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A B S T R A C T

The synergistic reaction of Rosmarinus officinalis and trypsin complex on the susceptibility of medium carbon
steel to interfacial deterioration in 2M H2SO4 and HCl solution was studied using potentiodynamic polarization
method, weight loss evaluation, open circuit potential analysis, optical microscopy and ATR-FTIR spectroscopy.
Experimental outcome confirmed the effective performance of the admixture with highest inhibition values of
79.72% and 80.85% in H2SO4 with anodic type inhibition, 78.88% and 94.17% in HCl with cathodic type
inhibition from the electrochemical tests. The inhibiting compound significantly influenced the thermodynamic
behaviour of the steel, shifting the corrosion potential of the steels due to its passivation characteristics.
Chemisorption adsorption mechanism was observed with respect to Langmuir and Frumkin adsorption iso-
therms, and correlation coefficients of 0.8359 and 0.9559 in H2SO4 solution, and 0.9900 and 0.9991 in HCl
solution respectively. Identified functional groups from ATR-FTIR spectroscopic analysis partially adsorbed onto
the carbon steel in H2SO4 and completely in HCl. Micro-analytical images of the admixture protected steel
contrast the uninhibited.

Introduction

Carbon steels are extensively applied metallic alloy for structural
applications and industrial processes due to its relatively low price,
ready occurrence and easy formability [1]. The dominant problem en-
countered during utilization is their low corrosion resistance in aqueous
environments. Aqueous acid solutions are extensively employed in in-
dustrial operations e.g. industrial inorganic deposit removal, pickling,
descaling, and drilling operations during oil and gas inspections, as
such carbon steels within these environments are subject to corrosion
[2]. Corrosion of carbon steels have received huge attention world-wide
due to their economic and safety consequences resulting from rapid
damage. Corrosion inhibitors have been proven over the years to be the
most cost effective method of corrosion control of carbon steels, how-
ever the use of some of the widely available inhibitor formulations
commercially have adverse and unsustainable environmental impact.
Inorganic chemical inhibitors containing phosphate, chromate, and
other heavy metals tops the list of toxic chemicals to the environment,
carcinogenic effect and difficulties encountered in their disposal [3,4].
Organic inhibitors have also been extensively used but their application
is limited due to their toxicity and high manufacturing cost [5–8]. In
view of this naturally occurring biodegradable products lacking heavy
metals constituents and toxic compounds is the most promising

alternative, among which plant extracts find a prominent place. Pre-
vious research has shown that the available phytochemical constituents
of plant extracts are inexpensive, non-toxic and readily available source
of green chemicals for corrosion inhibition [9,10]. Previous research
separately studied the corrosion inhibition properties of Rosmarinus
officinalis and Ricinus communis in weak aqueous solutions with good
results [11,12]. This investigation is designed to assess the synergistic
corrosion inhibition properties of Rosmarinus officinalis and trypsin
complex in 2M H2SO4 and HCl solution.

Experimental methods

Materials and preparation

Medium carbon steel (MCS) of cylindrical shape sourced commer-
cially has a nominal composition (wt%) consisting of 0.3% C, 0.6% Mn,
0.15% Ni, 0.04% P, 2.2% Si, 0.5% Cu, 0.03% Mo and 96.18% Fe. The
steel specimens with mean dimension of 0.71 cm (thickness), 1.4 cm
(diameter) and 5.94 cm2 (surface area) were grinded after sectioning
with silicon carbide abrasives having grit sizes of 80, 120, 220, 320,
600, 800 and 1000. They were afterwards cleansed with deionized
water and ketone propane for weight loss analysis and potentiodynamic
polarization as stated in ASTM G1-03 (2011) [13]. Rosmarinus officinalis

https://doi.org/10.1016/j.rinp.2018.05.028
Received 9 April 2018; Accepted 16 May 2018

⁎ Corresponding author.
E-mail address: tolu.loto@gmail.com (R.T. Loto).

