pack-
ages that are used currently in the field. NASA (2018) listed several open-source that
can be operated by novice and professionals. Most professional open-source appli-

2.2 Open Source Scientific Packages 29

Fig. 2.8 Development
communities (Matthias
2013)

Fig. 2.9 User communities

(Matthias 2013) Vendor Vendor Vendor

Copyright

£ Vedides
-5 e

Fig. 2.10 Open source
competence centers
(Matthias 2013)

30 2 Introduction to Computational Techniques

cation packages are written in Python or C++ programming language. One of the
many reasons for adopting Python or C++ in open-source application is because of
its flexibility to accommodate the ‘big data’ concept. Data science space adopts the
C++ language because of the nature of its operation.

Open-source applications that are written in Python, Java or C++ language are
adjudged appropriate: when complex machine learning algorithms are involved;
when the dataset is in terabyte or petabyte; when working on deep learning and deep
neural networks. However, researchers have noted that few open-source application
packages are obsolete. Upasani (2016) noted that open-source application/libraries
need to embrace digital technologies and library management systems (LMS) in
order to work smart and achieve more with less. Higgs (2016) believes that open
source software is unsupported, unsustainable and unreliable. Hence, big compa-
nies do not patronize open-source software. ConnectUS (2018) also highlighted the
disadvantages of open-source software namely vulnerability to malicious users, not
user-friendly as commercial versions and do not come with extensive support.

The preferred open-source application used by the author is the CERN-Root
software. ROOT is an object-oriented program and library developed by European
Organization for Nuclear Research (CERN). It was originally designed for particle
physics data analysis but it is also used in other applications such as astronomy and
data mining. Root are used for plotting histograms and graphs, curve fitting, statistical
analysis, data analysis, matrix algebra, four-vector computations, multivariate data
analysis, image manipulation, 3D visualizations (geometry), creating files in various
graphics formats, interfacing Python and Ruby code in both directions and interfacing
Monte Carlo event generators.

2.3 Open-Source Library

Library is a collection of non-volatile resources used by computer programs, often
to develop software. Libraries are used for software development to enhance the
software to perform specific task. The major computer libraries are written in terms of
language e.g. Multi-language, C, C++, Delphi, .NET Framework languages (C#, F#,
VB.NET and PowerShell), Fortran, Java, Scala, Perl, Python, Groovy, XNUMBERS,
INTLAB etc.

Open-source library has almost the same shortcoming as open-source application.
Since most open-source allows anyone to interact with its source codes, the open-
source library can be modified to suite any task. For example, Igor (2017) modified
added commits, contributors count and other metrics from Github to enhance the
proxy metrics for Python library popularity.

Open-Source library are designed to perform certain function. Also, library can
be built upon one another. For example, NumPy is a Python library that provides
a fundamental framework where scientific computation stack is built. The main
functionality of SciPy library is built upon NumPy. Most open-source libraries are
low-level tool i.e. it requires more codes by the modeler to advance its status to a

2.3 Open-Source Library 31

high-level tool. For example, the matplotlib library cannot exist alone, except it is
enhanced by the stack of NumPy, SciPy and Pandas Python library.

One of the preferred open-source library-used by the author is the OpenCV.
OpenCV is an open and free source computer vision library that is released under
a BSD license. It has C++, C, Python and Java interfaces and supports Windows,
Linux, Mac OS, iOS and Android. OpenCV is used for real-time applications like
image processing, matrix algebra, four-vector computations, multivariate data anal-
ysis, image manipulation, 3D visualizations (geometry), creating files in various
graphics formats, interactive art, mines inspection evaluation, stitching maps on the
web or through advanced robotics. OpenCV is enabled with OpenCL to boost its
hardware acceleration of the underlying heterogeneous computational platform.