Results in Physics 10 (2018) 99–106

Available online 23 May 2018
2211-3797/ © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/22113797
https://www.elsevier.com/locate/rinp
https://doi.org/10.1016/j.rinp.2018.05.028
https://doi.org/10.1016/j.rinp.2018.05.028
mailto:tolu.loto@gmail.com
https://doi.org/10.1016/j.rinp.2018.05.028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rinp.2018.05.028&domain=pdf


and trypsin complex obtained from NOW Foods, USA and Bell Sons and
Co. UK are the organic compounds evaluated for their inhibition per-
formance. Rosmarinus officinalis has a molar mass of has a molar mass
(active groups) of 691.14 g/mol, while trypsin complex has a molar
mass of 933.45 g/mol. Their combined admixture (ROTC) in similar
quantities (1:1) was prepared in molar concentrations of 9.23×10−3,
7.69×10−3, 1.08× 10−2, 1.38×10−2, 1.69×10−2 and
2.00×10−2 in 200mL of 2M H2SO4 and HCl solution (analar grade)
with distilled water.

Potentiodynamic polarization test

Polarization measurement was conducted at 30 °C ambient tem-
perature with the aid of platinum counter electrode, Ag/AgCl reference
electrode containing 3M KCl solution at 6.5 pH and resin embedded
circular MCS working electrodes (surface area of 1.54 cm2) inside a
transparent container with 200mL of H2SO4/ROTC and HCl/ROTC test
media and linked to Digi-Ivy 2311 potentiostat. Graphical plots of
anodic-cathodic polarization diagrams were produced at 0.0015 V/s
scan rate at potentials between −1.2 V and 0.5 V [14,15]. Corrosion
current density Jc, (A/cm2) and corrosion potential, Ec (V) were eval-
uated by Tafel extrapolation. Corrosion current, Ic (A) was determined
from the cut of between the cathodic and anodic polarization curves
[16,17]. Corrosion rate values, CRT (mm/y) were calculated from the
following equation;
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where Eq is the equivalent weight of MCS (g), 0.00327 is a corrosion
rate constant [18], and D is the density (g/cm3) Inhibition efficiency,
INEF (%) was computed from corrosion rate (Eq. (2));
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CR1 is the weight loss without ROTC and CR2 is the weight loss with
ROTC. Polarization resistance, Rp, (Ω) was computed from Eq. (3);
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where Ba is the anodic Tafel slope (V/dec) and Bc is the cathodic Tafel
slope (V/dec).

Weight loss analysis

MCS specimens hanged and submerged inside 200mL of 2M H2SO4

and HCl solution for 240 h were measured every 24 h [19]. Corrosion
rate, CRT (mm/y) was determined from the equation below [20],
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WL is the weight loss (g), D is the density (g/cm3), A is the total exposed
surface area of MCS sample (cm2) and 87.6 is a constant. t is the time
(h). Inhibition efficiency (INEF) was computed from the formula below;

= ⎡
⎣⎢

− ⎤
⎦⎥

×IN W W
W

100EF
L1 L2

L1 (5)

WL1 and WL2 are the weight loss at specific ROTC concentrations.
Surface coverage was computed from Eq. (6) [21,22]:
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where θ is the degree of ROTC coverage on MCS. WL1 and WL2 are the
weight loss of each MCS at predetermined ROTC concentration in 2M
H2SO4 and HCl solution.

ATF-FTIR spectroscopic studies and optical microscopy analysis

2M H2SO4 and HCl solutions with ROTC compound at specific va-
lues, prior to and corrosion test were analysd with Bruker Alpha FTIR
spectrometer at 375 to 7500 cm−1 wavelength and 0.9 cm−1 resolu-
tion. The ATF-FTIR absorption graphs of spectra peaks were evaluated
and matched with the ideal ATF-FTIR for active molecular group
identification involved in the corrosion inhibition of MCS. Micro-ana-
lytical images of corroded MCS surface features and ROTC protected
MCS were studied after corrosion using Omax trinocular metallurgical
microscope.

Results and discussion

Potentiodynamic polarization studies

Potentiodynamic polarization curves of MCS in 1M H2SO4 and HCl
solution at 0%–6.5% ROTC concentration are shown in Fig. 1(a) and
(b). Data obtained from the polarization test are depicted in Table 1.
MCS corroded at a much higher rate in H2SO4 (20.19 mm/y) compared
to HCl solution (11.01 mm/y) at 0% ROTC due to the higher ionization
strength of H2SO4 in H2O releasing two protons which strongly reacts
and deteriorates MCS surface compared to HCl which gives out one
proton. Comparison of the corrosion potential at this concentration
shows MCS tends to be significantly electronegative in H2SO4 than in
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Fig. 1. Graphical plot of the anodic-cathodic polarization curves for MCS at 0%–6.5% ROTC (a) 2M H2SO4, (b) 2M HCl solutions.
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HCl for reasons earlier mentioned, which corresponds to a higher cor-
rosion current density and significantly higher anodic Tafel slope value.
The anodic exchange current density is greater than the cathodic
counterpart in H2SO4 but lower in HCl due to the predominant oxida-
tion reaction in H2SO4.

Addition of ROTC compound to the acid solutions (H2SO4 and HCl)
changed the mechanism of the redox electrochemical interaction. In
H2SO4 corrosion suppression by ROTC compound at 1.5% concentra-
tion is marginal and the corrosion potential shifts to a cathodic value of
−0.326 V from−0.302 V at 0% ROTC. There is a remarkable change in
anodic Tafel slope from 12.044 V/dec to 7.875 V/dec (1.5% ROTC)
signifying anodic inhibition due to surface coverage. Further increase in
ROTC concentration in H2SO4 solution results in average inhibition
efficiency above 70% till 6.5% ROTC concentration. The anodic and
cathodic Tafel slopes beyond 1.5% ROTC remained slightly the same,
corresponding to near similar values of ROTC inhibition efficiency. This
confirms the earlier mention assumption of corrosion inhibition by in-
terfacial covering whereby the molecular movement of corrosive spe-
cies unto MCS solution interface is limited. Changes in corrosion po-
tential beyond 1.5% ROTC further confirms the inhibition mechanism
of ROTC in H2SO4 as the corrosion potential transits to anodic values
due to inhibition of anodic dissolution reactions.

Observation of the corrosion potential values of MCS in HCl shows a
significant shift to cathodic potentials from −0.208 V at 0% ROTC to
−0.343 V at 6.5% ROTC, signifying dominant cathodic inhibition
properties of ROTC in HCl. Changes in cathodic Tafel slope values with
respect to ROTC concentration confirms this assumption. Despite the
relatively lower corrosion rate value in HCl solution at 0% ROTC, the
inhibition efficiency values of ROTC are comparable to the values ob-
tained in H2SO4 due to the relatively lower inhibition performance of
ROTC in the solution simply because ROTC protonates more strongly in
H2SO4 causing excess of electrons from molecules. This paradox causes
the compound to be more reactive resulting in strong interaction with
MCS surface. The peak anodic shift in corrosion potential of MCS in
H2SO4 is 93mV and 146mV cathodicaly in HCl, thus ROTC is an anodic
type inhibitor in H2SO4 and a cathodic type inhibitor in HCl [23].

Weight-loss analysis and Micro analytical studies

Results obtained for MCS weight-loss (WL), corrosion rate (CR) and
ROTC inhibition efficiency (INEF) in 2M H2SO4 and HCl solution at
240 h exposure time is shown in Table 2. Fig. 2(a) to 3(b) present the
graphical curves of MCS corrosion rate and ROTC inhibition efficiency
against exposure time in 2M H2SO4 and HCl solution. Optical re-
presentations and morphological characteristics of MCS prior to cor-
rosion, after corrosion, in the presence and absence of ROTC inhibitor