The C++ libraries includes: Boost, GSL, BDE, Dlib, JUCE, Loki, Reason,
yomm?2, Folly, Abseil, cxxomfort, libsourcey, OnPosix, Ultimate++, CAF, cpp-
mmf, CommonPP, Better Enums, Smart Enum, nytl, SaferCPlusPlus, fcppt, bit-
field.h, composite_op.h, Yato, Kangaru, yaal, rpnx-serial,libnavajo, C++ REST-
ful framework, C++ REST SDK, cpr, cpp-netlib, cpp-redis, tacopie, Boost.Asio,
Boost.Beast, gsoap,POCO, omniORB, ACE, TAO, wvstreams, Unicomm, rest-
ful_mapper, zeromq, curlpp, Apache Thrift, libashttp, Simple C++ REST library,
libtins, PcapPlusPlus, HTTPP, The Silicon C++14 Web Framework, ngrest, restc-
cpp, OpenDDS, Breep, uvw, rest_rpc, EasyHttp, nghttp2,Dear ImGui, FLTK nanal,
WxWidgets, OWLNext,tiny file dialogs, Switch, glibmm, gtkmm, goocanvasmm,
libglademm, libgnomecanvasmm, webkitgtk, flowcanvas, evince, Qt, qwtplot3d,
gwt5, libdbusmenu-qt, QuickQanava, QuickProperties, SFML (Simple and Fast
Multimedia Library),SDL (Simple DirectMedia Layer), SIGIL (Sound, Input,
and Graphics Integration Library), Cinder, openFrameworks, cairomm, nux, pan-
gomm, gegl, stb, Adobe/boost GIL, GraphicsMagick, Skia Graphics Engine,
enwiki:Skia_Graphics_Engine, Anti-Grain Evolution, plotutils, libraw, openexr,
gimageblitz, imagemagick, djvulibre, poppler, SVG++, id3lib, taglib, opencv, dlib,
ITK, OTB, Vulkan, OpenGL, bgfx, Ogre3D, Diligent Engine, GLEW, GLAD,
Epoxy, GLFW, GLM, hlsl++, assimp, VTK, Magnum, Irrlicht, Horde3D, Visionaray,
Open CASCADE, OpenSceneGraph, EntityX, Anax, EntityPlus, EnTT, BOX2D,
stats++, StatsLib, alglib, ArrayFire High Performance Computation Library, GNU
MP bignum C++ interface, BigNumber, Boost.Multiprecision, Boost.Math.Special
Functions and Statisticalistributions, Boost.Random, NTL - A Library for doing
Number Theory, cpp-measures, G + Smo cross-platform library for isogeometric
analysis, Exact floating-point arithmetic library, Boost.uBLAS, Eigen, Armadillo,
Blitz++, IT++, Dlib - linear algebra tools, Blaze, ETL, DecompLib, OptimLib,
Boost.Graph, LEMON, OGDF—Open Graph Drawing Framework, NGraph—a sim-
ple (Network) Graph library in C++, GTpo, cln, Dlib—machine learning tools,
MLPACK—machine learning package, Shogun—Ilarge scale machine learning tool-
box, CGAL—Computational geometry algorithms library, Wykobi—Computational
geometry library, PCL—Point Cloud library, yasmine—C++11 UML state machine
framework, libxml++, pugixml, tinyxml, tinyxml2, Xerces, gSOAP, ai-xml, json,
ArduinoJson, jsonme—, ThorsSerializer (JSON/YAML Input Output Streams), Json-
Box, jsoncpp, zoolib, JOST, CAJUN, libjson, nosjob, rapidjson, jsoncons, JSON++,

32 2 Introduction to Computational Techniques

gjson, json-cpp, jansson, jsonll, JSON Voorhees, jeayeson, ujson, minijson, jios
(JSON Input Output Streams), Botan, gnutls, openssl, crypto++, TomCrypt etc.

The Python libraries includes: ADOdb, AppJar, Beautiful Soup (HTML parser),
CGAL, CheetahTemplate, Construct (python library), Cubes (OLAP server), Gen-
shi (templating language), Gensim, IronPython, Jinja (tmplate engine), Kamaelia,
Kid (templating language), Kivy (framework), Natural Language Toolkit, Pickle
(Python), PLWM, PyEphem, Pygame, Pyglet, PyGObject, PyGTK, PyObjC, PyQt,
PySide, Python Imaging Library, Python Robotics, Python-Ogre, RDFLib, Red-
land RDF Application Framework, Requests (software), RPyC, SimpleITK, SimPy,
Sound Object (SndObj) Library, Soya3D, SpaCy, SQLAlchemy, SQLObject, Storm
(software), Tkinter, Topsite Templating System, Twisted (software), VPython,
WxPython, XDMF, Pipenv, PyTorch, Caffe2, Pendulum, Dash, PyFlux, Fire,
imbalanced-learn, FlashText, Luminoth, Scrapy, Pillow, NumPy, SciPy, matplotlib,
Scapy, pywin32, nltk, nose, SymPy, IPython etc.