from both acids are depicted from Fig. 4(a) to 5(d) at ×40 magnifi-
cation. MCS corrosion rate value in H2SO4 at 0% ROTC concentration
showed corrosion behaviour of the steel was unstable [Fig. 2(a)] for the
first 72 h, shifting from 0.0320mm/y through 0.0374mm/y to
0.0320mm/y. A gradual decline in corrosion rate was later observed
till 168 h at 0.0293mm/y before mild variation in corrosion rate values
till 240 h. This observation significantly contrasts the plots obtained for
MCS in HCl solution [Fig. 2(b)] where the corrosion rate sharply in-
creased after 24 h of exposure due to the electrochemical action of Cl−

anions on MCS corrosion which tends to be more debilitating than
SO4

2− anions. The corresponding optical morphology of MCS after
corrosion in both acids (0% ROTC) is shown in Fig. 4(b) and 5(b),
which significantly contrast the morphology before corrosion [Fig. 4(a)
and 5(a)]. Though the morphology of Fig. 4(b) and 5(b) are severely
corroded, Fig. 5(b) shows the presence of corrosion pits due to the re-
latively small size of Cl− anions (in comparison to SO4

2− anions) which
enables penetration through the metal substrate. This is responsible for
the consistent increase in corrosion rate of MCS in HCl solution. Ad-
dition of ROTC to the acid solutions changed the reaction mechanism
within the solutions. In H2SO4 solution ROTC acted instantaneously,
achieving relative stability in inhibiting the corrosion and anodic dis-
solution of MCS after 48 h of exposure when compared to its action in
HCl and its inhibition efficiency tends to be negligibly proportional to
its concentration after 1.5% ROTC. The optical microscopy morphology

Table 1
Potentiodynamic polarization data for MCS in 2M H2SO4 and HCl solution in 0%–6.5% ROTC concentration.

Sample ROTC Conc. (%) ROTC Conc. (M) CRT (mm/y) INEF (%) Ic (A) Jc (A/cm2) Ec (V) Rp (Ω) Bc (V/dec) Ba (V/dec)

2M H2SO4 solution
A 0 0 20.19 0 2.68E−03 1.74E−03 −0.302 10.19 −7.616 12.044
B 2 9.23E−03 10.00 50.45 1.33E−03 8.62E−04 −0.326 51.56 −6.226 7.875
C 3 7.69E−03 5.43 73.12 7.20E−04 4.68E−04 −0.265 91.22 −5.583 6.941
D 4 1.08E−02 4.95 75.51 6.57E−04 4.26E−04 −0.247 104.45 −5.075 6.118
E 5 1.38E−02 4.64 77.00 6.16E−04 4.00E−04 −0.267 110.61 −5.138 6.217
F 6 1.69E−02 4.09 79.72 5.44E−04 3.53E−04 −0.241 122.82 −5.347 6.556
G 7 2.00E−02 4.21 79.16 5.59E−04 3.63E−04 −0.209 115.65 −5.183 6.358

2M HCl solution
A 0 0 11.01 0 1.46E−03 9.49E−04 −0.208 195.91 −6.205 5.910
B 2 9.23E−03 3.11 71.80 4.12E−04 2.68E−04 −0.299 38.27 −7.413 3.560
C 3 7.69E−03 2.93 73.35 3.90E−04 2.53E−04 −0.353 34.87 −7.903 3.377
D 4 1.08E−02 2.98 72.91 3.96E−04 2.57E−04 −0.354 29.35 −8.302 3.138
E 5 1.38E−02 2.77 74.83 3.68E−04 2.39E−04 −0.306 28.73 −10.460 3.190
F 6 1.69E−02 2.33 78.88 3.09E−04 2.00E−04 −0.346 38.55 −7.860 3.118
G 7 2.00E−02 2.32 78.93 3.08E−04 2.00E−04 −0.343 43.91 −6.797 3.150

Table 2
Experimental results from weight loss measurement at 240 h for MCS corrosion
in 2M H2SO4 and HCl solution at 0%–6.5% ROTC).

MCS
Samples

Weight
Loss (g)

ROTC
Concentration
(%)

ROTC
Concentration
(M)

CRT

(mm/
yr)

ROTC
INEF

(%)

2M H2SO4

A 3.788 0 0 29.650 0
B 1.812 1.5 9.23E−03 14.186 52.15
C 0.847 2.5 7.69E−03 6.626 77.65
D 0.841 3.5 1.08E−02 6.582 77.80
E 0.760 4.5 1.38E−02 5.950 79.93
F 0.725 5.5 1.69E−02 5.677 80.85
G 0.974 6.5 2.00E−02 7.624 74.29

2M HCl
A 2.957 0 0 23.144 0
B 0.487 1.5 9.23E−03 3.812 83.53
C 0.410 2.5 7.69E−03 3.205 86.15
D 0.358 3.5 1.08E−02 2.802 87.89
E 0.172 4.5 1.38E−02 1.349 94.17
F 0.319 5.5 1.69E−02 2.494 89.22
G 0.378 6.5 2.00E−02 2.955 87.23
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in Fig. 4(c) and (d) shows a mildly deteriorated surface at 1.5% and
6.5% ROTC, possibly as a result of pre-adsorbed anions of sulphate
prior to adsorption of ROTC molecules. This suppressed the redox
electrochemical reactions responsible for corrosion. In HCl there is a
consistent increase in ROTC inhibition efficiency with respect to ex-
posure time till 240 h and the inhibition efficiency values is appreciably
higher than values obtained in H2SO4. The optical microscopy mor-
phology in Fig. 5(c) and (d) shares similar characteristics with the
images obtained in H2SO4.

Open circuit potential measurement

The thermodynamic tendency of MCS to corrode with respect to it
aqueous environment is shown on the graphical plots of corrosion po-
tential versus exposure time for MCS in 2M H2SO4 and HCl solution at
0%, 1.5% and 6.5% ROTC for 1800 s [Fig. 6(a) and (b)]. The corrosion
potential values for MCS in 2M H2SO4/ 0% ROTC proves to be less
thermodynamically stable than the values obtained at 2M H2SO4/ 1.5%
and 6.5% ROTC due to visible potential transients. Its corrosion po-
tential initiated at −0.268VAg/AgCl at 0 s and stopped at −0.265VAg/

AgCl at 1800 s. The observed potential transients are as a result of the
currents flowing from localized corrosion sites on MCS. Addition of
ROTC compound at 1.5% and 6.5% shifted the corrosion potential of
MCS to −0.231VAg/AgCl and −0.213VAg/AgCl, making the steel more
thermodynamically stable and reducing its tendency to corrosion as a
result of changes in the reactions of SO4

2− induced redox processes.
The shift in open circuit potential plots of MCS at 1.5% and 6.5% ROTC
shows anodic inhibition by ROTC compound confirming earlier results
from potentiodynamic polarization. The corrosion potential plot of
6.5% ROTC shows its equilibrium state is unstable despite increased
passivation of MCS due to corrosion inhibition. The open circuit po-
tential plots of MCS in 2M HCl solution significantly contrast the plots
in 2M H2SO4 solution. At 0% ROTC, the corrosion potential starts at
−0.310VAg/AgCl (0 s) and shifts anodically till −0.304VAg/AgCl at
1800 s. The visible current transients are due to the electrochemical
action of Cl− anions on MCS surface which in effect makes the steel
thermodynamically unstable, increases its tendency to corrode and
clearly signifies that the steel is not in equilibrium within the HCl so-
lution. Similar active passive behaviour was observed for MCS at 1.5%
and 6.5% ROTC concentration, however the presence of ROTC shifts the
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Fig. 2. Graphical curves of (a) MCS corrosion rate against exposure time in (a) 2M H2SO4 (b) 2M HCl.
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corrosion potential cathodically signifying cathodic inhibition as earlier
determined from potentiodynamic polarization hence the corrosion
behaviour of MCS in the presence of ROTC compound is the same in
free and applied potential monitoring.