Open source library uses some open source software like Linux, Apache Web
Server, OpenOffice, GIMP, Audacity, and Firefox browsers. Koha and Evergreen are
referred to as integrated library systems (ILS). They are the most popular libraries
and both are licensed under a GNU General Public license. Opens source application
depends on open source libraries to perform certain operation or features. Example of
the dependent open source applications are as follows: OpenCog, OpenCV, TREX,
ROS, YARP, FreeCAD, BIM, LibreCAD, Blender, flightgear, SimPy, Scribus, Bit-
coin Core, Bonita Open Solution, CiviCRM, Compiere, Cyclos, Dolibarr, ERPNext,
GnuCash, HomeBank, iDempiere, Ino erp, jFin, JFire, KMyMoney, LedgerSMB,
metasfresh, Mifos, Odoo, Openbravo, OrangeHRM, Postbooks, QuickFIX, Quick-
FIX/J, SQL Ledger, SugarCRM, Tryton, TurboCASH, Wave Accounting, ZipBooks,
Evergreen, Koha, NewGenLib, OpenBiblio, PMB, refbase, Darktable, digiKam,
GIMP, Inkscape, Krita, LightZone, RawTherapee, Chemistry Development Kit,
JOELIb, OpenBabel, P-GRADE Portal, CellProfiler, Endrov, FIJT (software), Ilastik,
ImagelJ, IMOD, ITK, KNIME, VTK, 3DSlicer, Abalone, Ascalaph Designer, GRO-
MACS, LAMMPS, MDynaMix, NAMD, NWChem, Avogadro, BALLView, Jmol,
Molekel, MeshLab, PyMOL, QuteMol, RasMol, Ninithi, CP2 K, LimeSurvey, CMU
Sphinx, Emacspeak, ESpeak, Festival Speech Synthesis System, Modular Audio
Recognition Framework, NonVisual Desktop Access, Text2Speech, Dasher, Gnoper-
nicus Virtual Magnifying GlassEnvironment, Konstanz Information Miner (KNIME)
OpenNN, Orange, RapidMiner, Scriptella ETL, Weka, JasperSoft, ParaView, VTK,
ResourceSpace, ApexKB, Lucene, Nutch, Solr, Xapian, Elasticsearch, Konstanz
Information Miner (KNIME), Pentaho, SpagoBI, Talend, OpenAFS, Tahoe-LAFS,
CephFS, OpenX, Asterisk. Ekiga, FreePBX, FreeSWITCH, Jitsi, QuteCom, Enter-
prise Communications System sipXecs, Twinkle, Ring, Tox, Geary, Mozilla Thun-
derbird, GNU Queue, HTCondor OpenLava, pexec, Apache Axis2, Apache Geron-
imo, Bonita Open Solution, GlassFish, Jakarta Tomcat, JBoss Application Server,
ObjectWeb JOnAS, TAO, Enduro/X, Akregator, Liferea, RSS Bandit, RSSOwlI,
Sage, Popcorn Time, gBittorrent, Drupal, Liferay, Oxwall, Sun Java System Por-
tal Server, uPortal, FreeNX, OpenVPN, rdesktop, Synergy, VNC, Remmina, Brave,
Chromium, Firefox, Midori, Tor Browser, Waterfox, SeaMonkey, Cheese, Guvcview,