Adsorption isotherm

The adsorption and corrosion inhibition of ROTC on the electro-
chemical behaviour of MCS occurred through the reaction mechanism
whereby ROTC transferred its proton to the vacant orbitals (due to
oxidation reaction) of MCS forming a coordinate bond over the entire
MCS surface. This is possible through molecular reactions involving
charge transfer. The mechanism of ROTC adsorption was further de-
termined and studied through adsorption isotherms. Studies show
ROTC fits well with the Langmuir and Frumkin adsorption isotherm
models in both acid solutions with correlation coefficients of 0.8359
and 0.9559 in H2SO4 solution, and 0.9900 and 0.9991 in HCl solution
respectively. Other isotherms tested (Freundlich and Temkin) gave
correlation coefficients below 0.3 which is far from unity.

The Langmuir isotherm plot of C
θ

ROTC versus CROTC [Fig. 7(a) and
(b)], determined from Eq. (7) suggests; (i) Molecular interaction on the
metal surface is invariable, (ii) Gibbs free energy is non-dependent on
the extent of adsorbates coverage and (iii) Effect of Lateral interaction
due to reaction of molecular species is negligible on the value of Gibbs
free energy [24]. The Frumkin plot of Log

−
θ

θ1
versus ϴ [Fig. 8(a) and

(b)], determined from Eq. (8) assumes complete molecular coverage
when the concentration of ROTC is high for non-homogeneous metal
alloys and the lateral interaction effect is negligible.

= ⎡
⎣⎢ +

⎤
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θ K C
K C1 ads

ads ROTC

ROTC (7)

∗ − = +C K αθLog[ (θ/1 θ)] 2.303 log 2ROTC ads (8)

Thermodynamics of the corrosion process

The energy of molecular interaction responsible for ROTC corrosion
inhibition and surface adsorption onto MCS is commensurate to the
amount of H2O molecules (n) displaced by ROTC in the acid media.
Molecular adsorption of organic compounds is a replacement reaction
which involves removal of H2O molecules from the steel surface and is
commensurate to the amount of metallic cations passed into the elec-
trolyte, and degree of ROTC coverage. Calculated data of Gibbs free
energy (ΔGo

ads) for the molecular interaction are presented in Table 3
and were calculated from the Eq. (9) [25].

= −G RT KΔ 2.303 log[55.5 ]ads ads (9)

55.5 is a constant for molar concentration of water in the solution, R is
the universal gas constant, T is the absolute temperature and Kads is the
equilibrium constant of adsorption. Kads is related to surface coverage
θ( ) from the Langmuir equation (Eq. (7)).

The heterogeneous nature and surface properties of MCS has a
strong influence on ΔGo

ads values with respect to the degree of ROTC
surface coverage value. The negative values of ΔGo

ads show adsorption
mechanism is random and progression of the molecular film layer on
the metal surface. The highest ΔGo

ads value obtained for ROTC ad-
sorption on MCS in H2SO4 and HCl solution is −42.22 KJmol−1 at
2.5% ROTC and −44.57 KJmol−1 at 4.5% ROTC, while the lowest
value in both acids are −38.89 KJmol−1 at 1.5% ROTC and
−41.53 KJmol−1 at 6.5% ROTC. This is consistent with adsorption
mechanism associated with covalent interaction and electrostatic at-
traction [26,27].

(a) (b)

(c) (d)

Fig. 4. Morphology of MCS at mag. ×40 from 2M H2SO4 solution (a) before corrosion, (b) after corrosion at 0% ROTC, (c) after corrosion at 1.5% ROTC and (d) after
corrosion at 6.5% ROTC.

R.T. Loto, C.A. Loto Results in Physics 10 (2018) 99–106

103



ATF-FTIR spectroscopy analysis

Moieties of atoms or bonds within ROTC molecules responsible the
adsorption and corrosion inhibition reactions on MCS surface were
discovered by ATF-FTIR spectroscopy after comparing with the ATR-
FTIR Theoretical Table [28,29]. Fig. 9(a) and (b) shows the graphical
curves of the spectrums of 2M H2SO4 and HCl/ROTC solutions before
and after MCS corrosion. The transmittance of calculated wavenumbers
of 2M H2SO4/ROTC solution before corrosion decreased significantly at

wavelengths between of 885.21–2880 cm−1 after corrosion as shown
on the spectrum of 2M H2SO4/ROTC solution due to adsorption of
specific ROTC molecules.

The functional groups identified within the aforementioned wave-
length range are alkenes, aldehydes, nitrile, alkynes, esters, saturated
aliphatic, carboxylic acids, alpha, beta–unsaturated esters, carbonyls
(general), ketones, alpha, beta–unsaturated aldehydes, NeH bend pri-
mary amines, aromatics, nitro compounds, alkanes, aromatic amines,
alcohols, ethers, alkyl halides, aliphatic amines and secondary amines

(a) (b)

(c) (d)

Fig. 5. Morphology of MCS at mag. ×40 from 2M HCl solution (a) before corrosion, (b) after corrosion at 0% ROTC, (c) after corrosion at 1.5% ROTC and (d) after
corrosion at 6.5% ROTC.
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6.5% ROTC.
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consisting of bonds such as ]CeH stretch, HeC]O: CeH stretch,
C(triple bond)N stretch, eC(triple bond)Ce stretch, C]O stretch, C]O
stretch, eC]Ce stretch, CeC stretch (in–ring), NeO asymmetric
stretch, CeH bend, CeH rock, NeO symmetric stretch, CeN stretch,
CeO stretch, CeH wag (eCH2X), ]CeH bend, OeH bend, NeH wag
and CeH “oop”. Decrease in transmittance of wavenumbers confirmed
the effect of surface coverage resulting on MCS surface.

The transmittance of calculated wavenumbers of 2M HCl/ROTC
solution before corrosion decreased at wavelength 520–3638 cm−1, i.e.
at a much wider range than in H2SO4 solution, thus having similar
functional groups involved in corrosion inhibition of MCS in H2SO4 in
addition to alkyl halides group which consist of CeCl stretch, CeH
rock, eC(triple bond)CeH: CeH bend, CeBr stretch, ]CeH stretch,
eC(triple bond)CeH: CeH stretch, NeH stretch, OeH stretch,
H–bonded and free hydroxyl bonds. This explains the higher surface
coverage and corrosion inhibition of ROTC on MCS in HCl solution due
to the active participation of additional functional groups in the acid
solution.

Conclusion

Corrosion suppression by the combined admixture of Rosmarinus
officinalis and trypsin complex on medium carbon steel in 2M H2SO4
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θ
versus ROTC concentration (a) 2M H2SO4 and (b) 2M HCl.
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Table 3
Result for ΔGo

ads, θ and Kads for ROTC adsorption on MCS in 2M H2SO4 and HCl
solution.

MCS
Samples

ROTC Concentration
(M)

θ Kads ΔGads

(Kjmol−1)

2M H2SO4

A 0 0 0 0
B 0.0092 0.522 118059.1 −38.89
C 0.0077 0.777 451591.9 −42.22
D 0.0108 0.778 325332.0 −41.41
E 0.0139 0.799 287609.6 −41.10
F 0.0169 0.809 249484.5 −40.75
G 0.0200 0.743 144409.1 −39.39

2M HCl
A 0 0 0 0
B 0.0092 0.835 549247.1 −42.70
C 0.0077 0.862 808430.9 −43.66
D 0.0108 0.879 673874.2 −43.21
E 0.0139 0.942 1166830.0 −44.57
F 0.0169 0.892 489166.3 −42.42
G 0.020005 0.872324 341529.7 −41.5256
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and HCl solution occurred through surface coverage and chemisorption
molecular interaction according to the Langmuir and Frumkin isotherm
model from potentiodynamic polarization and weight loss and the in-
hibition type in both acids contrast each other due to different anionic
reactions. The chemical compound performed relatively more effec-
tively in HCl solution compared to H2SO4 despite the small size of Cl−

compared to SO4
2−. Identified functional groups in the inhibitor ad-

sorbed onto the carbon steel from analysis of the spectrum plots.
Optical representations of the protected steel showed moderate mor-
phological deterioration with lean and shallow pits in comparison to
the uninhibited steel plagued with severely corroded and pitted surface.
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