2.3 Open-Source Library 33

cURL, HTTrack, Wget, Apache Cocoon Apache, AW Stats, BookmarkSync, Chero-
kee, curl-loader, FileZilla, Hiawatha, HTTP File Server, lighttpd, Lucee, Nginx,
NetKernel, Qcodo, Squid, Vaadin, Varnish, XAMPP, Zope, ATutor, Chamilo, Claro-
line, DoceboLMS, eFront, FlightPath, GCompris, Gnaural, H5P, IUP Portfolio,
ILIAS, Moodle, OLAT, Omeka, openSIS, Sakai Project, SWAD, Tux Paint, Uber-
Student, KGeography, Kiten KVerbos WINE, CyberBrau, Pencil2D, Pivot Animator,
Synfig, Tupi (formerly KTooN), OpenToonz, Blender, OpenFX, Seamless3d, Pen-
cil2D, SWFTools, Eye of GNOME, F-spot, Geeqgie, Gthumb, Gwenview, Kphotoal-
bum, Opticks, Dr. DivX, FFmpeg, MEncoder, OggConvert, Avidemux, AviSynth,
Blender, Cinelerra, DScaler, DVD Flick, Flowblade, Kaltura, Kdenlive, Kino,
LiVES, Natron, OpenShot Video Editor, Pitivi, Shotcut, VirtualDub, VirtualDub-
Mod, VideoLAN Movie Creator, Avidemux, HandBrake, FFmpeg, Apache OpenOf-
fice, Calligra Suite, LibreOffice, Chandler, KAddressBook, Kontact, KOrganizer,
Mozilla Calendar, Novell Evolution, OpenSync, Project.net, TeamLab, Bugzilla,
Mantis, Mindquarry, Redmine, Trac, Bison, CodeSynthesis XSD, CodeSynthe-
sis XSD/e, Flex lexical analyser, Kodos, Open Scene Graph, OpenSCDP, php-
CodeGenie, SableCC, SWIG xmlbeansxx, YAKINDU Statechart Tools, Doxygen,
Mkd, Natural Docs, Autoconf, Automake, BuildAMation, CMake, GNU Debug-
ger, Memtest86, Xnee, BOINC, Electric Sheep, XScreenSaver, MyDLP, dvdisas-
ter, Foremost, PhotoRec, TestDisk, Mydiamo, Coyote Linux, Firestarter, [PFilter,
ipfw, iptables, MOnOwall, PeerGuardian, PF, pfSense, Rope, Shorewall, SmoothWall,
Untangle, Vyatta, Java Astrodynamics Toolkit (GPL), General Mission Analysis Tool
(NASA Open Source Agreement), OREKIT (ORbits Extrapolation KIT) (Apache
License), Satellite tracking and orbit prediction (GPL), Orbit Reconstruction Simula-
tion and Analysis (GPL), Asteroid Orbit Determination and Propagation (GPL), Lib-
nova (LGPL), Open-Source, Extensible Spacecraft Simulation And Modeling Envi-
ronment (GPL), Distributed Spacecraft Attitude Control System Simulator (GPL),
Solar Sail structure and flight simulator (GPL), SaVi satellite constellation visualizer
(BSD License), Rocket Workbench Project (GPL), CpropepShell. Compute propel-
lant performance, BRL-CAD, Blender, Blender CAD, Procad, OpenSCAD, Python
CAD, VARKON, OpenCASCADE, FreeCAD, Archimedes, Wikipedia Free CAD
Software Listing, Linux.org CAD/CAM Software Listing, NASA Vision Workbench
(NOSA license), wikiCalc (GPL), Dia (GPL), DUNE (GPL with runtime exception),
Impact (GPL), Code_Aster, SALOME (LGPL), Elmer, Gmsh, OpenFVM, Palabos,
Calculix, Package of Additional Octave Libraries, ASCEND modelling environ-
ment, OpenDX (IBM), Freshmeat.net Visualization Software Listing, Vislt (BSD),
Englab (GPL), SciLab (CeCILL license), WorldWind (NOSA), Numpy/Scipy,
OpenCog, AForge.NET, TREX, ROS, YARP, Blender, flightgear, Chemistry Devel-
opment Kit, JOELIib, CellProfiler, Endrov, FIJI, Ilastik, ImageJ, IMOD ITK, KNIME,
VTK, 3DSlicer, Abalone, Ascalaph Designer, GROMACS, LAMMPS, MDynaMix,
NAMD, NWChem, Avogadro, BALLView, Jmol, Molekel, MeshLab, PyMOL,
QuteMol, RasMol, Ninithi, CP2 K, CMU Sphinx, Emacspeak, ESpeak, Bullet,
AwayPhysics, Bullet-ANE, ammo.js, Physijs, AmmoNext, Bullet.js, JBullet, ODE,
Bounce, nphysics, Velocity Raptor, Box2D, Nape, GoblinPhysics, verlet-js, Physic-
sJS, Matter.js, p2.js, Coffee Physics, JPE, APE, Chipmunk2D, glaze, ImpulseEngine,

34 2 Introduction to Computational Techniques

JelloAS3, JelloHx, Jello-Physics, JelloSwift, Jiglib, Moby, Newton-Dynamics,
OimoPhysics, qu3e, Tokamak, DynaMo, ReactPhysics3D, Chrono Engine, Position
Based Dynamics, SPlisHSPlasH etc.

Modeler sometime desire to create his/her own libraries. The step is quite easy if
the preliminary steps are diligently executed. For example, there must be an inter-
face to the proposed library. The header file to the proposed library should contain
definitions for everything exported by your library. This includes: function proto-
types with comments for users of your library functions; definitions for types and
global variables exported by your library. The modeler is expected to write a “boiler
plate” code that enables the preprocessor to include the ‘proposedlib.h’ file one time.
Aside creating the interface, the modeler is expected to design the implementation
flow chart of the library. This exercise is achieved by creating a proposedlib.c file that
#includes “proposedlib.h”. The next step after creating implementation code is creat-
ing a library object file that can be linked with programs that can access the proposed
library code. Alternatively, modeler may wish to create a shared object file from
many.o files that can be linked with programs that want to use the proposed library
code. However, before you share file, be sure of the license compatibility issues. The
file sharing can be achieved by linking the proposed.c file with the library object file.
An example of the.c file linking in C language is presented below.

“ gcc test.c mylib.o
OR to link in libmylib.so (or libmylib.a):
gcc test.c -Imylib

OR to link with a library not in the standard path:
gcc test.c -L/home/newhall/lib -Imylib”

An example of the.c file linking in C ++ language is presented below.

“INC = -| ./Headers
g++ main.o proposedlib.o
g++ $(INC) -c main.cpp
g++ $(INC) -c proposedlib.cpp
rm proposedlib.o main.o a.out
make

.Jexecutable”

An example of linking your created module to the main module in python language
is presented below.

2.3 Open-Source Library 35

“import proposedlib

if _name__ =="_ main_":

import sys
fib(int(sys.argv[1]))”

An example for linking the C++ to the Perl program is extracted from Perlxs
(2018). The produced Perl function will accept that its first contention is an object
pointer. The object pointer will be put away in a variable called THIS. The object are
written in C++ with the new() work and are executed by Perl with the sv_setref_pv(
) macro. The object by Perl can be dealt with by a typemap. For example, if the C++
code shown below

u

class colour {
public:
colour();
~colour();
int blue();
void set_blue(int);
private:
int c_blue;
F

n

is to be linked to the Perl program using THIS.

“ RETVAL = THIS->blue();
THIS->set blue(val);”

So that the link will look like below

36 2 Introduction to Computational Techniques

int
colour::blue(val = NO_INIT)
int val
PROTOTYPE $;$
CODE:
if (items > 1)
THIS->set blue(val);
RETVAL = THIS->blue();
OUTPUT:
RETVAL

References

Capterra. (2017). Environmental software. https://www.capterra.com/environmental-software/.
Accessed on January 4th, 2018.

Chandra, K. B., & Chinmayee, R. (2012). Incorporating hidden Markov model into anomaly detec-
tion technique for network intrusion detection. International Journal of Computer Applications,
53(11), 42-47.

ConnectUS (2018). 7 Main Advantages and Disadvantages of Open Source Software, https://
connectusfund.org/7-main-advantages-and-disadvantages-of-open-source-software. ~ Accessed
November 12th, 2018.

Emetere, M. E., & Sanni, E. S. (2015). A Review on the comparative roles of mathematical softwares.
Global Journal of Pure and Applied Mathematics, 11(6), 4937-4948.

Flory, W. J. (2018). 3 tips for organizing your open source project’s workflow on
GitHub. https://opensource.com/article/18/4/keep-your-project-organized-git-repo. Accessed
August 25th, 2018.

Higgs, P. (2016). The disadvantages of open source. https://www.gaiaresources.com.au/open-
source/. Accessed January 4th, 2018.

Ibrahim, H. (2010). https://www.linuxfoundation.org/resources/open-source-guides/starting-open-
source-project/. Accessed August 25th, 2018.

Igor, B. (2017). Top 15 Python libraries for data science in 2017. https://medium.com/
activewizards-machine-learning-company/top-15-python-libraries-for-data-science-in-in-2017-
ab61b4f9b4a7. Accessed on January 4th, 2018.

Istvan, F., Agnes, H., Zahari, Z. (2013). Advanced numerical methods for complex environmen-
tal models: Needs and availability (p. 201). https://doi.org/10.2174/97816080577881130101;
eISBN: 978-1-60805-778-8, 2013. ISBN: 978-1-60805-777-1.

Korolkovas, A. (2016). Entangled polymer flows at interfaces. A thesis submitted to University of
Upsala.

Matthias, S. (2013). Four types of open source communities. https://opensource.com/business/13/
6/four-types-organizational-structures-within-open-source-communities. Accessed August 25th,
2018.

NASA. (2018). Open-source software project. https://code.nasa.gov/. Accessed January 4th, 2018.

https://www.capterra.com/environmental-software/
https://connectusfund.org/7-main-advantages-and-disadvantages-of-open-source-software
https://opensource.com/article/18/4/keep-your-project-organized-git-repo
https://www.gaiaresources.com.au/open-source/
https://www.linuxfoundation.org/resources/open-source-guides/starting-open-source-project/
https://medium.com/activewizards-machine-learning-company/top-15-python-libraries-for-data-science-in-in-2017-ab61b4f9b4a7
https://doi.org/10.2174/97816080577881130101
https://opensource.com/business/13/6/four-types-organizational-structures-within-open-source-communities
https://code.nasa.gov/

References 37

NOAA. (2018). Numerical weather prediction. https://www.ncdc.noaa.gov/data-access/model-
data/model-datasets/numerical-weather-prediction. Accessed January 9th, 2018.

OSI. (2018). https://opensource.org. Accessed August 25th, 2018.

Patwardhan, M. (2016). Assessing the impact of usability design features of an mHealth app
on clinical protocol compliance using a mixed methods approach. Arizona State University:
ProQuest Dissertations Publishing; 2016. https://repository.asu.edu/attachments/172769/content/
Patwardhan_asu_0010N_16210.pdf

Perlxs, (2018). http://perldoc.perl.org/perlxs.html#Using-XS-With-C%2b%?2b. Accessed August
27th, 2018.

Seher, R. (2017). Combining open source software licenses—The final chapter. http://blog.thehyve.
nl/blog/open-source-software-licenses-3. Accessed August 25th, 2018.

Tom, A. (2004). How to misunderstand open source software development. http://www.
consultingtimes.com/ossdev.html. Accessed August 25th, 2018.

Upasani, O.S. (2016). Advantages and limitations of open source software for library management
system functions: The experience of libraries in India. The Serials Librarian, 71(2), 121-130.
https://doi.org/10.1080/0361526X.2016.1201786.

Vilimiki, M. (2005). The rise of open source licensing: A challenge to the use of intellectual
property in the software industry (Ph.D. thesis). Helsinki University of Technology. Retrieved
2015-12-30.

Wilbanks, J. (2013). Understanding open science. http://fastercures.tumblr.com/post/56790751132/
understanding-open-science. Accessed August 24th, 2018.

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/numerical-weather-prediction
https://opensource.org
https://repository.asu.edu/attachments/172769/content/Patwardhan_asu_0010N_16210.pdf
http://perldoc.perl.org/perlxs.html#Using-XS-With-C%252b%252b
http://blog.thehyve.nl/blog/open-source-software-licenses-3
http://www.consultingtimes.com/ossdev.html
https://doi.org/10.1080/0361526X.2016.1201786
http://fastercures.tumblr.com/post/56790751132/understanding-open-science

	2 Introduction to Computational Techniques
	2.1 General Outline of Computational Techniques
	2.2 Open Source Scientific Packages
	2.3 Open-Source Library
	References

